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Abstract: Field monitoring serves as an important supervision tool in a variety of engineering
domains. An efficient monitoring would trigger an alarm timely once it detects an out-of-control
event by learning the state change from the collected sensor data. However, in practice, multiple
sensor data may not be gathered appropriately into a database for some unexpected reasons, such
as sensor aging, wireless communication failures, and data reading errors, which leads to a large
number of missing data as well as inaccurate or delayed detection, and poses a great challenge for
field monitoring in sensor networks. This fact motivates us to develop a multitask-learning based
field monitoring method in order to achieve an efficient detection when considerable missing data
exist during data acquisition. Specifically, we adopt a log likelihood ratio (LR)-based multivariate
cumulative sum (MCUSUM) control chart given spatial correlation among neighboring regions
within the monitored field. To deal with the missing data problem, we integrate a multitask learning
model into the LR-based MCUSUM control chart in the sensor network. Both simulation and real
case studies are conducted to validate our proposed approach and the results show that our approach
can achieve an accurate and timely detection for an out-of-control state when a large number of
missing data exist in the sensor database. Our model provides an effective field monitoring strategy
for engineering applications to accurately and timely detect the products with abnormal quality
during production and reduce product losses.

Keywords: multitask learning; field monitoring; missing data; cumulative sum (CUSUM)
control chart

1. Introduction

Dynamic fields widely exist in engineering systems, which have interactions among regions
due to spatial correlation in the space domain and run over time. Field monitoring plays a critical
role in determining whether a dynamic process is in a state of statistical process control. In recent
years, field monitoring has been widely applied to various engineering domains, including epidemic
disease surveillance [1], solar flare detection [2], machine health monitoring [3], and computer network
intrusion detection [4].

An out-of-control incident in dynamic field often occurs along with a cluster of neighboring
regions because dynamic fields generally present with a spatial correlation. Multiple sensor
observations are successively collected from distributed sensor networks (DSNs) developed on the
field to monitor such a dynamic process. Given this scenario, the decision maker can simultaneously
monitor numerous neighboring regions across the field by analyzing the sensor observations to detect
when and where an out-of-control cluster occurs, which is important in engineering applications for
monitoring product quality and reducing product losses. For example, an increase in flu outbreak
often occurs in a cluster of regions during influenza season. Once an outbreak cluster occurs in certain
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regions, triggering alarms from the observed data as quickly as possible and then identifying the
regions where an outbreak has occurred are critical for the disease control center. Another example
can be found in grain storage. An overheat cluster of grain temperature often occurs in a granary
due to grain mildew and pests, which indicates that the grains have deteriorated. If the overheat
cluster is untimely detected, it will propagate around to become a large overheat cluster, which leads
to substantial grain losses.

Dynamic field monitoring is based on sensor observations collected from DSNs in the monitored
space domain. One of the major challenges for monitoring the dynamic field is the limited sensor
observations available in engineering practice. This issue is caused by sensor observations not being
gathered appropriately into a single database for some unexpected reasons such as sensor aging,
wireless communication failures, and data reading errors. Consequently, a large number of missing
values are generated among the sensor observations. Therefore, developing an efficient monitoring
method for the dynamic field when only a limited number of sensor observations are accessible
is necessary.

1.1. Related Work

1.1.1. Control Charts for Field Monitoring

In recent years, different types of the control chart have been extensively adopted for monitoring
dynamic fields and detecting regional outbreaks. The main purpose of control charts is to detect
the out-of-control state in an early stage while simultaneously preventing false alarms. Shewhart
charts borrow the mean, range, or proportion of observations as statistics and detect an outbreak
on the basis of the upper and lower limits that are determined by the statistic dispersion [5]. This
pioneering process detection tool is adept for detecting large shifts of a process but fails to distinguish
small ones. Exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts
have been proposed to improve the performance of small shift detection. EWMA charts use the
exponentially-weighted moving average of observations [6] while CUSUM charts use cumulative sums
of observations [7]. In comparison with EWMA charts, CUSUM charts indicate a higher sensitivity to
small shifts because shift information can be accumulated during the entire monitoring time period by
a recursive procedure.

CUSUM charts serve as a popular tool in many process monitoring methods, such as detecting
a slowly emerging disease cluster that usually does not cause a sudden, large shift in the number of
disease counts [8,9]. Page adopted a univariate CUSUM chart for monitoring a time-varying process in
which only a single region is monitored at each time point [10]. Fricker et al. compared the performance
of a univariate CUSUM chart with two Shewhart charts and one EWMA chart and found that the
CUSUM chart significantly outperformed the other charts [11]. The univariate CUSUM charts have
been widely applied for monitoring a time variant process in various engineering domains. However,
these charts cannot be used for monitoring a dynamic process that varies across space and time because
they are constructed on the basis of observations of a single region. Thus, interactions among regions
due to spatial correlation cannot be reflected.

In the previous decades, multivariate CUSUM (MCUSUM) charts have been presented by
researchers for field monitoring to monitor observations in a cluster of regions [12,13]. Rogerson
and Yamada adopted an MCUSUM chart that used local statistics defined as a weighted sum of
observations in a local cluster to detect an outbreak cluster [14]. Sonesson extended Rogerson and
Yamada’s work and defined a spatial cluster as a group of regions in a circle [15]. However, spatial
correlation among regions in the circle was ignored. To fill this gap, some researchers have adopted
MCUSUM charts for detecting an outbreak by considering spatial correlation among regions. These
MCUSUM charts use observations to formulate statistics including Hotelling’s T2 and log likelihood
ratio (LR) statistics. Boullosa-Falces et al. obtained a Hotelling’s T2 statistics using observations at each
time point and then formed a CUSUM chart based on a time sequence of Hotelling’s T2 statistics [16].
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However, Hotelling’s T2 chart uses a global statistic based on observations of the entire space domain
instead of local statistics of spatial clusters. To construct local statistics of spatial clusters, Jiang et al.
proposed an LR-based MCUSUM chart, which developed an LR statistic for each spatial cluster and
scanned all clusters for detecting an underlying outbreak [17]. Lee et al. extended Jiang’s work by
adopting an analytical formula to approximate the control limit in the LR-based MCUSUM chart [18].

The previously mentioned MCUSUM charts require sufficient available observations at each time
point to detect an outbreak. One of the major challenges for monitoring the dynamic field is that a large
number of missing values are generated among the sensor observations. Conventional field monitoring
methods may not detect an outbreak cluster in a timely manner once it occurs due to the missing
data problem in sensor observations. Other methods for field monitoring, like deep-learning based
detection, also cannot handle missing data problem when monitoring a dynamic field [19]. Therefore,
it is necessary to develop an efficient monitoring method for the dynamic field when missing data
exist in sensor observations. Liu et al. [2] and Xian et al. [20] developed local statistics by introducing a
compensation coefficient when sensor observations are unavailable. However, these methods do not
effectively work when a large number of sensor observations are unavailable.

1.1.2. Methods for Handling Missing Data Problem in Sensor Observations

To solve the missing data problem, interpolation methods have been adopted to fill in missing
values using existing sensor observations, including linear, spline [21], and Lagrange interpolations [22].
However, these strategies may cause large bias and cannot capture interactions in the spatial domain.

Transfer learning provides an opportunity for field monitoring using sensor observations with
a missing data problem [23]. In recent years, transfer learning has been studied by numerous
researchers and applied to various engineering domains including WiFi localization [24], speech
emotion recognition [25], and manufacturing shape deviation [26]. Multitask learning has emerged
as one of the popular focuses for transfer learning problems [27]. Compared with Single-task
learning [28,29] that learns “knowledge” by using the existing sensor observations in the target process,
multitask learning is a machine learning framework that aims to improve the learning of unobserved
values in the target process by sharing knowledge or information using existing sensor observations
from related processes [30]. In recent years, multitask learning has been studied by numerous
researchers and applied to various engineering domains, including traffic flow prediction [31], human
action recognition [32], and climate forecast [33]. Yu et al. proposed a multitask learning model for
learning Gaussian processes from multiple tasks [34]. However, the spatial information is seldom
considered in such a model. Shao et al. adopted a multitask learning model to estimate a 2D-machined
surface shape using limited sensor observations from related surface shapes [35]. This model considers
the spatial correlation of surface shape and improves the modeling accuracy on the basis of the sensor
data of related surface shapes. However, this model mainly focuses on modeling static spatial surfaces
but neglects monitoring of the machined surfaces. Shireen et al. proposed a spatiotemporal multitask
learning model for performance prediction and failure monitoring of solar panels [36]. This model
monitors the solar panels using only the error of the predicted value and the real values of the process.
The failure incident can be detected once the error exceeds a pre-specified limit. However, this model
does not effectively work for small shift detection.

Existing multitask learning methods can learn unobserved values by capturing spatial correlation
and sharing knowledge using limited sensor observations from related tasks. To the best of our
knowledge, few studies on multitask learning have been used in field monitoring to address the
missing data problem in sensor observations.

1.2. The Proposed Model

In conclusion, existing methods have research gaps for dynamic field monitoring. First, existing
methods for dynamic field monitoring require sufficient sensor observations to achieve a timely
detection when an outbreak occurs. When a large number of missing data exist in sensor observations,
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detection using these methods is inaccurate and delayed. Second, few methods consider spatial
correlation when monitoring a dynamic field with limited sensor observations.

In this study, we propose a multitask learning-based field monitoring approach to detect an
out-of-control cluster when considerable missing values exist while collecting sensor observations. An
outbreak occurs in a cluster of neighboring regions and the radius of the cluster is unknown. Thus, we
adopt an LR-based MCUSUM control chart by considering spatial correlation among regions. This
chart defines a spatial cluster as a group of regions in a circle with a varying radius and scans all
possible spatial clusters. We integrate a multitask learning model into the LR-based MCUSUM control
chart to handle the missing data problem in sensor observations. The multitask learning model learns
missing values of the target process by sharing knowledge using existing sensor observations from
related processes. This dynamic field monitoring tool is particularly designed when partial data from
the target process are missing and those from other related processes are accessible. Furthermore,
we introduce our research methodology by considering a 2D dynamic process, which is common in
engineering practices. Our proposed approach can also be extended to 3D dynamic processes.

The contribution of the proposed model for dynamic field monitoring includes the following
aspects. First, a multi-task learning-based monitoring approach is proposed to handle a missing data
problem in sensor observations. Second, we adopt an LR-based MCUSUM control chart for dynamic
field monitoring by considering spatial correlation among regions.

The remainder of this paper is organized as follows. Section 2 introduces the methodology of
multitask learning-based field monitoring. Sections 3 and 4 present simulation and real-case studies to
evaluate the model performance, respectively. Section 5 provides a conclusion.

2. Research Methodology

We propose a multitask-learning based field monitoring method to achieve an efficient detection
when considerable missing data exist while collecting sensor observations. We consider a 2D dynamic
process with a spatial correlation in a 2D space. We aim to monitor this dynamic field using the sensor
data collected from DSNs and trigger an alarm once an outbreak cluster occurs in certain regions.
Sensor data can be simultaneously collected from L related 2D processes through DSNs, and missing
data can occur at any sensor location and time point t.

For monitoring target dynamic process l∗, we suppose that n = Np × Nq sensor locations exist
in the space domain. We also define a sensor location by si = (p, q) with p = 1, . . . , Np and
q = 1, . . . , Nq, which represent 2D location coordinates with i = 1, . . . , n. Figure 1 shows an example
of the vector and coordinate expressions of sensor locations, in which we set Np = Nq = 5 and,
thus, n = 5 × 5 = 25. Sensor data are ideally collected at each location. We denote the sensor

values of process l∗ at time t as xl∗
t =

(
xl∗

t (s1), . . . xl∗
t (si), . . . , xl∗

t (sn)
)T

. In practice, only partial
data are observable (e.g., sensor data at the locations with red dots in Figure 1), and the remaining
data cannot be successfully collected. We consider the observed sensor values of process l∗ at time

t as x̃l∗
t =

(
xl∗

t

(~
s1

)
, . . . xl∗

t

(~
si

)
, . . . , xl∗

t

(~
snl∗

t

))T
, where

~
si denotes the location of the ith observed

sensor value, and nl∗
t is the number of observed values of process l∗ at time t. n− nl∗

t missing values
are observed at time t for process l∗. The missing data problem poses a considerable challenge for
monitoring the dynamic process for detecting an out-of-control cluster. To address this issue, we
initially adopt a multitask learning model to estimate the missing values of the monitored process l∗

by considering the observed sensor values of L related processes to obtain the values at each sensor
location of the monitored process. Then, we monitor the process using an LR-based MCUSUM control
chart by considering the spatial correlation among different regions in the space domain.
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Figure 1. An example of vector and coordinate expressions of sensor locations. (Note: sensor data are
observable at the locations with red dots, and missing at the remaining locations.). (a) i; (b) si = (p, q).

Two assumptions are made prior to the introduction of the proposed model.

Assumption 1. The L related processes demonstrate identical sensor networks and the set of distinct locations
of observed values in process l, with l = 1, . . . , L, can cover all the locations in the sensor networks.

Assumption 2. Sensor values are spatially correlated for each process l, with l = 1, . . . , L.

On the basis of Assumption 2, we assume that the sensor value vectors xl∗
1 , xl∗

2 , . . . , xl∗
t , . . . of

the target process are independently and identically distributed and follow a multivariate normal
distribution with a mean vector µ and a covariance matrix Σ. In addition, we assume that the sensor
values have been standardized without loss of generality.

For the target process, we assume that µ = µ0 for all sensor locations si with i = 1, . . . , n, when
no out-of-control clusters occur while µ = µ1 when an out-of-control cluster occurs. Therefore, we
formulate the field monitoring problem for the target dynamic process by testing the null hypothesis
as follows.

H0. No out-of-control spatial clusters exist for all time t (i.e., µ = µ0, with all the mean of sensor values equal
to µ0 when t = 1, 2, . . . against the composite alternative hypothesis).

H1. An emerging out-of-control spatial cluster occurs from timev (i.e., µ = µ0, with all the mean of sensor
values equal to µ0 when t = 1, 2, . . . , v− 1 µ = µ1, with the mean of some sensor values equal to µ1, and the
others equal to µ0, when t = v, v + 1, . . .).

Here, v is an unknown change point time. µ0 is assumed to be known. We denote µ1 as
homogeneous outbreaks, in which a cluster of some sensor values has an identical mean shift
magnitude µ1 − µ0. In many engineering applications, the cases that µ1 is component-wise not
less than µ0 (i.e., µ1 ≥ µ0), which have attracted considerable attention. Thus, we consider µ1 ≥ µ0 in
our model.

In our model, we develop an effective field monitoring method by integrating a multitask learning
model into the LR-based MCUSUM control chart to handle the missing data problem in sensor
observations, where the multitask learning model learns missing values of the target process by
sharing knowledge using existing sensor observations from related processes and the LR-based
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MCUSUM control chart is adopted by considering spatial correlation among the regions. We introduce
our proposed model in the next subsections in detail.

2.1. Multitask Learning for Estimation of Missing Values

As shown in Figure 2, we consider L-related processes, which include the target process l∗. We
adopt a multitask learning model to estimate the missing values in the target process l∗ by using
the observed sensor values in the L-related processes. At each time t, we denote the latent function
of process l as yl

t(s), with l = 1, . . . , L. Given that noises exist in the sensor values, we have
xl

t(s) = yl
t(s) + εl

t(s), where εl
t(s) is assumed to be Gaussian white noise with zero mean and variance

σ2
t (i.e., εl

t(s) ∼ N
(
0, σ2

t
)
. We represent the accessible data of process l, with l = 1, 2, . . . , L, as

Dl
t = {x̃l

t, Sl
t}, where x̃l

t denotes the vector of observed values of process l∗ at time t, and Sl
t is the

set of the locations of observed values at time t of process l. A vector in terms of yl
t(s) is denoted

as yl
t = (yt(s1), yt(s2), . . . , yt(sn))

T . We assume that y1
t , y2

t , . . . , and yL
t share a common mean

and covariance matrix of the Gaussian process because the considered dynamic processes have
nearly identical environment and the same operating condition. Furthermore, we assume yl

t, with
l = 1, . . . , L, to be a Gaussian process yl

t ∼ GP
(
myt, Cyt

)
, which is characterized by a mean vector

myt and a covariance matrix Cyt. To capture spatial correlation, we assume that y1
t , y2

t , . . . , and yL
t

share a common structure by modeling the parameters of the Gaussian process on the basis of a spatial
kernel κ (i.e., myt = κmt and Cyt = κCtκ

T) where the kernel matrix κ is obtained by a spatial kernel
function shown below.

κ
(
si, sj

)
= exp

(
−
‖si − sj‖2

δ2

)
, (1)

where si and sj are two different sensor locations and δ is the range parameter that corresponds to the
distance around the space domain and can be determined as the maximum length of the space domain.
Therefore, for yl

t with l = 1, . . . , L, a unique αl
t exists, such that, yl

t = καl
t, where αl

t denotes a vector
of weight parameters for process l and αl

t ∼ N(mt, Ct), and mt and Ct represent the mean vector and
covariance matrix of αl

t, respectively. To obtain the maximum likelihood estimate of mt and Ct, we
use a hyper-prior distribution of mt and Ct by a normal-inverse-Wishart distribution, as shown in the
formula below.

{mt, Ct} ∼ N
(

mt

∣∣∣∣0,
1
π

Ct

)
IW
(

Ct

∣∣∣τ, κ−1
)

,

where mt is specified by a multi-normal distribution with a zero mean and a covariance matrix
(1/π)Ct, I and π is a precision, and Ct is specified by an inverse-Wishart distribution with precision τ

and kernel matrix κ.
We utilize a multitask learning procedure for missing data estimation as follows:

(1) mt and Ct are initiated by the previously mentioned normal-inverse-Wishart distribution:
(2) For l = 1, . . . , L, we acquire αl

t by αl
t ∼ N(mt, Ct);

(3) For l = 1, . . . , L, we acquire yl
t = καl

t.
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We now introduce the detailed procedure of the multi-task learning model. We apply an
expectation–maximum algorithm to estimate parameters αl

t, mt, and Ct at each time t as follows:
E-step: For each process l, with l = 1, . . . , L, the expectation and covariance matrix of αl

t are
estimated using the following current parameter values:

αl
t =

(
1
σ2

t
κT

l κl + C−1
t

)−1( 1
σ2

t
κT

l x̃l
t + C−1

t mt

)
, (2)

Cl
t =

(
1
σ2

t
κT

l κl + C−1
t

)−1
, (3)

where κl ∈ Rnl
t×n is the kernel matrix between St and Sl

t obtained by the kernel function in Equation

(1), in which St denotes the set of distinct locations of observed values in all of the L processes
{

Sl
t

}L

l=1
.

M-step: mt, Ct, and σ2
t are optimized on the basis of the last E-step. Thus, the updated values of

mt, Ct, and σ2
t are obtained by using the equations below.

mt =
1

π + L

L

∑
l=1

αl
t, (4)

Ct =
1

τ + L

(
πmtmT

t + τκ−1 +
L

∑
l=1

Cl
t +

L

∑
l=1

(
αl

t −mt

)(
αl

t −mt

)T
)

, (5)

σ2
t =

1

∑L
l=1 nl

t

L

∑
l=1
‖x̃l

t − κlα
l
t‖2 + tr

(
κlC

l
tκ

T
l

)
, (6)
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where tr(·) denotes the trace of a matrix. We obtain the estimated parameters α̂l∗
t , m̂t, and Ĉt for

process l∗ by implementing the expectation–maximum algorithm. Then, yl∗
t is estimated by the

equation below.
ŷl∗

t = κα̂l∗
t , (7)

where ŷl∗
t denotes the estimate of yl∗

t . Therefore, the estimated missing values of process l∗ can be
obtained from ŷl∗

t .

2.2. LR-Based MCUSUM Control Chart for Detection

After estimating the missing values, we obtain a complete set of sensor values of process l∗ as
x̂l∗

t , which is composed of the observed and estimated missing values. We now adopt an LR-based
MCUSUM control chart to monitor process l∗ and trigger the alarm as soon as possible when an
outbreak cluster occurs.

We define a local spatial cluster for monitoring the outbreak cluster on the basis of the assumption
in Reference [17] where the outbreak cluster is a circle. We denote c and r as the center location and
radius of the local cluster, respectively, and define a set of all possible local spatial clusters in the
space domain as Oc,r = {si|‖si − c‖ ≤ r}, where ‖·‖ denotes the Euclidean distance between si and
c. Figure 3a shows an illustration of a local spatial cluster. We consider the local spatial clusters
with varying radius r bounded by a given upper limit ru because the size of outbreak clusters is
unknown. The distance between sensor locations si and c in Oc,r changes at certain values because
alternative locations of si and c are fixed. Thus, we consider a finite number of possible values for r
in set R = {r1, r2, . . . , ru}, where u is the total number of possible values for r. We divide the entire
monitoring space domain into overlapping local spatial clusters within a subset of sensor locations.
Subsequently, we create an LR-based statistic for each local cluster Oc,r and use a spatial scanning
method to scan all local clusters and detect whether the mean level of the regions in some cluster is
shifted (Figure 3b). Spatial scanning is achieved by zeroing out the part of the out-of-control mean
vector µ1 that falls out of the regions of a cluster Oc,r and forms mean vector µc,r for cluster Oc,r. A
different mean vector µc,r is considered for various local cluster choices in Oc,r, which is defined by[
µc,r
]

j = [µ1]j for all j ∈ Oc,r and 0, otherwise. Then, we calculate the LR-based statistics of all possible
clusters in parallel to detect the occurrence of an outbreak.
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When an outbreak cluster occurs, a shift at the sensor locations will be implemented within the
cluster. We introduce our method in two situations when the shift magnitude µ1 − µ0 is known (i.e.,
µ1 is known) and when the shift magnitude µ1 − µ0 is unknown.

2.2.1. Known Shift

An MCUSUM chart based on LR statistics is used to detect a shift from µ0 = 0 to µ1 by considering
the spatial correlation among sensor locations. For a local cluster with center c and radius r at time t,
an LR statistic is given by the equation below.

`c,r
t = µT

c,rΣ−1
(

x̂l∗
t −

µc,r

2

)
, (8)

where `c,r
t is the LR statistic for the local cluster with center c and radius r at time t. Then, the LR-based

MCUSUM chart is given by the equation below.

Sc,r
t = max

{
0, Sc,r

t−1 + `c,r
t
}

, t = 1, 2, . . . , (9)

where Sc,r
t is the statistic of the LR-based MCUSUM chart for the local cluster with center c and radius

r at time t. At the initial time (i.e., t = 0), Sc,r
0 = 0. We scan across all possible local spatial clusters and

calculate the corresponding LR-based MCUSUM statistics in parallel. We also form a global detection
statistic Ut by taking the maximum of all the statistics, as shown in the formula below.

Ut = maxcmaxr Sc,r
t . (10)

An out-of-control cluster is detected whenever Ut exceeds a prespecified control limit h (i.e.,
Ut > h). Furthermore, h is specified based on the requirement for the in-control average run length
ARL0 through Monte Carlo simulations.

In this paper, we introduce the in-control and out-of-control average run lengths for determining
h. We denote an average in-control run length as ARL0, which represents the expected number of
states until a false alarm occurs when an in-control process is actually monitored. We denote an
out-of-control average run length as ARL1, which represents the expected number of states until
an alarm occurs when a monitored process is out-of-control. The ARL1 value is a commonly used
performance measure for timely detection of an out-of-control process. Small ARL1 values while
possessing a pre-specified large ARL0 is desirable for the LR-based MCUSUM chart procedure. We
determine the control limit h given a specific value of ARL0 through Monte Carlo simulations of
in-control processes. Specifically, the determined h can make ARL0 equal to the specific value.

2.2.2. Unknown Shift

In engineering applications, µ1 is occasionally unknown and must be specified on the basis of
expert knowledge or estimation from data. Although µ1 is unknown, the shift value of µ1 from µ0

is one of a set of alternative given directions in most engineering cases (i.e., µ1 ∈
{
µk

1

}
1≤k≤K

. We

calculate an LR statistic `k, c,r
t for the local cluster with center c and radius r at time t in each direction

µk
1, with k = 1, . . . , K, as shown below [37].

`k, c,r
t =

(
µk

c,r

)T
Σ−1

(
x̂l∗

t −
µk

c,r

2

)
, (11)
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where µk
c,r is defined by

[
µk

c,r

]
j
=
[
µk

1

]
j

for all j ∈ Oc,r and 0 otherwise. Then, we set Sk,c,r
t as the

statistic of the LR-based MCUSUM chart for the local cluster with center c and radius r at time t in the
direction µk

1, as shown below.

Sk,c,r
t = max

{
0, Sk,c,r

t−1 + `k,c,r
t

}
, t = 1, 2, . . . , (12)

and Sk,c,r
0 = 0 at the initial time. We calculate a global detection statistic by taking the maximum of

LR-based statistics at all directions of µ1, as shown below.

Vt = maxkmaxcmaxr Sk, c,r
t . (13)

When Vt > h, we trigger an alarm for the occurrence of an out-of-control cluster. Evidently,
Ut = Vt when the direction of µ1 is determined.

3. Simulation Study

We simulate a spatiotemporal process with n = 5× 5 locations in the space domain. By assuming
the spatiotemporal process is spatially correlated, we simulate 300 time points and generate data at
each time point in accordance with the multivariate normal distribution N(µ0, Σ), where we set µ0 = 0
as a 25× 1 mean vector and Σ as a 25× 25 covariance matrix. The covariance matrix is generated from
a covariance function c

(
si, sj

)
= exp

(
−‖si − sj‖2/d

)
, where si and sj are the locations of two different

locations i and j, respectively, and the scale parameter d is set to 250. We consider that an out-of-control
outbreak cluster occurs at time 51 and remains to the end. Moreover, we assume that the outbreak
cluster exhibits a homogeneous shift magnitude with µ1 and consider various patterns of the outbreak
cluster (Figure 4a–c). In addition, we set three shift magnitude states, that is, small, medium, and large
shift states, corresponding to µ1 = 0.5, 1, and 2, respectively.
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We consider three related spatiotemporal processes (i.e., l = 1, 2, 3) and regard l∗ = 1 as the
target process to be monitored. On basis of the preceding generated data, we obtain the values of each
spatiotemporal process with l = 1, 2, 3 by adding a noise term that follows a normal distribution
N
(
0, 0.12) on the generated data. We consider that the three related processes demonstrate different

missing data patterns by randomly selecting data from the values of each spatiotemporal process and
assuming that these data are missing. Furthermore, we set the ratios of the missing data to the entire
data value of each process as 20%, 30%, and 50% at each time t. Therefore, we obtain the observed

data set of process l at each time t as x̃l
t =

(
xl

t

(~
s1

)
, . . . xl

t

(~
si

)
, . . . , xl

t

(~
snl

t

))T
with l = 1, 2, 3.

Before evaluating our model performance, we initially specify the control limit h by setting ARL0

to 1000. The control limit h for ARL0 = 1000 is determined by using the in-control data generated from
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the multivariate normal distribution N(µ0, Σ) on the basis of 1000 replications. Then, we calculate
ARL1 values and implement 100 replications for different shift magnitudes, outbreak cluster types,
and ratios of missing values. In addition, the results are compared with a benchmark model. Similar
to our proposed model, the benchmark model uses an LR-based MCUSUM control chart to detect an
out-of-control cluster by considering spatial correlation. The only difference between the benchmark
model and our proposed model is that multitask learning is disregarded in the former for handling
the missing data problem. The detailed information about the benchmark model can be found in
the appendix.

Table 1 presents the ARL1 values of the two models on the basis of 100 replications. Evidently, our
proposed model outperforms the benchmark model by using a multitask learning approach to handle
the missing data problem. Particularly, when the ratio of missing values becomes large, our proposed
model detects an outbreak cluster considerably faster than the benchmark model. For different types
of cluster, the small cluster is more difficult to detect than the large one using both models. However,
our proposed model performs better than the benchmark model in detecting the small cluster. For
different shift magnitudes, our proposed model shows good performance for detecting small, medium,
and large shifts. By contrast, the benchmark model does not perform well for the small and medium
shifts and even loses the detection power when the shift magnitude is small. Figures 5 and 6 show
examples of the LR statistics at the first 150 time points for detecting the medium outbreak cluster with
different shift magnitudes and ratios of missing values using our proposed model and the benchmark
model, respectively. From the figures, our proposed model can detect an outbreak cluster more quickly
than the benchmark model.
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Figure 5. LR statistics using the proposed model for detecting the medium outbreak cluster. (Note: the
ranges of the Y-axis in each graph are substantially different.). (a) shift magnitude = 0.5, 20% missing
values; (b) shift magnitude = 1, 20% missing values; (c) shift magnitude = 2, 20% missing values;
(d) shift magnitude = 0.5, 30% missing values; (e) shift magnitude = 1, 30% missing values; (f) shift
magnitude = 2, 30% missing values; (g) shift magnitude = 0.5, 50% missing values; (h) shift magnitude
= 1, 50% missing values; (i) shift magnitude = 2, 50% missing values.
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Table 1. ARL1 values of the proposed model and benchmark model in the simulation case.

The Proposed Model Benchmark Model

The Ratio of
Missing Values Outbreak Cluster Type

Shift Magnitude
0.5 1 2 0.5 1 2

20%
Small 5.22 1.54 1.00 40.96 12.61 4.60

Medium 1.60 1.00 1.00 17.44 6.22 2.14
Large 1.52 1.00 1.00 15.61 5.66 2.01

30%
Small 6.16 1.68 1.00 51.92 17.82 5.78

Medium 1.76 1.00 1.00 21.00 8.11 3.00
Large 1.58 1.00 1.00 20.94 7.18 2.98

50%
Small 12.40 2.92 1.06 101.64 32.94 9.32

Medium 2.80 1.00 1.00 62.82 18.82 6.08
Large 2.52 1.00 1.00 44.06 14.79 5.02

4. Real Case Study

In this section, we conduct a case study on monitoring the temperature of the stored grains
in a granary to test the performance of our proposed model. Grain storage is a critical issue in
the national economy and livelihood of people. Grain quality decreases if grains are inefficiently
stored. A total of 8% of grains worldwide are annually lost due to considerable unexpected reasons,
according to reports from the Food and Agriculture Organization of the United Nations. Grain
quality monitoring is necessary during storage to reduce grain losses. Grain temperature monitoring
plays an essential role in grain storage because the temperature is among the key factors that may
directly influence the quality of stored grains. When grain quality decreases due to some unexpected
reasons, including mildew, pests, and high environmental temperature outside the granary, the grain
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temperature will simultaneously increase. This is because substantial heat will be released to increase
the grain temperature to a high level when mildew and pests destroy the grains. The overheat of the
grains will propagate around and formulate an overheated cluster. The overheated cluster should be
detected as soon as possible to prevent grain losses.

Grain temperature can be divided into two parts [38]: global temperature trends caused by
external factors (e.g., environmental temperature) and local temperature variations caused by internal
factors (e.g., mildew and pests). In comparison with global temperature trends, local temperature
variations have been given considerable attention by practitioners because such changes usually trigger
systematic changes or even system failure. An increase in local temperature due to the overheat by
the grain self-breath or mildewing may induce an extensive temperature increase spreading across
the granary, which leads to unexpected grain deterioration before releasing the grain processing
plants. Local temperature variations play a considerably more essential role than global temperature
trends in grain storage systems to provide useful information for the surveillance, maintenance, and
improvement of a system. Therefore, we remove the global temperature trends from the sensor
observations of grain temperature and obtain the observed values of local temperature variations. The
detailed information about the modeling of global temperature trends can be found in Reference [38].

We use our proposed model and the benchmark model in the real-case study to monitor local
temperature variations of a target granary in a national grain depot located in Central China. We also
select two adjacent granaries in the same grain depot, which have an identical structure and store the
same grain type. The temperature sensor data of the three granaries are synchronously collected at
least every seven days from the sensor networks, and a total of 47 time points exist. Two layers of
temperature sensors are set in the granaries and 8 × 4 = 32 evenly spaced sensors are distributed in
each layer and located at 5 m intervals between two adjacent sensors. Grain temperature in a granary
can be monitored on the basis of the sensor data on each layer. We use sensor data on one of the
layers to validate our model performance. Figure 7 presents an illustration of the grain temperature
plan during grain storage where the thermal map represents the grain temperature and the black
dots indicate the sensor locations. An overheat cluster occurs from the 15th time point because of
high environmental temperature. For each granary, we randomly select a number of sensor data and
assume that the data are missing. We consider three levels of missing data and set the ratios of the
missing data to the entire data as 20%, 30%, and 50% at each time point to evaluate the monitoring
efficiency of the proposed model for handling the missing data problem. Furthermore, we repeat the
procedure by randomly selecting missing data 100-fold and evaluate the proposed method on the
basis of the 100 replications.
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µ1 is unknown in the real-case study. Nevertheless, a set of candidate values of µ1 can be obtained
by the engineering knowledge of grain storage. We use Equations (11)–(13) to detect an outbreak
cluster. Table 2 presents the ARL1 values of our proposed model and the benchmark model on the
basis of 100 replications. Our proposed model outperforms the benchmark model in all levels of
missing data. In addition, our proposed model detects an outbreak cluster considerably faster than the
benchmark model when the ratio of missing values becomes large. Figure 8 shows examples of the LR
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statistics for different levels of missing values using our proposed model and the benchmark model.
From the figure, our proposed model can detect an outbreak more quickly than the benchmark model.
The monitoring results can provide useful information for grain quality assurance in grain storage,
which is helpful in reducing grain losses.

Table 2. ARL1 values of the proposed model and benchmark model in the real case.

Model
The Ratio of Missing Values

20% 30% 50%

The proposed model 2.45 2.86 3.66
The benchmark model 4.55 5.83 8.42
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Figure 8. LR statistics using the proposed model and benchmark model for the real case. (a) The
proposed model includes 20% missing values; (b) The benchmark model includes 30% missing values;
(c) The proposed model includes 30% missing values; (d) The benchmark model includes 30% missing
values; (e) The proposed model includes 50% missing values; (f) The benchmark model includes 50%
missing values.

5. Conclusions

Dynamic field monitoring, which detects an out-of-control event by learning the state change
from the collected sensor data, serves as an essential tool in a variety of engineering domains. However,
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in practice, a large number of missing data exist in the sensor database, which leads to inaccurate
or delayed detection when monitoring a dynamic field. The inaccurate or delayed detection causes
great losses of products in engineering applications. Therefore, it is essential to develop an effective
approach to handle the missing data problem for dynamic field monitoring.

In this study, we propose a multi-task learning-based field monitoring approach to detect an
outbreak cluster using sensor data with missing values. We adopt an LR-based MCUSUM control
chart by considering spatial correlation among regions to detect an outbreak that usually occurs in a
cluster of neighboring regions. Particularly, we integrate a multitask learning model into the LR-based
MCUSUM control chart to handle the missing data problem in the sensor data. The multitask learning
model learns the missing values of the target process by sharing knowledge or information using
observed sensor data from related processes.

The results in simulation and real-case studies show that our model achieves an accurate and
timely detection for an out-of-control state when a large number of missing data exist in the sensor
database. Our model provides an effective field monitoring strategy for engineering applications
to accurately and timely detect the products with abnormal quality during production and reduce
product losses.

In our future work, we will establish an effective online monitoring strategy for simultaneously
monitoring multiple processes by developing an adaptive sampling approach to determine what
sensor values should be observed when only a limited number of sensor resources are available in the
space domain.
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Appendix A. Benchmark Model

In order to validate our model performance, we compare our model with a benchmark
model [2,17]. The benchmark model uses an LR-based MCUSUM control chart to detect an
out-of-control cluster by considering spatial correlation, but multitask learning is disregarded in
the benchmark model for handling the missing data problem. The benchmark model interpolates the
missing values by zero and obtains a processed data set zl∗

t . The LR-based MCUSUM control chart
with known shift is a special case of the one with unknown shift. We just introduce the benchmark
model with unknown shift. We consider each sensor location as a center.

When the sensor value at a center c is known, we calculate an LR statistic ℊk,c,r
t for the local spatial

cluster with radius r at time t in each direction µk
1 with k = 1, . . . , K.

ℊk,c,r
t =

(
µk

c,r

)T
Σ−1

(
zl∗

t −
µk

c,r

2

)
, (A1)

Then, we set the statistic of the LR-based MCUSUM chart Gk,c,r
t with center c and radius r at time

t in the direction µk
1 as shown below.

Gk,c,r
t = max

{
0, Gk,c,r

t−1 +ℊk,c,r
t

}
, t = 1, 2, . . . , (A2)

and Gk,c,r
0 = 0 at the initial time.
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When the sensor value at center c is missing, we construct the statistic Gk,c,r
t by introducing a

compensation coefficient ∆ ≥ 0 following the procedure in Reference [2].

Gk,c,r
t = Gk,c,r

t−1 + ∆, t = 1, 2, . . . ,

where ∆ is a constant tuning parameter. We set ∆ = 1 in our simulation and real case studies.
Lastly, we calculate a global detection statistic Wt by taking the maximum of LR-based statistics at all
directions of µ1.

Wt = maxkmaxcmaxr Gk, c,r
t . (A3)

When Wt > h, we trigger an alarm for the occurrence of an outbreak cluster.
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