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Abstract: This paper focuses on passive emitter localization using moving sensors. The increase in
observation time is beneficial to improve the localization accuracy, but it could cause deterioration
of the relative motion between the emitter and the sensors, especially the nonlinear motion.
The common localization algorithms typically have two steps: (1) parameter estimation and
(2) position determination, where the parameters are assumed to be constant, and it is not applicable
for long observation times. We proposed the time-varying delay-based direct position determination
(DPD-TVD) method, regarding the variation in the propagation time delay during the observation
time. Using one step, the proposed algorithm can obtain the emitter’s position directly from the
received signals by calculating the cost function corresponding to the map grid. By better adapting
to highly dynamic scenarios, the proposed algorithm can achieve better localization accuracy than
that of constant parameters using one-step or two-step procedures, which is demonstrated by the
simulation results.

Keywords: passive localization; direct position determination; time-varying delay; maximum
likelihood

1. Introduction

Passive localization of electronic emitters has always been an important topic in disciplines such
as signal processing, communications, and acoustics. Conventional algorithms for determining the
position of noncooperative emitters are based on the initial estimation of certain parameters, such as
angle of arrival (AOA) [1], received signal strength (RSS) [2], time of arrival (TOA) [3,4], time difference
of arrival (TDOA) [5], frequency difference of arrival (FDOA) [6,7] or rate of frequency difference of
arrival (RFDOA) [8]. These intermediate parameters are then used for the localization of the emitter
based on the known positions and velocities of the sensors. Such two-step localization algorithms are
sub-optimal from the point of view of estimation, as some loss of information during data processing
is inevitable.

Weiss [9] proposed the Direct Position Determination (DPD) approach, which obtains the emitter
position directly from the received signals. Combining observations from all sensors, the DPD algorithm
can estimate the emitter’s location by constructing a simple closed-form maximum-likelihood (ML)
cost function that depends only on the location and search space of geographic grids. Amar and
Weiss [10] proposed a DPD algorithm based on the Doppler frequency shift for narrowband signals,
and Weiss [11,12] developed a ML location DPD algorithm for wideband random signals using
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both the Doppler effect and the relative delay. Li [13] used a coherent summation method that
takes the coherency among the short-time signals received at the same receiver into account, while
Pourhomayoun [14,15] introduced a complex ambiguity function (CAF)-based algorithm to find
a balance between localization performance and computation. In [16], Vankayalapati used a continuous
time model and derived a TDOA-based DPD estimator. Steffes [17] proposed a DPD algorithm for
single-sensor TDOA localization, and Tzoreff [18] developed an expectation-maximization-based
DPD algorithm to replace the high-dimensional search process with several one-dimensional searches.
Lu [19] used a single iterative particle filter algorithm to overcome the problems associated with
high computational loads. The DPD algorithms mentioned above [10–19] use sensors with a single
antenna. Some studies [9] focused on sensors equipped with array antennas that can utilize AOA
information. Tirer and Tzafri proposed high-resolution DPD algorithms [20,21], and DPD algorithms
have been developed for special signals such as cyclostationary [22] and strictly noncircular signals [23].
The influence of model error on the localization accuracy was analyzed in [24,25]. DPD algorithms
have also been extended to the case of multiple emitters [26–29].

Both the one-step and two-step algorithms use the geometry and relative motion between emitter
and sensors. If the signal models are assumed to have the same order, the Cramer–Rao lower bound
(CRLB) that can be achieved by the one-step and two-step methods is asymptotically the same [11].
The increase in observation time is beneficial as it improves the localization accuracy. However,
as the traditional models of one-step or two-step algorithms assume parameters to be constant, the
observation time cannot be increased beyond a certain limit, because it could cause deterioration as
the relative motion between the emitter and the sensors, especially the nonlinear motion. Hu [30]
introduced the relative time companding (RTC) and relative Doppler companding (RDC) factors to
analyze the problem quantitatively. If the observation time exceeds the limitation, the shape of cost
function used for parameter estimation in two-step algorithms will expand, resulting in performance
degradation and possibly the failure of localization. The same problem occurs in the DPD algorithms,
which are investigated in this paper. If the observation time is large, the cost function shape that
corresponds to the map grid will expand. Therefore, the traditional signal model based on time delay
and Doppler shift [11] is no longer suitable for localization with long observation time. To prevent the
cost function shape of CAF from expanding, Hu [8] estimated RFDOA along with TDOA and FDOA
using three steps. In addition, the estimated RFDOA can be used for localization, which is conducive
to enhancing the accuracy. However, there is no DPD algorithm that considers the long observation
time problem in highly dynamic scenarios.

In this paper, we propose a DPD algorithm that uses a time-varying time delay for passive
localization with long observation time in highly dynamic scenario. We regard the time delay as
a time-varying parameter during the observation time, where the time delay of each sampling point is
calculated. The time-varying delay model contains all the information about the delay and relative
motion between the sensors and the emitter. In the case of short observation times, constant models of
traditional methods are special cases of the time-varying delay model. This paper derives the CRLB of
the proposed algorithm and demonstrates the algorithm’s performance using simulations.

The remainder of this paper is organized as follows. The signal model and problem formulation
are introduced in Section 2. In Section 3, the DPD-TVD algorithm is proposed. Experimental and
simulation results are presented in Section 5 to validate our algorithm, and we also illustrate the
performance through a comparison with the traditional DPD and CRLB. Finally, the conclusions are
summarized in Section 7.

2. Signal Model and Problem Formulation

The transmitted signal model is given by

s(t) = a(t)ej2π fct, (1)
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where fc is the carrier frequency, a(t) is the signal envelope. −T/2 ≤ t ≤ T/2, and T is the observation
time. Note that the signal bandwidth B of a(t) satisfies B� fc.

As shown in Figure 1, consider a stationary radio emitter located at p and L moving sensors
whose frequencies and times are synchronized. The sensors are on platforms moving in the air, such as
satellites, aircrafts or UAVs, etc. and use navigation device such as GPS to obtain their position and
velocity. The L sensors intercept the transmitted signals in K short intervals. The signal observed by
sensor l in interception interval k is given by

rl,k(t) = bl,kak(t− τl,k(t))ej2π fc(t−τl,k(t)) + ωl,k(t), (2)

where ak(t) is the signal envelope at interception interval k, τl,k(t) is the time-varying delay, bl,k is the
channel transmission attenuation, and ωl,k(t) is white Gaussian noise. In contrast to the traditional
algorithms, we consider the propagation time as a time-varying variable during each interception
interval. This hypothesis is applicable to highly dynamic scenarios in which the emitter and sensors
exhibit nonlinear relative motion.

Sensor 1

Sensor 2

Emitter

 s t

 1,kr t

 1,1r t

 1,Kr t

 2,kr t

 2,1r t

 2,Kr t

Figure 1. The localization scenario.

We define the time-varying delay as

τl,k(t) ,
1
c
∥∥p− pl,k(t)

∥∥ , (3)

where pl,k(t) denotes the coordinate vector of sensor l at interception interval k.
To compare the time-varying signal model with the traditional signal model, the time-varying

variable τ(t) is expressed as a Taylor series at the point when t = 0 by

τ(t) = τ(0) + τ′(0)t +
1
2

τ′′(0)t2 + . . . , (4)

where τ(0), τ′(0), τ′′(0), and τ′′′(0) are defined as

τ(0) =
r
c
= tr, τ′(0) =

ṙ
c
=

fr

fc
,

τ′′(0) =
r̈
c
=

ḟr

fc
, τ′′′(0) =

...
r
c
=

f̈r

fc
.

(5)



Sensors 2019, 19, 1541 4 of 16

In (5), r, ṙ, r̈, and
...
r are the propagation distance, relative velocity, relative acceleration, and

acceleration jerk between the emitter and sensor, respectively, when t = 0. tr, fr, ḟr, and f̈r are the time
delay, Doppler shift, Doppler shift rate, and rate of Doppler shift rate, respectively.

According to [30], the relative Doppler companding factor is defined as

γ1 =
r̈T2

λ
= ḟrT2, (6)

where λ = c/ fc is the signal wavelength. In (6), γ1 is the ratio of the Doppler compand ḟrT with
respect to the FDOA resolution 1/T. For example, γ1 = 2 means that the Doppler compand is two
times as much as the FDOA resolution. As mentioned in [30], if γ1 > 4, the time delay and Doppler
shift-based signal model will be invalid and higher order parameters have to be considered.

Similarly, a normalized factor for the time delay, Doppler shift, and the Doppler shift rate-based
model can be defined as the relative Doppler Rate companding factor. As shown by the result in [30],
the RFDOA resolution is 1/T2. The Doppler rate compand is f̈rT. So, the factor can be given by

γ2 =

...
r T3

λ
= f̈rT3. (7)

In certain scenarios, (6) and (7) can be used to calculate the thresholds of the observation time
when the time delay and Doppler shift-based signal model and the time delay, Doppler shift, and
Doppler shift rate-based signal model become invalid.The thresholds are given by

Tγ1 =
√

4λ/r̈

Tγ2 = 3
√

4λ/
...
r .

(8)

Substituting the first two terms of Taylor series of τ(t) in (4) into the signal model in (2), we obtain

r(t) = ba(t− τ(0)− τ′(0)t)ej2π fc(t−τ(0)−τ′(0)t)

∼= ba(t− tr)ej2π fc(t−tr)e−j2π frt

= bs(t− tr)e−j2π frt.

(9)

which is the time delay and Doppler shift signal model used in [11]. The traditional model is a special
case of time-varying delay model. As the observation time gets longer, the signal model cannot be
approximated by using only two terms of Taylor series. The proposed time-varying delay signal model
takes not only the time delay and Doppler shift into account, but also, the Doppler shift rate and its
higher-order components. This enables the proposed model to prevent performance deterioration and
achieve better performance, especially in highly dynamic scenarios.

We define the vectors in (2) as

sk , [sk(t1), . . . , sk(tN)]
T

rl,k , [rl,k(t1), . . . , rl,k(tN)]
T

wl,k , [ωl,k(t1), . . . , ωl,k(tN)]
T

Dl,k , diag{e2jπ fcτl,k(t1), . . . , e2jπ fcτl,k(tN)}
Fl,k , [Fl,k(t1), . . . , Fl,k(tN)]

T,

(10)

where Fl,k(t) is a down shift operator and Fl,k(t) shifts signal sk by bτl,k(t)/Tsc integer samples. wl,k is
assumed to be Gaussian, and the covariance is σ2I.

From (2) and (10), we can derive the relation

rl,k = bl,kDl,kFl,ksk + wl,k, (11)
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where bl,k is the channel transmission attenuation.
In short, we can briefly state the problem as finding the emitter position using the observations

in (11).

3. Proposed Algorithm

In this section, we propose a novel DPD algorithm based on the time-varying delay. As can be seen
from the previous section, the matrixes Dl,k and Fl,k contain time-varying delay information. The main
concept of DPD is as follows. A reference position is selected in the area where the emitter is thought
to be located. Based on the reference position and the known position and velocity information of the
sensors, we can calculate the time-varying delay τl,k(t). When the time-varying delay calculated from
the reference position minimizes the cost function corresponding to all received signals, we consider
the reference point to be the location of the emitter.

As in [9], the estimator can be given in terms of the least-squares principle as

Φ(p) =
K

∑
k=1

L

∑
l=1

∥∥rl,k − bl,kDl,kFl,ksk
∥∥2 . (12)

To minimize (12), we find

b̂l,k = [(Dl,kFl,ksk)
HDl,kFl,ksk]

−1(Dl,kFl,ksk)
Hrl,k

= (Dl,kFl,ksk)
Hrl,k.

(13)

Without loss of generality, we assume that ‖sk‖2 = 1.
Substituting (13) into (12), we obtain

Φ(p) =
K

∑
k=1

L

∑
l=1
‖rl,k‖2 − |(Dl,kFl,ksk)

Hrl,k|2. (14)

Instead of finding the minimum of Φ(p), we determine the maximum of Φ̃(p), which is defined by

Φ̃(p) =
K

∑
k=1

L

∑
l=1
|(Dl,kFl,ksk)

Hrl,k|2

=
K

∑
k=1

sH
k Qksk,

(15)

where the vectors are given by

Qk , VkVH
k

Vk ,
[
FH

1,kDH
1,kr1,k, . . . , FH

L,kDH
L,krL,k

]
.

(16)

Note that Vk is an L×N matrix that includes information about all of the target positions. The cost
function Φ̃(p) can be used to estimate the position of the emitter when the waveform of signal sk is
known. However, in actual applications, the waveform of the signal is unknown.

The cost function can be optimized by maximizing each of the K quadratic forms with respect to
sk [12]. Thus, sk should be selected as the eigenvector corresponding to the largest eigenvalue of Qk,
which can be defined as λmax{Qk}.

As N becomes larger, the computational cost will increase. For a matrix A, the nonzero eigenvalues
of AAH are the same as those of AHA; therefore, we have

λmax{Qk} = λmax{Q̄k} = λmax{VH
k Vk}, (17)
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which reduces the computational cost when N � L.
The new cost function can be written as

Θ(p) =
K

∑
k=1

λmax{Q̄k}. (18)

The (i,j)-th element of Q̄k is given by

Q̄k(i, j) = VH
i,kVj,k

= rH
i,kDi,kFi,kFH

j,kDH
j,krj,k

∼=
1
Ts

∫ T

0
r∗i,k
[
t + τi,k(t)− τj,k(t)

]
rj,k (t) ej2π fc[τi,k(t)−τj,k(t)]dt.

(19)

This is the CAF [31] of the time-varying delay. τl,k(t) is the function of the target position p, and
the cost function can be calculated using the geographical position pr. Using a 2D or 3D grid-search
approach, the estimated position of the emitter is given by

p̂ = arg max
p

Θ(p). (20)

A possible implementation of our time-varying delay DPD framework is given in Algorithm 1.

Algorithm 1 Algorithm for DPD-TVD

1: Define the area in which the emitter may exist and determine an appropriate location grid pi,

i = 1, . . . , M.
2: for i = 1 to M do

3: Set Θ(pi) = 0
4: for k = 1 to K do

5: for l = 1 to L do

6: Evaluate τl,k(t)
7: Evaluate Dl,k, Fl,k
8: end for
9: Evaluate Q̄k and Vk according to (16)

10: Let Θ(pi) = Θ(pi) + λmax{Q̄k}
11: end for
12: end for
13: Output: Find the grid point for which Θ(pi) is largest. This point is the estimated position of

emitter p̂.
14: End

4. Cramer–Rao Lower Bound

In this section, we focus on the derivation of the Cramer–Rao lower bound (CRLB) of the proposed
algorithm. Inspired by the derivation in [11], we obtain the CRLB of DPD-TVD as follows.

The covariance matrix of (11) is

Rl,k,i,j , E{rl,krH
i,j}

= Dl,kFl,kPFH
i,jD

H
i,jδl,iδk,j + σ2Iδl,iδk,j,

(21)

where we assume that the noise is Gaussian and P , E{sksH
k } is the signal covariance matrix.
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Some vectors and matrices are defined as

rk , [rT
1,k, rT

2,k, . . . , rT
L,k]

T

r , [rT
1 , rT

2 , . . . , rT
K]

T

Rk , E{rkrH
k }

R , E{rrH}
Bk , [FH

1,kDH
1,k, . . . , FH

L,kDH
L,k]

H.

(22)

From (22), we have
Rk = BkPBH

k + σ2I. (23)

The matrix R is block diagonal with K blocks, so the Fisher information matrix can be expressed as

[J]i,j =
K

∑
k=1

tr

{
R−1

k
∂Rk
∂ψi

R−1
k

∂Rk
∂ψj

}
. (24)

5. Simulations

This section presents simulation results that demonstrate the localization performance of the
proposed algorithm and the CRLB analysis. We consider the 3D scenario depicted in Figure 2. There are
two sensors and one emitter. The sensors are located at (5, 1, 20) and (−5, 0, 20) km when intercepting
the signal, and the velocities of sensors are (1, 0, 0) and (2, 0, 0) km/s. The stationary emitter is located
at (1, 10, 0) km. In this simulation, we have L = 2 and K = 1. The observation time T varies from
0.01 to 1 s in the simulations. The transmitted signal is a binary phase shift keying (BPSK) signal
with a bandwidth of B = 40 kHz and a carrier frequency of fc = 1 GHz. Throughout the numerical
analysis, the signal propagation speed is assumed to be c = 3× 108 m/s. To gather sufficient data, the
simulation results are based on 500 Monte-Carlo runs per point.

-10 -5 0 5 10

X [km]

-5

0

5

10

15

Y
 [k

m
]

Emitter
Sensor 1
Sensor 2

Figure 2. Sensors and emitter geometry. The blue and black triangles represent the positions of
sensors 1 and 2 when receiving the signal, the blue and black solid lines represent the trajectories of
sensors 1 and 2, and the red pentagram represents the position of the emitter.

In the following simulations, we contrast the localization performance of the proposed
time-varying delay-based DPD algorithm with the associated CRLB derived in Section 4, denoted
by “DPD-TVD” and “CRLB TVD”, respectively. For comparison purposes, the localization results
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of the TDOA- and FDOA-based two-step algorithm [6], which uses the time delay and Doppler
shift signal model, are labeled “2-Step TF”. Additionally, the TDOA-, FDOA-, and RFDOA-based
two-step algorithm [8] is also presented, which is labeled “2-step TFRF”. These two signal models are
abbreviated as the TF model and TFRF model, respectively.

The DPD algorithm with the time delay and the Doppler shift signal model [11] uses the first- and
second-order of the time delay, which is essentially the same as using TDOA and FDOA; it is denoted
by “DPD-TF” in the simulations. The CRLBs of the two signal models are denoted by “CRLB TF” and
“CRLB TFRF”, respectively.

5.1. Cost Function

Figures 3 and 4 exhibit the 2D and 3D shapes of cost functions with the DPD-TF algorithm and
the proposed DPD-TVD algorithm, respectively. The cost functions are shown at different observation
times: T = 0.01, 0.05, 0.1, and 0.5 s. Specifically, the left side of Figures 3a–h and 4a–h show the shapes
of cost function for 3D plots, and the right side are for 2D plots as a top view. In this simulation,
SNR = 10 dB and B = 40 kHz. The values are expressed as relative values with a maximum of 1.
In all figures, the emitter marked as a red pentagram is located in the exact center of the coverage
area. The peak of the cost function should be located at the grid position that is closest to the true
emitter position. In the figures, larger values are colored yellow and smaller values are colored blue.
According to (8), the thresholds for this scenario are Tγ1 = 0.1 s and Tγ2 = 0.45 s.

By comparing Figure 3a,c, it is apparent that as the observation time increases from 0.01 to 0.05 s,
the peak shape becomes sharper. Comparing Figure 3b,d, the width of the yellow portion becomes
narrower as T increases. As the observation time increases from 0.1 s to 0.5 s, the peak shape broadens
slightly along the X-axis. When the observation time reaches 0.5 s, the peak shape broadens from a very
narrow peak to one with a width of about 1.2 km along the X-axis, and the edge of the rectangular peak
is slightly higher than the vicinity of the center. This indicates that the localization accuracy is prone to
degradation as the observation time increases. From Figure 3, we can conclude that by using the time
delay and Doppler shift signal model, increasing the observation time in the range T ≤ Tγ1 results in
a narrower cost function peak shape that is conducive to localization. However, when this range is
exceeded, the signal model becomes unsuitable, with the broadening of the cost function signifying
a decrease in localization accuracy.

In Figure 4, except for the time-varying delay signal model, the other settings are the same as
those used to generate Figure 3. It can be seen from this figure that as the observation time increases
from 0.01 to 0.05 s, the cost function peak shape becomes sharper and the width of the peak becomes
narrower, which is similar to Figure 3. Comparing Figure 3a–d with Figure 4a–d, we see that the cost
function peaks are very similar. This is because for short observation times, the high-order components
of the signal have less effect on the cost function. At this point, the two signal models are approximately
equivalent. Different from Figure 3, when the observation time exceeds the above range, from 0.05
to 0.1 s, and then to 0.5 s, the peak shape of the cost function becomes increasingly sharp, which is
conducive to localization. It can be concluded that the traditional signal model will broaden the peak
of the cost function as the observation time exceeds the threshold. The proposed model can guarantee
a sharp cost function peak under long observation times.



Sensors 2019, 19, 1541 9 of 16

(a) 3D, T = 0.01 s (b) 2D, T = 0.01 s

(c) 3D, T = 0.05 s (d) 2D, T = 0.05 s

(e) 3D, T = 0.1 s (f) 2D, T = 0.1 s

(g) 3D, T = 0.5 s (h) 2D, T = 0.5 s

Figure 3. Two-dimensional and three-dimensional cost functions of DPD-TF. T = 0.01, 0.05, 0.1, 0.5 s.
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(a) 3D, T = 0.01 s (b) 2D, T = 0.01 s

(c) 3D, T = 0.05 s (d) 2D, T = 0.05 s

(e) 3D, T = 0.1 s (f) 2D, T = 0.1 s

(g) 3D, T = 0.5 s (h) 2D, T = 0.5 s

Figure 4. Two-dimensional and three-dimensional cost functions of DPD-TVD. T = 0.01, 0.05, 0.1, 0.5 s.
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5.2. Distribution of CRLB within the Coverage Area

Figure 5 shows the contour distributions of CRLB with the proposed DPD-TVD algorithm within
the coverage area. The values of accuracy are marked on the contour lines in “km”. Figure 5a,b exhibit
the distributions with observation times of T = 0.1 and 0.5 s, respectively. In this simulation, SNR =
10 dB and B = 40 kHz. Areas with better localization performance are colored blue, and areas with
worse performance are colored yellow. In both subfigures, the accuracy of areas on the top and bottom
of the figure are almost symmetric. On the upper and lower sides of the sensors, the localization
accuracy is the best. In the areas under the trajectory of sensor and its extension line, the localization
accuracy is worst. By quantitatively comparing the accuracy of the two subfigures, the increase in
observation time is beneficial to the improvement of localization accuracy.

(a) Observation time T = 0.1 s (b) Observation time T = 0.5 s

Figure 5. Distribution of Cramer–Rao lower bound (CRLB) within the coverage range with different
observation times. Values of accuracy are marked on the contour lines in “km”. Areas with better
localization performance are colored blue, and areas with worse performance are colored yellow.

5.3. Dependence on Observation Time T

Figure 6 shows the localization accuracy achieved by the different algorithms with respect to the
observation time T. In these simulations, the signal-to-noise ratio (SNR) is 10 dB and signal bandwidth
B is 40 kHz. The figure is drawn as a log-log plot, and CRLBs are represented by solid lines, and the
root mean squared errors (RMSE) of the algorithm are represented by dashed lines.

When the observation time T is less than Tγ1 = 0.1 s, the CRLBs of the three models are almost
equivalent. This is because the high-order components are not significant with short observation times.
It can be seen that the CRLB of the TF models is inversely proportional to the observation time T.
When T > Tγ1 , as the TFRF and TVD models provide more information for localization, increasing
the observation time results in better localization accuracy. Besides, the CRLB of the TVD model is
almost the same as that of TFRF model. This is because the higher order of time delay, such as the
second-order of the Doppler shift, does not provide information for the localization. Although it has
no effect on localization performance, higher order components should be taken into account. It is
because, for long observation times, the neglect of high-order components will lead to deterioration of
the peak shape for parameter estimation or the shape of the cost function that corresponds to the map
grid, which will affect the localization accuracy.

By analyzing the cost functions in Figures 3 and 4 and the dotted line with the green circle mark
in Figure 6, we can see that the peak shape of the TF model becomes broader when T ≥ 0.1 s, and
the DPD-TF algorithm cannot reach the CRLB. Furthermore, as the observation time T increases, the
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localization accuracy gradually deteriorates. For the 2-step TF algorithm labeled with a dotted line
with the purple diamond shape, similar to the results in [32], the FDOA estimation accuracy decreases
as the observation time increases for T ≥ 0.1 s, which also leads to a gradual deterioration in the
localization accuracy. When the observation time is T < Tγ2 , the accuracy of the 2-step TFRF algorithm
can achieve a corresponding CRLB. However, when T > Tγ2 , it can not achieve the CRLB, and the
performance becomes worse as T increases. As shown by the dotted line with the red cross mark, the
algorithm of the proposed TVD model can achieve the CRLB under the given observation times.

10-1 100

T [s]

101

102

103

R
M

S
E

 [m
]

RMSE 2-Step TF
RMSE 2-Step TFRF
RMSE DPD TF
RMSE DPD TVD
CRLB TF
CRLB TFRF
CRLB TVD

Figure 6. RMSE and CRLB versus T. The signal-to-noise ratio (SNR) is 10 dB and signal bandwidth B
is 40 kHz.

5.4. Dependence on SNR

Figure 7 shows the localization performance versus SNR for observation times of T = 0.1 and 0.5 s.
The SNR ranges from −10 to 15 dB, and the signal bandwidth is B = 40 kHz. As depicted in Figure 7a,
when T = 0.1 s, the CRLBs of the three signal models are almost the same, which is similar to the
conclusion we drew from Figure 6. Therefore, the 2-step TF and 2-step TFRF algorithms offer similar
localization performance, and DPD-TF achieves a similar performance to the DPD-TVD algorithm.
Comparing the 2-step and DPD algorithms, similar localization performance can be attained in the case
of high SNRs. However, it is worth noting that the DPD algorithms can achieve better performance
at low SNRs. The 2-step algorithms encounter a threshold effect when the SNR ≤ 0 dB, and the
localization accuracy deteriorates sharply.

As shown in Figure 7b, when T = 0.5 s, the CRLBs of the TVD and TFRF models are better than
that of the TF model. This is because the proposed TVD model considers higher-order components
of time delay, and the new model provides more information under highly dynamic scenarios with
long observation times. Note that in the two figures, the CRLB curves of different models with
different observation times are parallel, which indicates that SNR has the same influence on these
algorithms. As for the RMSEs of algorithms, the 2-Step TF and the DPD-TF algorithm are invalid, and
the localization accuracy is far from corresponding to CRLB. As T is greater than Tγ2 , the 2-step TFRF
cannot be close to the CRLB either. The DPD-TVD approaches the CRLB at high SNRs, but cannot
when SNR ≤ 5 dB.
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Figure 7. RMSE and CRLB versus SNR.

5.5. Dependence on the Signal Bandwidth B

Figure 8 shows the localization performance versus the signal bandwidth B for observation signal
times of T = 0.1 and 0.5 s. The signal bandwidth B ranges from 5 to 100 kHz and the SNR is 10 dB.
According to the theoretical accuracy of TDOA and FDOA in [31], the accuracy of TDOA is mainly
determined by the bandwidth B, while that of FDOA is determined by the observation time T.
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Figure 8. RMSE and CRLB versus B.

In Figure 8a, the observation time is T = 0.1 s. When B ≥ 40 kHz, the CRLBs of the three signal
models are almost the same. When B ≤ 40 kHz, the CRLBs of TFRF and TVD models are better than
that of TF model. The 2-step TF and 2-step TFRF algorithms offer similar localization performance,
and DPD-TF achieves similar performance to the DPD-TVD algorithm. The RMSEs of algorithms can
get close to the corresponding CRLBs when B > 20 kHz. The accuracy of algorithms with small B
values is affected by the threshold effect like what happens at low SNRs. Compared with the two-step
algorithms, the DPD algorithms can achieve better accuracy when B ≤ 20 kHz.

In Figure 8b, when T = 0.5 s, the CRLB of TF model is significantly different from that of TVD
model. This is because high-order components can provide more information for localization with long
observation times. The CRLB curve of the TF model is not parallel to that of the TVD model. The slope
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of the CRLB TVD curve is smaller, that is, the localization accuracy changes less with the change of B,
which means that B has less influence on the localization in this case. By comparing the two figures,
it can be found that the curves of CRLB with three signal models when T = 0.1 s and that of the TF
model when T = 0.5 s are parallel. However, the curve of CRLB TVD is not. The signal bandwidth B
has a different influence on these algorithms under different conditions, which is different from the
conclusion in Figure 7. The performance of the algorithms is similar to the results in Figure 6. Under
the condition of T = 0.5 s, the 2-step TF, 2-step TFRF, and DPD-TF algorithms are invalid. The accuracy
of the DPD-TVD algorithm can be similar to the CRLB, but cannot attain the CRLB when B ≤ 20 kHz.

6. Discussion

In this paper, the proposed time-varying delay-based DPD algorithm was used to calculate the
time delay for each sampling point. Compared with the traditional methods, it requires a huge amount
of computation, which is closely related to the sampling rate and the density of the geographical grid.

There are several ways to reduce the amount of computation, as follows. First of all, it is not
necessary to calculate the time delay of each sampling point to get the time-varying delay. We can
use a short interval with the same time delay. An appropriate length for the short interval can be
determined according to the movement characteristics of the sensors. Note that the length must be
short enough to reflect the change in time delay over time. Secondly, the density of the grid is closely
related to the localization accuracy. The combination of coarse grid and fine grid can be considered
to realize the balance between the number of grid points and the localization accuracy. In addition,
according to the peak shape of the cost function, the two- or three-dimensional grid search can be
transformed into a one-dimensional search by a certain path, which will greatly reduce the number
of grid points to be calculated. Finally, calculating the time delay between the position of the sensor
and the grid point involves a large number of operations with the same calculation mode. In practical
applications, hardware, such as field–programmable gate array (FPGA) or graphics processing unit
(GPU), can be used for parallel computing, and the computing capacity is becoming more and more
powerful. Some repetitive steps of the algorithm can run on hardware, which can greatly improve
the efficiency. We have implemented geographical grid based localization algorithm on the FPGA
platform. Compared with computer-based implementation, it can greatly reduce the computing time,
which will be investigated in future work.

7. Conclusions

In this paper, we have proposed a novel DPD algorithm based on the time-varying delay that can
improve the localization accuracy, especially in highly dynamic scenarios. The proposed algorithm
uses a new signal model in which the propagation time delay is regarded as time-varying. An ML cost
function transforms the problem into that of finding the largest eigenvalue of a matrix. Performance
comparisons against other one-step or two-step algorithms and CRLBs were conducted through a series
of simulations, demonstrating the improvement in localization performance that can be achieved using
the proposed DPD-TVD algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

TVD time-varying delay
DPD direct position determination
AOA angle of arrival
RSS received signal strength
TOA time of arrival
TDOA time difference of arrival
FDOA frequency difference of arrival
RFDOA rate of frequency difference of arrival
ML maximum-likelihood
CAF complex ambiguity function
CRLB Cramer–Rao lower bound
RTC relative time companding
RDC relative Doppler companding
BPSK binary phase shift keying
SNR signal-to-noise ratio
RMSE root mean squared error
FPGA field–programmable gate array
GPU graphics processing unit
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