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Abstract: We use self-report and electrodermal activity (EDA) wearable sensor data from 77 nights
of sleep of six participants to test the efficacy of EDA data for sleep monitoring. We used factor
analysis to find latent factors in the EDA data, and used causal model search to find the most probable
graphical model accounting for self-reported sleep efficiency (SE), sleep quality (SQ), and the latent
factors in the EDA data. Structural equation modeling was used to confirm fit of the extracted graph
to the data. Based on the generated graph, logistic regression and naïve Bayes models were used to
test the efficacy of the EDA data in predicting SE and SQ. Six EDA features extracted from the total
signal over a night’s sleep could be explained by two latent factors, EDA Magnitude and EDA Storms.
EDA Magnitude performed as a strong predictor for SE to aid detection of substantial changes in
time asleep. The performance of EDA Magnitude and SE in classifying SQ demonstrates promise
for using a wearable sensor for sleep monitoring. However, our data suggest that obtaining a more
accurate sensor-based measure of SE will be necessary before smaller changes in SQ can be detected
from EDA sensor data alone.
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1. Introduction

Sleep is a necessary component to an individual’s well-being. Sleep deprivation can cause an
increase in day-to-day stress and induce negative emotional responses to routine daily stressors [1,2].
In the long term, continual sleep deprivation can lead to an impaired immune system and increased
susceptibility to both chronic and infectious disease [3]. To address these health problems caused by
sleep deficiency, we need novel sensing methods for monitoring sleep non-invasively. Traditional
measures of sleep quality are self-reported [4]; however, use of sensors to monitor sleep has received
increasing attention [5–8]. To this end, electrodermal activity (EDA) may be particularly useful in
qualifying sleep activity [9]. In this study, we focus on better understanding the efficacy of EDA data
from a wearable sensor called the Empatica E4 (E4) [10] and compare these to self-reported measures
of sleep quality (SQ) and sleep efficiency (SE). We focus on better understanding: (1) latencies within
features extracted from the EDA signal; (2) the structure of the relationships between the EDA features,
SQ, and SE; and (3) the efficacy of the EDA signal in predicting self-reported SQ and SE.

1.1. Sleep Monitoring Using Surveys and Sensors

One of the most well-known self-report sleep surveys is the Pittsburgh Sleep Quality Inventory
(PSQI) [4]. The PSQI uses self-report questions to calculate SE, sleep disturbances, and daily sleepiness.
However, the ubiquity of fitness sensors and smartphone technology allows us to move beyond
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self-report data. In Lane et al., the authors designed a smartphone app called “BeWell” to monitor a
user’s physical activity, social interactions, and sleep patterns [5]. This is done using the smartphone’s
accelerometer while the device is on the bed where the user sleeps. Similarly, Chen et al. discusses a Best
Effort Sleep model which is implemented in the “BeWell” smartphone app previously mentioned [6].
Another model devised by Hao et al. proposes an app called “iSleep” [7]. This system uses the
microphone of a smartphone to monitor sleep behaviors such as snoring and body movement to
measure the SQ of a user.

Sensors like Fitbit [11] and Jawbone [12] are popular and readily available commercial sensors.
Muaremi et al. demonstrated sleep monitoring in pilgrims during the Hajj 2013 to detect stress [13].
The authors used two devices: the Zephyr Bioharness 3, and the Empatica E3 which is the previous
iteration of the E4 device used in our study. They created a simple two question daily stress
questionnaire to monitor sleep and predict stress levels of the pilgrims monitored in the study.

While previous work demonstrated various approaches of monitoring sleep and making SQ
predictions, only the study by Muaremi et al. [13] used a wearable device in conjunction with a
questionnaire for sleep monitoring. In a study by Beecroft et al. [14], using only actigraphy or a
questionnaire was found to be insufficient for sleep assessment. However, a key difference with [13]
and our proposed study is that the authors were predicting stress measures rather than specific
sleep measures such as SE or SQ. Also, the studies using only the mobile devices, accelerometer
and microphone did not use the physiological signals provided by a wearable sensor. We seek to
understand the efficacy of EDA data collected from the non-intrusive wearable E4 device in predicting
SE and SQ derived from the daily PSQI (see Supplementary Materials).

1.2. Sleep Monitoring Using a Controlled Environment

The most accurate method of monitoring sleep is carried out in an enclosed environment using
invasive technologies such as the polysomnography (PSG) test. The PSG is an intrusive test which can
affect the sleep of the user. Douglas et al. [8] used data from the PSG test and compared other possible
methods of sleep monitoring to recommend different approaches to classifying sleep apnea/hypopnea
syndrome (SAHS). In Beecroft et al., researchers looked at sleep loss in clinically ill patients and
compared PSG results to data gathered from actigraphy and reports from nurses [14]. Studies such
as [14] support the need for non-invasive sensors that can monitor sleep without disrupting normal
sleep behavior. Moreover, it is also critical to be able to monitor sleep in the homes of the participants
to better assess the sleep quality as the measurement of sleep will be affected by the environment as
well (such as the lighting in the bedroom, number of bathroom visits). To that end, we describe the
use of non-intrusive wearable sensors in users’ homes to evaluate quality of sleep within an authentic,
natural context.

2. Materials and Methods

2.1. Data Collection

We used the E4 and the daily-PSQI to gather data for a total of 77 nights of sleep from six
participants ages 24 to 36, three male and three female. One participant provided a majority of the
collected nights of sleep totaling 38 nights of data, similar to the study performed by Sano et al. [9]. Of
the remaining five participants, one participant provided four nights of data, and the remaining four
participants provided seven nights each. During the data gathering process, the participants all wore
the device to bed at night. When they got up, they would remove the device and answer the questions
from the daily-PSQI using an Android application.

2.2. Instrumentation

The device used in this study, the Empatica E4, is an unobtrusive wrist-worn physiological sensor.
The E4 is similar to a Fitbit in design and size [11] and is capable of reading Blood Volume Pulse (BVP),
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Heart Rate (HR), Interbeat Intervals (IBI), Skin Temperature (TEMP), 3-Axis Accelerometer (ACC),
and Electrodermal Activity (EDA) [10]. We focus on the EDA feature which is the measurement of
electrical conductance of the skin for detection of sympathetic nervous system arousal [15]. From the
daily-PSQI, we calculated sleep efficiency (SE) as a function of the number of minutes spent asleep
divided by the number of minutes spent in bed as reported by the participants. The ratings from the
SQ range from one (as very poor) to four (as very good). We defined ratings of 3–4 as “good sleep”
and 1–2 as “poor sleep”.

2.3. Creating Models for Sleep Efficiency (SE) and Sleep Quality (SQ)

2.3.1. Feature Extraction

We extracted six EDA features (Table 1, Figure 1 using the automatic feature extraction method
described by Sano et al. [9]. We calculated the awake segments for derivation of SE using the E4’s
3-axis accelerometer and the function described by Cole et al. [16] but found that these did not correlate
well with self-report measures (r = 0.17). Given this low correlation and that Cole et al.’s derivation
has not been validated clinically, we proceeded to use the self-report derivation for SE in this study.

The six EDA features (Table 1) are derived from three primary aspects of the EDA signal: (1) EDA
peaks, (2) EDA epochs, and (3) EDA storms [9] (visual representations in Figure 1).

Table 1. EDA features extracted from the Empatica E4 and self-report features drawn from
the daily-PSQI.

Feature Type Description

Amount of Sleep Minutes PSQI Feature The number of minutes the participant was asleep.

Amount of Wake Minutes PSQI Feature The number of minutes the participant was awake.

Number of EDA Epochs EDA Feature The number of EDA epochs over the entire duration
of sleep in a single night

Number of EDA Storms EDA Feature The number of EDA storms over the entire duration
of sleep in a single night

Average Size of EDA Storms EDA Feature Mean number of epochs within an EDA storm across
all EDA storms over a single night of sleep.

Standard Deviation of
EDA Storms EDA Feature

Standard deviation in the number of peak epochs
within an EDA storm across all EDA storms over a
single night of sleep.

Largest EDA Storm EDA Feature The number of peaks within the largest EDA storm
in the signal for a single night of sleep.

Number of EDA Events EDA Feature Number of EDA events (peaks) in the signal over the
entire duration of sleep in a single night.

SE PSQI Feature SE calculated using the daily-PSQI questions 1, 2,
and 3.

SQ PSQI Feature
SQ deduced using SQ rating scale from the
daily-PSQI, creating a binary system where poor is
1–2 rating and good is 3–4 rating.
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Figure 1. Visual representation of our data illustrating an EDA event, EDA epoch, and EDA storm.
The top image shows the peaks with respect to the 0.01 µS/s threshold. The bottom image depicts a
focused portion of the signal with the x-axis showing 30 s time intervals (compensating for the 4 Hz
sampling rate of the E4 device) for determining EDA Epochs and EDA Storms.

To get these, we first take the first derivative (red line in Figure 1) of the signal (blue line in
Figure 1). A threshold of 0.01 microsiemens per second (µS/s) [9] (orange line in Figure 1) is then
applied to this transformed signal. Any point in time which exceeds the threshold is labeled as an
EDA event. Next, an EDA epoch is defined as any 30 s section of the signal in which at least one EDA
event exists. An EDA storm is defined as a string of two or more consecutive EDA epochs. Average
size of the EDA storms was calculated as the mean number of EDA epochs within the EDA storms
occurring over a single night of sleep. Standard deviation of the size of EDA storms represents the
variation from the mean in the number of EDA epochs contained in the EDA storms. The largest EDA
storm was calculated as that which contained the most consecutive EDA epochs over the course of a
single night of sleep.

2.3.2. Model Selection

Obtaining a proper understanding of how PSQI and E4 sensor readings relate to each other
required specification of a directed acyclic graph (DAG) that captures accurately the causal connections
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between these variables. DAGs allow derivation of causal connections between self-report and sensor
sleep data without confounding factors and type 1 error inflation which often persist in ordinary
linear stepwise regression methods [17]. In light of the problem described, our inferential process
was fourfold: (1) search for latent factors in the extracted E4 features, (2) learn the structure of the
causal connections (the DAG) between the observed or latent variables, (3) verify that this DAG
reproduces the data adequately, and (4) use the DAG to derive statistical inferences which align with
our research questions.

Latent Variable Search: We used exploratory factor analysis (EFA) with maximum likelihood
estimation and promax rotation [18] to search for latent factors in the EDA signal. We retained
all factors with a variance greater than that provided by a single feature (i.e., eigenvalue > 1) [19].
Regression coefficients of the promax-rotated latent factor scores on the features were used to define
the meaning of the latent factors qualitatively.

Learn the DAG from the Data: We then utilized causal model search to derive a DAG explaining
causal links between PSQI and E4 observed or latent features that are best supported by our data. We
used the Fast Greedy Search (FGS) algorithm within the TETRAD software package [20] to extract
the most likely DAG given the data using the features from the EDA signal, sleep quality, and sleep
efficiency. As a score-based approach, the FGS selects the most probable model given the data. We used
the Conditional Gaussian Bayesian Information Criterion (BIC) score with a structure prior of 1 [21].

Verify that the DAG Explains the Data: We then used a structural equation modeling (SEM)
framework to evaluate statistically the extent to which the DAG explains the data as well as the
strength of edges in the model [22]. We used Pearson’s chi-square, the root mean square error of
approximation (RMSEA) and comparative fit index (CFI) as measures of fit. RMSEA is a measure
of absolute fit, with measures of 0.07 or below indicating adequate fit [23]. The CFI is a measure of
relative fit with respect to the independence model, where a value of 1 indicates perfect fit, and a value
of 0 indicates a level of fit no better than that offered by treating the features as independent. CFI
values of 0.90 or above indicate adequate fit [24]. Estimation of path coefficients was done using the
diagonally weighted least squares (WLSMV) estimator in Mplus 7 [25].

We selected the set of relevant predictors by taking the Markov blanket for the nodes of sleep
efficiency and sleep quality, respectively, on the DAG [26]. Upon selecting the features based on the
Markov blanket, ordinary least squares linear regression was used to evaluate the efficacy of the
selected sensor features (α = 0.05 level) in predicting SE, and binary logistic regression was used to
evaluate SQ (α = 0.05 level). In addition, we used the naïve Bayes classifier as a generative counterpart
to gain a more complete picture of how well SE and the EDA features extracted from the E4 sensor
predict SQ.

3. Results

The six EDA features could be described adequately with two latent factors. The first factor
contained 4.5 features of variance, accounting for 75% of the total variation in the set of features. Five
features (number of EDA epochs, average size of the EDA storms, standard deviation of the size of
the EDA storms, the largest EDA storm, and the number of EDA events) had high loadings (0.87–1)
onto this first factor, suggesting that these all describe a single latent factor: magnitude of EDA activity
through the night, which we call “EDA Magnitude” for the remainder of the paper. Number of EDA
storms had a small loading (−0.09) onto the EDA Magnitude factor, but instead loaded highly (0.83)
onto the second factor, which we call “EDA Storms” from here on. This second factor contained 1.2
features of variance for an additional 20% of the total variance in the data. In total, the 2-factor solution
described 95% of the variance in the six EDA features.

The FGS yielded the model displayed in Figure 2. SEM suggested that this model replicated the
covariance between the observed features well (RMSEA = 0.064, CFI = 0.97) and could not be rejected
by the data (χ2

df=22 = 28.69, p = 0.15). Paths from the latent variable of EDA Magnitude to the observed
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sensor features were strong (0.85–0.98) corroborating the EFA that these measure a single latent factor.
We found a significant connection between EDA Magnitude and reported SE (b = 0.31, SE = 0.068,
z = 4.6, p << 0.001), and between reported SE and SQ (b = 0.61, SE = 0.12, z = 5.3, p << 0.001). These
constitute moderate-to-large effects [27], indicating that the features extracted from the E4 sensor may
be useful in predicting both SE and SQ.
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Figure 2. Path diagram of the causal relationship between EDA features extracted from the E4 sensor,
reported sleep efficiency, and reported sleep quality. Standardized coefficients are reported. All are
significant at the 0.05 alpha level.

The Markov blanket for SE on the DAG in Figure 2 suggests that EDA Magnitude and SQ can
be used as direct predictors of SE. The Markov blanket on SQ suggests that SE may be sufficient to
predict SQ without need for EDA data, but that EDA features may also be useful for prediction of SQ
through their ability to predict SE.

The significant relationship between EDA Magnitude extracted from the E4 sensor and SE after
controlling for reported SQ (rpartial = 0.28, p = 0.018) provides support for the utility of EDA sensor
data in addition to self-report data for sleep monitoring applications. A linear regression model using
only the sensor data with 10-fold cross-validation models SE with a root mean square error (RMSE)
of 0.99, a mean absolute error (MAE) of 0.75. This model is statistically significant (Fdf=1,73 = 7.59,
p = 0.007, r2

adj = 0.082, SEreg = 0.96). This indicates that using only the sensor data without self-reported
information may provide a promising model to predict SE.

Binary logistic regression using both EDA Magnitude and SQ as predictors (χ2
df=2 = 16.4,

p << 0.001, Cox & Snell r2 = 0.20) demonstrates the need for including SE as a predictor for SQ.
After accounting for SE, a participant’s EDA activity has no significant effect on SQ (OR = 1.2,
χ2

df=1 = 0.31, p = 0.58). SE is in itself useful for predicting SQ (OR = 3.7, χ2
df=1 = 10.6, p = 0.001).

The logistic regression model only using SE predicts SQ with an AUC of 0.76 and an F1 score of 0.73
(precision = 0.73, recall = 0.76). The predictive power of the logistic regression model remains relatively
unchanged when the sensor data are used in addition to SE, with an AUC of 0.77 and an F1 score
of 0.73 (precision = 0.73, recall = 0.76). The naïve Bayes classifier with both EDA Magnitude and
SE as predictors also performs well, with an AUC of 0.85 and an F1 score of 0.83 (precision = 0.82,
recall = 0.83). When only SE is used as a predictor of SQ (without the EDA sensor data), the predictive
power of the naïve Bayes model decreases slightly: AUC of 0.83 and F1 score of 0.80 (precision = 0.80,
recall = 0.80). The increased utility of the sensor data in the naïve Bayes model may be due to our
relatively small number of training samples relative to many machine learning applications. Generative
models approach their asymptotic error more quickly than discriminative models, explaining why
naïve Bayes outperforms logistic regression in this study and benefits from addition of EDA Magnitude
to the model [28].
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4. Discussion

Our data suggest that EDA measures show promise toward sleep monitoring, but more work
remains for a deeper understanding of physiological changes occurring during the different sleep
stages (such as the differences in REM vs slow wave sleep). After controlling for reported SQ, EDA
Magnitude had a significant relationship with SE, supporting the usefulness of EDA measures toward
predicting SE. However, our data suggest that only a coarse (high/low) measure of SE can be attained
through the use of sensor data alone. This implies that a sensor using these EDA features may be
useful for detecting large anomalies in time asleep which may be induced by changes in medication,
major lifestyle changes, or large changes in living environment. That said, more work is needed before
such a device could be used to detect fine deviations in SE. This would indicate the use of additional
features such as heart rate variability, along with the current EDA measures.

Figure 2 suggests that SE is a mediator between measures of EDA Magnitude and SQ; however,
insufficient evidence is available to tease out the directionality of these relationships i.e., whether
EDA causes SQ or changes in SE and SQ result in EDA changes. It suffices to say, however, that
when SE is accounted for, the relationship between EDA Magnitude and SQ is non-significant. It is
not surprising, then, that omitting the sensor data and just using SE as a predictor for SQ yields no
significant difference in the classification performance when logistic regression is used. Naïve Bayes,
however, tells a slightly different story, generating a small but noticeable deterioration in classification
performance (F1 score decreasing from 0.83 to 0.80) when EDA Magnitude is removed from the
model. This indicates that having both EDA data and a measure for SE may be helpful for a higher
performance when a generative modeling framework is used. Generative models like naïve Bayes
approach their asymptotic error more quickly than discriminative models like logistic regression [28],
and may therefore prove advantageous toward modeling our 77 data samples. Further, including the
simple EDA features does not add much to the computational complexity of the model while slightly
improving model performance. Whether a discriminative or generative modeling approach is used,
a useful classifier for high vs low SQ is obtainable so long as an accurate and repeatable measure of
SE exists.

Toward understanding the efficacy of EDA data in informing us about SE and SQ on a nightly
basis, a reader may ask why we did not use a sensor-related measure of SE such as that described in [16].
We had considered using Cole’s function [16] for calculation of SE that utilized the accelerometer
data from the x, y, and z directions. However, this showed poor correlation with the self-reported SE
values used in this study (r = 0.17, Fdf=1,73 = 2.03, p = 0.16), meaning that they only shared ~3% of
their variance in common. Further, this measure was not informative from a modeling perspective
given that it showed no relationship to EDA Magnitude (Fdf=1,73 = 0.43, p = 0.52) and EDA Storms
(Fdf=1,73 = 0.15, p = 0.70) based on linear regression, and was a non-significant predictor of SQ based on
logistic regression (χ2

df=1 = 0.078, p = 0.78). These results illustrate that any relationship found with
the sensor-derived measure of SE in our data is likely due to chance. We consider self-reported SE as a
ground truth, so given this negligible relationship, we decided not to use this sensor-derived measure
in our current modeling. This computation using the accelerometer was reported in the study by Sano
et al. [9] but not validated (they used an earlier version of the E4 device). The poor performance from
using the movement (in x, y, and z directions) alone highlights the differences in individual sleep
habits such as certain participants being more active in their sleep as compared to others, which a
reliable automated sensor must be able to capture. Clearly, more customized methods are needed to
cater Cole’s function to the habits of specific individuals.

Wrist-worn EDA devices are most useful for collecting measures in the context of activities of daily
living such as cooking, cleaning, eating, or sleeping. However, these measures are limited in that they
are less sensitive than finger transducers such as the Moodmetric EDA ring which measure EDA on the
palm [29]. We use a wireless EDA device, but this consequently requires a wrist-worn measure where
there is less EDA activity, and it therefore may exhibit less sensitivity [9]. This limitation should be
noted when interpreting our findings in that a more sensitive device with less noise will approximate
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more closely the participant’s true EDA measure. Lack of precision tends to attenuate the observable
relationship between features [30]. We would therefore theoretically expect the connection between
EDA Magnitude and SE to be stronger, and that EDA would in turn provide better performance for
classifying SQ, if a palmar EDA device were used. Practically, however, a finger-worn wired device
is more likely to interfere with sleep, thereby invalidating the context of the data. As development
of more sensitive and less invasive devices continues, our ability to use EDA to monitor sleep will
continue to improve.

5. Conclusions

Our data indicate that a combination of sensor and self-report data be used to generate a useful
metric to both quantify and qualify sleep. However, we still have a long way to go towards measuring
sleep with sensors alone. That said, we have taken a promising first step towards understanding
how to quantify sleep measures (SE and SQ) using EDA sensor data. We hope this will be used for
continuous assessment of sleep behavior when large changes or deteriorations in individual sleep
patterns over time are of interest. The next step involves including more physiological features to
enable detection of more subtle temporal aspects of sleep behavior.
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