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Abstract:  The traditional approach for coastal monitoring consists in ground investigations
that are burdensome both in terms of logistics and costs, on a national or even regional scale.
Earth Observation (EO) techniques can represent a cost-effective alternative for a wide scale coastal
monitoring. Thanks to the all-weather day/night radar imaging capability and to the nationwide
acquisition plan named Mapltaly, devised by the Italian Space Agency and active since 2010,
COSMO-SkyMed (CSK) constellation is able to provide X-band images covering the Italian territory.
However, any remote sensing approach must be accurately calibrated and corrected taking into
account the marine conditions. Therefore, in situ data are essential for proper EO data selection,
geocoding, tidal corrections and validation of EO products. A combined semi-automatic technique for
coastal risk assessment and monitoring, named COSMO-Beach, is presented here, integrating ground
truths with EO data, as well as its application on two different test sites in Apulia Region (South
Italy). The research has shown that CSK data for coastal monitoring ensure a shoreline detection
accuracy lower than image pixel resolution, and also providing several advantages: low-cost data,
a short revisit period, operational continuity and a low computational time.

Keywords: integrated coastal zone management; coastal risk; shoreline erosion; Earth Observation;
COSMO-SkyMed; ground truths

1. Introduction

Sea and the coastal areas constitute a driving force for the economic activity based on maritime
resources, the so-called “blue economy” [1]. Actually, maritime and coastal tourism are the leading
sectors of the European maritime economy. The priority objective of the coastal policy should hence
be to enhance ecological and landscape resources in order to further increase their attractiveness
and economic and social growth. Any enhancing measure strongly requires proper governance of
coastal areas through integrated management plans and actions targeted to mitigate and counteract
coastal risks [2]. Therefore, a detailed outline of the dynamics of coastal erosion phenomena over
different time-scales is necessary for an effective coastal risk assessment and for land-use planning
purposes [2,3].

Growing urbanization, human activities and climate change are exacerbating the impact of
shoreline erosion phenomena [4]. Hence, shoreline position and its variability over time are an
essential element for coastal management [5,6], coastal protection structure evaluation [7], validation
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and calibration of numerical models [8-10] and climate change studies [11,12]. The coastline can
ideally be defined as the land-sea interface [13], and its position is constantly changing over time,
mainly due to the dynamic nature of the sea level that is influenced by astronomical tides, waves,
storm surge, set-up, run-up and sediment transport (cross-shore and long-shore currents) [14,15].
Therefore, the shoreline position must be defined in the most appropriate temporal scale; in the case
of a long-term study, a yearly coastline can be adequate [12], whereas in the case of run-up analysis,
it may be necessary to sample positions with much greater frequency [9,16].

In situ measurement techniques have been successfully adopted for shoreline observation
obtaining accurate results, such as the ones that involve Global Navigation Satellite System (GNSS)
campaigns [5,17,18], but a continuous GPS monitoring turns out to be impractical in terms of costs and
logistics over a wide scale.

Innovative monitoring approaches, based on remote sensing techniques, could be an economically
sustainable alternative providing information on shoreline evolution trend and promptly indicating
also the occurrence of risk situations [19]. Different remote sensing measurement techniques can be
successfully adopted for shoreline observation: optical sensors on both aerial and space platforms [19],
LiDAR campaigns [20,21], Unmanned Aerial Vehicle (UAV) [22-25], videomonitoring systems [26-29].
The exploitation of very-high resolution aerial optical images and LIDAR surveys allows very accurate
positioning of the shoreline over a wide scale, but their high acquisition costs strongly limit the
frequency of monitoring, whereas small UAVs and videomonitoring systems offer a low cost solution
but they are able to provide information only about limited areas.

Over the years, Synthetic Aperture Radar (SAR) has proved to have a positive cost-benefit ratio
for territorial analysis, from small/medium to wide scale and the all-weather day/night imaging
capability has made this approach very popular, especially for mapping remote areas or under extreme
climatic conditions [19]. The use of satellite SAR sensors has been limited in the past by the low spatial
resolution of the images [30,31] . Since 2007, the new constellations of satellites equipped with high
resolution X-band SAR sensors, such as the COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions,
potentially allowed to identify and monitor shoreline evolution with meter or sub-meter level accuracy
(according to the selected acquisition mode), thus fostering the exploitation of SAR data for coastline
extraction. Moreover, the nationwide acquisition plan named Mapltaly has been devised by the Italian
Space Agency (ASI), to provide CSK high-resolution satellite SAR images covering the whole Italian
territory with a 16-day revisit period [32] .

The existing approaches for shoreline extraction from SAR images are classified into two types:
radiometric approach, certainly the most used, and interferometric approach. The first approach
attempts to locate the discontinuities present in significant intensity values of the images [33-36]
whereas the second exploits the loss of coherence typical of water-covered areas [37,38]. To overcome
the issues related to the presence of noise in SAR images, numerous other approaches, based on
complex mathematical models such as Active Contour Model [39,40], Level Set Functions [41-44],
Snake models [45] have been tested with good results over large areas.

In the last few years, the very fine spatial and radiometric resolution of COSMO-SkyMed SAR
images has encouraged the development of several procedures aimed at shoreline extraction. CSK
amplitude SAR image processing [46,47] has provided very satisfactory results in coastline mapping
achieving an accuracy equivalent to the spatial resolution, proved by comparing results with in situ
shoreline measures acquired during satellite observation. A Bayesian estimation theory able to detect
sea boundaries at full resolution and low error rate in a totally unsupervised way has also been
proposed [48].

An interferometric technique for the coastline extraction from CSK interferometric pairs, using the
coherence loss of pixels belonging to the sea surface, has been developed [38]. Dual polarimetric CSK
data for coastline extraction have also been experimented [49-51], exploiting the correlation between
co- and cross-polarized amplitude channels. Furthermore, an innovative coastline extraction procedure
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from Full-Polarized SAR imagery has been developed to integrate an Autoassociative Neural Network
(AANN) and a Pulse-Coupled Neural Network (PCNN) [52].

Field data are always essential to improve the robustness, accuracy and reliability of any approach
for coastal risk assessment based on Earth Observation (EO) data. In particular, remotely sensed
data must be accurately geocoded, validated and corrected on the basis of the actual marine
weather conditions.

This paper presents a semi-automatic integrated approach for shoreline detection and monitoring,
as well as its application on two different test sites in Apulia Region (South Italy). An innovative
model combining backscatter intensity data with the interferometric analysis has been tested on
CSK Stripmap HIMAGE mode data providing an accurate shoreline detection and a coastal type
classification. Thanks to the integration of satellite SAR images and ground truths (that are used for
proper EO data selection, tidal corrections and validation of EO products), the developed processing
chain provides a complete SAR image analysis system for shoreline monitoring, allowing to overcome
some issues in the processing of SAR data and ensures the best possible results in coastal monitoring,
as remarked in the following sections. The paper is structured as follows: Section 2 provides details
on the developed integrated EO system and its outlines; Section 3 illustrates the features of the case
study and available data and in Section 4 the obtained results are presented. Section 5 contains the
discussion on the proposed scheme and in Section 6, conclusions are provided.

This paper is an extended version of “Remote Sensed and In Situ Data: an integrated approach
for Coastal Risk Assessment” published in “2018 IEEE International Workshop on Metrology for the
Sea; Learning to Measure Sea Health Parameters (MetroSea) Conference” Proceedings [53].

2. Methodology

The principle behind all applications of SAR intensity data to shoreline extraction is based on
the active nature of the sensor: smooth surfaces reflect incident radiation mainly in the specular
direction, while rougher surfaces have a more diffuse scattering pattern. Therefore, backscattering
level is negligible on calm water bodies with respect to land areas. This suggests immediately the
use of a threshold approach to discriminate land from water within a SAR image. However, precise
shoreline extraction from SAR images is a non trivial task since several factors influence the actual
backscattering level, including surface roughness and soil moisture (for land areas), and the presence
of capillary waves (for water bodies). Moreover, SAR images are affected by speckle noise that causes
statistical fluctuations in the backscattering levels, hindering stable detection of threshold values.

Many methods have been developed to deal with the shoreline extraction from SAR data.
They generally consist of two steps: (i) despeckling; (ii) segmentation of the SAR image through
the identification of the land-sea interface.

Concerning the first step, it can be performed in different ways, i.e., through spatial or temporal
filtering operators, or by exploiting polarization diversity. Since the aim of our research has been to
design an operational EO system for the continuous monitoring of coastal areas, full polarized data
have not been considered because the Mapltaly program routinely collects only Stripmap HIMAGE
single-polarization acquisitions. The adaptive despeckling algorithm proposed by [54] has been
adopted in this study, since it has been demonstrated to provide a satisfactory trade-off between noise
reduction and edge sharpness.

The traditional techniques for land-sea image partitioning exploit edge-detection operators [55,56],
generally gradient-based, that, although effective, are not very robust, since they are not based on
explicit mathematical models of speckle noise and edge extraction. The “classic” edge-detection
algorithms are very sensitive to noise and, consequently, their effectiveness depends on the filters used
to reduce noise to acceptable levels. However, too powerful filters can blur the edges; so, in order
to obtain satisfactory results it is necessary to find a fair compromise between the noise reduction
and edge sharpness. In addition, the choice of threshold values for use in edge-detection algorithms
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represents a crucial point, due to the risk of including some spurious elements, not belonging to the
land-sea interface.

In this paper different segmentation techniques have been experimented for land-sea interface
extraction from SAR images and an innovative algorithm, based on active contour analysis, has been
tested [57]. A performance evaluation of the innovative algorithm has been carried out by comparing
the extracted shorelines to GPS shorelines measured simultaneously with the SAR acquisition.

Moreover, as part of the experimental investigation, a data processing chain, known as
COSMO-Beach [58,59], has been implemented to perform shoreline monitoring using both SAR
amplitude and interferometric coherence information [60]. The developed system exploits remote
sensed images from CSK constellation combined with detailed topographic and meteorological data
collected in situ (Figure 1). The implemented procedure consists in (i) the selection of satellite images
to be included in the processing, based on automatic checks of the marine weather conditions over the
target area, (ii) the morphological classification of the coastline, (iii) the segmentation of SAR data for
land-sea interface identification and (iv) the final tidal correction. Following these steps, a diachronic
analysis of the extracted shorelines can be achieved. Hereafter, the main processing steps are outlined.
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Figure 1. Diagram flow of the COSMO-Beach coastal monitoring system.

2.1. Marine Weather Conditions

Wind and wave conditions during the SAR acquisition greatly influence the backscattering on the
sea surface. In the presence of waves, the values of the backscattering coefficient (cp) are much higher
than under calm conditions. In particular, X-band SAR data seems to be more sensitive to the waves
compared to L-band SAR [61].

Strong wave motion can lead to erroneous definition of the coastline, which would be landward
by several pixels compared to the real position [39]. Therefore, sea conditions are an essential element
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to avoid selecting “noisy” images, whose processing could produce unreliable results and large errors
in shoreline extraction.

The exploitation of wind and wave data allows a preliminary selection of the SAR images archived
in the catalogue, and to discard a priori all the images acquired during storms or immediately following
them. Post storm images, indeed, could be useful for the quantification of damage, but they could
lead to a wrong assessment of coastal dynamics. Since wave buoys are often too sparsely distributed
along the coastal zone and very few coastal areas are provided with local wind and wave measures,
an analysis has been carried out aimed at extracting information on sea conditions directly from SAR
data amplitudes, to be exploited in the case of unavailability of in situ measurements. Wind and wave
fields can be directly inferred from SAR amplitude through a number of complex algorithms [62-64].
Actually, we are not interested in the estimation of the wave field, but rather in selecting only the SAR
images acquired under calm weather conditions. Therefore, a simplified procedure has been proposed
and implemented in the COSMO-Beach processing chain that consists in a first-order statistical analysis,
based on the computation of mean and standard deviation of backscattered amplitude data in open
sea areas located offshore the target regions.

2.2. Coastal Type Classification

A further key element of the Mapltaly program is to provide SAR images taken from slightly
different observation directions, thus allowing SAR interferometric (InNSAR) analyses, based on the
coherent nature of SAR imaging.

InSAR analysis has been applied in this study, since the estimation of the interferometric coherence
through ergodic estimators can provide an additional information layer to be used for remote
classification of the coastal morphology. This allows in turn: (i) the automatic identification of rocky
and sandy coastal areas, (ii) the adaptive and optimal configuration of the segmentation algorithm,
thus ensuring satisfactory performances regardless of the coastal type of the investigated areas.

A further preliminary step consists in the coastal type classification, which is recommended
since it can enhance the land-sea boundary extraction. The next processing step, consisting in the
segmentation of the SAR images, must be indeed properly and differently configured for sandy and
rocky segments of the coast.

The COSMO-Beach processing chain automatically detects the shoreline type, by taking into
account both amplitude and interferometric coherence information: high coherence and signal
amplitude values allow to classify image pixels as “rock” or “coastal structure”, while the pixels with
lower values are recognized as “sand”. The selected SAR dataset is first co-registered with sub-pixel
accuracy [65] and an average coherence map is hence computed from multiple interferometric pairs.
Optimal co-registration results are obtained by properly selecting a reference image named Master.
More specifically, the perpendicular baselines and dates of the available acquisitions are analyzed in
order to identify the acquisition closer to the “mass center” of the point cloud representing the various
images in the space of temporal and perpendicular baselines. This selection is performed automatically
although it can be changed by the user in those cases in which the automatic result is not adequate due
to the presence of strong artifacts (e.g., atmospheric or focusing artifacts).

Furthermore, SAR amplitude images are radiometrically calibrated and despeckled. In order to
mask out ambiguities and artifacts, apodization filters are also recommended [66].

Available ortophotos are, hence, used for the tuning of the amplitude and coherence thresholds to
be configured in the coastal classification process.

2.3. Land-Sea Interface Extraction

A radiometric approach has been used for the extraction of the shoreline: it exploits the amplitude
of SAR images by assuming that, in the absence of wave and/or wind, surface water exhibits very low
backscattering values with respect to onshore areas.
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Three different segmentation approaches have been implemented and tested on real data:
(i) edge-detection methods, (ii) region-growing algorithms, (iii) active contour analyses. The first two
approaches have been widely experimented for shoreline extraction from SAR images, with satisfactory
results. The last one, known as Local Gaussian Distribution Fitting (LGDF) [57], is an innovative
approach, originally developed for bio-medical applications, and never experimented before for the
segmentation of SAR images. The LGDF approach has been tested because SAR images have a similar
behavior as medical diagnostic images that are also affected by many noise sources and classical edge-
or region-based segmentation approaches often fail.

In order to assess the potentials of shoreline extraction algorithms based on high resolution
SAR data acquired by the CSK constellation, tests have been performed on both sandy and rocky
(or urbanized) shores. The LGDF algorithm has been proved to work well in all the examined situations
and it has been implemented in a two-step shoreline extraction process. The co-registered dataset
is initially segmented using a global thresholding algorithm [55], in order to extract a preliminary
“coarse” shoreline. The land-sea interface detection is hence refined by exploiting the “first-guess”
land-sea boundary as well as the coastal type information, that are both provided as input to the LGDF
segmentation code.

After the LGDF segmentation step, for noisy images, the end result might not be what is expected
and a refinement step must be performed. In such cases, COSMO-Beach enables the operator to
re-analyze SAR images and manually change input parameters of the segmentation algorithm. This
change can be applied globally (i.e., to the whole image) or locally, i.e., only on those stretches that
exhibit critical results, thus allowing a faster and more accurate refinement. In any case, a visual
inspection of segmentation results by a skilled operator is recommended, although time-consuming,
since land-sea interface from SAR images is not clear as shoreline from optical images. The visual
inspection and the refinement step require operator interaction, whereas all the other processes are
fully automated.

2.4. Precise Geocoding

All the shorelines generated by processing the input dataset are available in the Master SAR
geometry and are all co-registered at sub-pixel level. Additionally, the results can be projected in
geographic coordinates. Interestingly, the conversion from SAR coordinates to geographic coordinates
is performed only for the Master geometry since all the shorelines are precisely co-registered on it.
In this way, apart from reducing the computational cost of the geocoding (which is performed only
for one image), we also avoid the random perturbation of geocoding errors that would result if each
single image of the dataset was geocoded independently. The geolocation of the Master image is
performed by taking into account the atmospheric propagation delay correction which is estimated
through Numerical Weather Modeling (NWM) and is integrated into the coastal monitoring system
in order to ensure a geolocation accuracy close to or better than the spatial resolution of the SAR
images [67,68]. Finally, the extracted land-sea interface is further precisely geolocated using Ground
Control Points (GCP).

2.5. Tidal Correction

After precise geocoding, land-sea boundaries extracted from SAR images have to be corrected for
the effect of tidal levels and a datum-based shoreline can be defined. Neglecting tidal effects along
low slope sandy beaches could lead to significant errors in evolution assessment, since high and low
tide shoreline variation can be remarkable. Therefore, land-sea interface extracted from the images
needs a final refinement, considering tidal oscillations, in order to be referred at 0 m above sea level.
This refinement step requires a high resolution Digital Elevation Model (DEM) in the intertidal zone in
order to evaluate slope along shore-perpendicular transects and tide values recorded by a tidal station
in a near location. HRTI-5 is the DEM product level recommended for this correction [69].
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3. Case Studies

The proposed approach has been tested in two target areas located along the Apulian coastline
(Figure 2): the first one, Torre Canne, is located along the Adriatic coast whereas the second one,
Porto Cesareo, lies along the Ionian coast.

Google Earth

Adriatic Sea

Torre Canne
(Testsite )

Porto Cesaréo
( Test site Il)

lonian Sea
z

Figure 2. Selected test sites: Torre Canne and Porto Cesareo, both located in Southern Italy. The optical
image is from GoogleEarthTM.

Both areas show a low-slope sandy beach affected by a remarkable erosive process that has
significantly reduced the average emerged beach width. In both cases, human activities, started in
the 1960s during Italian economic development, were significantly increased in recent decades and
the increased land exploitation has brought a lack of sediment in the littoral cell, triggering a massive
erosive trend. Due to the shoreline regression phenomena and their popularity, the selected areas have
been constantly monitored for many years, so that high quality topographic and meteorological data
are available in both locations.

Since 2004 several wide coastal monitoring programmes supported by the European Union
(POR 20002006 and FESR 2007-2013 funds) have been carried out in Apulia region, allowing
to obtain a detailed picture of the coastal trends and a huge database for scientific research.
Those programmes included many actions: bathymetric, topographic and sedimentologic field
campaigns, aerial and LIDAR surveys, real-time shoreline monitoring using webcams [14,16,28,29] and
a deployment of a meteomarine network (Apulia Region Meteomarine Network, hereinafter referred
to as “SIMOP”) [70-72]. The availability of marine weather measures turns out to be extremely helpful
for accurate selection of SAR acquisitions available in the CSK archive, based on a preliminary check
on the sea weather conditions at the acquisition time. All the available field data collected in the target
sites are listed in Table 1.

The examined SAR images are all HH (horizontal transmitting, horizontal receiving) polarized
and captured by the SAR1 satellite of the CSK constellation in Stripmap HIMAGE mode (spatial
resolution: 3 x 3 m?) acquired in the framework of the Mapltaly plan. The horizontal polarization
is generally preferred to the vertical one since it ensures the largest contrast of the backscattering
coefficient between the beach and the sea of the polarization modes [61].
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Table 1. Remote sensed and field data selected for the experimental analysis over the two test sites.

Test Site I Test Site II
SAR dataset 19 CSK Stripmap HIMAGE 38 CSK Stripmap HIMAGE
DEM LIDAR DEM 2008 1 m LIDAR DEM 2008 1 m
(POR PUGLIA 2000-2006) (POR PUGLIA 2000-2006)
Aerial photos  Maritime State Office (Apulia Region) Maritime State Office (Apulia Region)
Waves RON Wave Buoy (Monopoli) SIMOP Wave Buoy (Taranto)
Tides RMN Tidal station (Bari) SIMOP Tidal station (Porto Cesareo)
GPS survey 60 GPS transects spaced 10 m 50 GPS transects spaced 10 m

A 14-km long coastal stretch has been selected as test site I, between towns of Torre Canne and
Savelletri. The nearest tide gauge is located in the harbour of Bari, belonging to the Italian National
Tide gauge Network (hereinafter referred to as “RMN”") and wave data are collected by a wave buoy
moored 15 km north of the site which is part of the Italian Data Buoy Network (hereinafter referred
to as “RON”) [73]. The H4-05 dataset of CSK acquisitions, spanning from March 2010 to May 2013,
contains images acquired at around 16:52 (UTC time), along right-descending passes (Table 2).

Table 2. COSMO-SkyMed (CSK) dataset characteristics.

CSK_H4-05_HH_RD_009 CSK_H4-01_HH_RA_009 CSK_H4-02_HH_RA_009

Instrument Mode STR_HIMAGE STR_HIMAGE STR_HIMAGE
Polarization HH HH HH
Look Side right right right
Pass Direction D A A

Track 9 209 209

Beam ID H4-05 H4-01 H4-02

Off Nadir Angle 30620 24130 24670

Satellite ID SAR1 SAR1 SAR1

The second experimental case study (Test site II) is located along a very popular beach (Bacino
Grande) in the southern part of the Porto Cesareo municipality. It is a 3000 m long sandy beach,
backed by a sub-parallel coastline dune ridge and oriented W-E. Since 2006, the area of interest has
been constantly monitored by the SIMOP network, that includes: (i) an anemometric station, (ii) a
tide gauge located a few hundred meters towards the South, and (iii) a wave buoy moored offshore
in the Gulf of Taranto, about 60 km north of Porto Cesareo. The examined SAR images are part of
two distinct CSK data takes, with an off-nadir angle of 24.13° and 24.67° (beams H4-01 and H4-02,
respectively) and along ascending orbits (Table 2). The H4-01 dataset spans the period from 2009 to
2011, whereas H4-02 dataset was acquired between 2010 and 2015.

4. Results

From the CSK catalogue, two Stripmap HIMAGE acquisitions datasets, covering the target
regions, have been selected according to the wind and wave conditions provided by the nearest
marine observing stations from SIMOP, RON and RMN. When observed data were unavailable,
that preliminary selection step has been performed exploiting ERA-Interim Re-Analysis dataset from
the European Centre for Medium-Range Weather Forecasts (ECMWEF) [74].

The first selected dataset (Test Site I) contains 19 images, spanning from 2010 to 2013, whereas the
second one (Test Site II) contains 38 CSK images acquired between 2009 and 2015. Remotely sensed
and in situ data, provided as input to the COSMO-Beach processing chain used for validating the
experimental results, are listed in Table 1.

Taking into account that, in case of calm sea conditions, the surface of the sea appears as a very
homogeneous region characterized by rather low amplitude values, mean and standard deviation
of the amplitude values have been calculated in a sub-region, located offshore the examined beach,
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and extracted from the filtered data, and their relationship with recorded wave heights has been
investigated. The calm sea is characterized, as expected, by low backscattering coefficient values,
whereas in rough sea conditions oy values grow considerably (Figure 3).

Hs [m]
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T
I

0.0 | | 1 1
-22 -20 -18 -16 -14 -12 -10

o, [dB]

Figure 3. Scatter plot showing the correlation between the mean backscattering coefficient (computed
offshore) and the significant wave height measured by a wave buoy (Test Site I).

Sea conditions can be likely distinguished using the average amplitude values: it was observed
that when the backscattering coefficient exceeded a threshold value equal to —19 dB, images could
certainly be discarded, since acquired in conditions of rough seas with significant wave heights (H;),
typically greater than 0.5 m. These results are in good agreement with results published in the recent
literature for TSX constellation, i.e., the other X-band satellite SAR mission, which confirmed that the
reflectivity of water surfaces in light wind conditions are less than —19 dB [75].

This step would allow to select part of the SAR datasets for further analysis when field data or
high resolution wave model data are not available.

After filtering out noisy images, the selected SAR images were preprocessed and precisely
geocoded thanks to the availability of high quality LIDAR surveys covering both areas of interest (AQOI).
Concerning the use of the interferometric coherence for coastal type classification, multiple acquisition
pairs have been selected, with small temporal and geometric baseline in order to minimize temporal
and spatial decorrelation noise sources. An average coherence map has been hence computed for
minimizing time-uncorrelated fluctuations, allowing shoreline classification (Figure 4).

Very good results have been achieved in coastal type discrimination (with a 90% success rate
for Test site I and close to 100% for Test site II), as proved by aerial photos provided by the Maritime
State Office of Apulia Region. The coastline classification has also been fruitfully exploited for the
application of the segmentation algorithm in the next step.

Three different segmentation algorithms have been tested on three 165 x 130 pixel matrices cut
out of the original image, each of them representing a different coastal type (rock and sand) and one
of them containing artifacts. In this step the performance of the tested segmentation algorithms has
been visually inspected, overlaying the extracted shoreline on the original SAR image. In Figure 5,
the land-sea interfaces extracted in the three sub-sites using three different segmentation approaches
are displayed with different colors (red line for thresholding and region based, green line for LGDF).
It can be seen from Figure 5 that SAR images have been correctly segmented in all the sub-sites, even on
the sandy coast, by the LGDF algorithm, which is able to extract a “visually correct” land-sea interface.
The results of all tests performed have been classified into two categories (Table 3): (i) Good if the
SAR land-sea interface has no anomalies and is close to the visual boundary, and (ii) Poor if the SAR
land-sea interface presents anomalies or significantly departs from the visual boundary. As reported in
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Table 3, LGDF has been the only method capable of providing accurate coastline for both the scenarios
and to be also robust to handle SAR intensity artefacts. Since it is an adaptive method capable of
exploiting local variability of the SAR images, it has been proven to be reliable and efficient even in
the case of SAR images with high intensity dispersion and power noise. Hence, the LGDF approach
has been clearly preferred over the other two and it has been integrated in the processing chain for
land-sea boundary extraction.

Sand
P emmmw Rock

8 Basemap Google Earth 8/5/2013

Figure 4. Coastal type classification over Test site I: rocky and sandy stretches are marked in brown
and yellow, respectively.

Thresholding algorithm Region-based algorithm

Sand

Artifacts

s LGDF e LGDF

e=== Thresholding e=== Region-based

Figure 5. Segmentation results using thresholding, region-based algorithm and LGDF in the three
examined sub-sites (rock coast, sandy coast and artifacts).
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Table 3. Performances of different segmentation algorithms on the selected test site.

Algorithm Rocky Coast Sandy Coast Artifact

Thresholding GOOD GOOD POOR
Region-based GOOD POOR GOOD
LGDF GOOD GOOD GOOD

The LGDF algorithm accuracy for land-sea interface extraction in the sandy areas have been tested
on two wide sandy beaches, because in the case of narrow beaches, where beach width is smaller
or equal to spatial resolution, the backscattering of the sand portion is indistinguishable from SAR
echo signal of structures delimiting the beach. In selected SAR images, both the sandy beaches are
represented by a good number of pixels (about 10 pixels in the widest part of the beach) even during
the winter season (Figure 6). For each test site, a SAR acquisition has been taken for the segmentation
assessment, selecting optimal weather and sea conditions (calm sea conditions and light winds) in the
off-season in order to avoid the crowded coasts.

Figure 6. Synthetic Aperture Radar (SAR) Pixels belonging to sandy beach region.

Each SAR image has been segmented using an LGDF approach in order to extract the
instantaneous shoreline. The LGDF algorithm, initialized in the first approximation by a “coarse” line,
extracted applying a global thresholding, iteratively calculates, for subsequent steps, the dry/wet
separation line using different segmentation parameters according to the coastal type. Extracted
shorelines were affected by tidal fluctuations; they have been hence corrected by taking into account
sea level values recorded by nearest tide stations and the local slopes derived from the available high
resolution DEMs, and then referred to 0 m above sea level.

During both experiments, an accuracy assessment of shorelines extracted by the COSMO-Beach
system has been performed by comparing the outcomes of the processing chain to ground truths
collected through GPS survey campaigns carried out simultaneously with the SAR acquisition.
The surveys have been conducted using two high accuracy GPS receivers (Leica GX1230) operating in
Real Time Kinematic (RTK) mode and real-time corrected through the permanent GNSS network of
the Apulia Region. Within the in situ campaigns, regularly spaced shore-perpendicular transects have
been surveyed and the 0 m contour has been extrapolated.

The comparison between the corrected SAR shorelines and the observed 0 m GPS contour
highlights a good performance in coastline detection using the proposed procedure (Figure 7a,b). For
the statistical error analysis, 50 transects in test site I and 160 transects in test site II, located at a fixed
distance of 10 m between each other, have been considered.
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Figure 7. Accuracy assessment of SAR extracted shoreline: (a) Test site I; (b) Test site II.

The overall performances of the LGDF algorithm have been estimated using a series of statistical
indicators. Mean error, standard deviation and Root Mean Square Error (RMSE) have been calculated
for the sample of distances between SAR and GPS shorelines for each transect. Results have shown an
overall mapping accuracy (RMSE) of 1.35 m for Test Site I and 2.2 m for Test Site II, i.e., lower than
image pixel resolution (Table 4).

Table 4. Shoreline accuracy assessment.

Test Site Mean (m) Standard Deviation (m) RMSE (m)

Test Site I 1.12 0.78 1.35
Test Site I 1.36 1.47 22

The algorithm performance has also been assessed using a criterion based on neighbourhood
pixels [40], estimating the pixel distance between the SAR shoreline and the GPS shoreline (Table 5)
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The accuracy analysis carried out on Test Site I shows that 87% of extracted shoreline segments lie
within 1 pixel distance from the surveyed shoreline, and, with a tolerance of 2 pixels, the accuracy rises
to 100%. Test Site II experiment, even with a greater number of transects, has achieved similar results:
85% of SAR coastline lies within 1 pixel distance from the GPS coastline, 98% of SAR coastline has a
tolerance of 2 pixels, and the accuracy rises to 100% with a tolerance of 3 pixels.

Table 5. Algorithm performance for different neighborhood sizes.

Accuracy

Test Site <1 Pixel Distance  1-2 Pixel Distance 2-3 Pixel Distance

Test Site I 87% 100% 100%
Test Site II 85% 98% 100%

It has to be highlighted that these results have been achieved by excluding, from the statistical
analysis, transects where organic deposits of Posidonia oceanica were detected during on-site
inspections. Larger errors have been detected only over those areas, since the intensity of the radar
signal backscattered by the stockpiles hinders the reliable estimation of the shoreline through any
segmentation algorithm (Figure 8). In such cases, as expected, the extracted land-sea interface lies
along the algal deposit on the shore in the zone extending seaward from the “real” shoreline.

Figure 8. Organic deposits of Posidonia oceanica along the coastline during SAR acquisition.

After the accuracy assessment of shoreline detection, the coastal evolution trend has been analyzed
in both target areas. Shorelines have been extracted from each available SAR image and have been
corrected taking into account the tidal oscillations. Shoreline movements have been measured along
user-specified orthogonal transects and rates-of-change and associated statistics have been estimated.
During the investigated time periods, both test sites were erosion-prone areas: the diachronic shoreline
analysis revealed a maximum retreat of 24 m from 2011 to 2013 in Test Site I (Figure 9a), and a shoreline
erosion up to 20 m from 2009 to 2015 in Test Site II (Figure 9b).

A comparison between SAR extracted shorelines and 2018 satellite maps (Figure 9a,b) reveals
that beach erosion in both examined areas still occurs, attesting the need for a continuous coastal
monitoring system for coastal risk assessment.
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Figure 9. Shoreline changes detected from SAR images (blue line for the oldest SAR shoreline, red line
for the most recent): (a) Test site I (Porto Cesareo); (b) Test site II (Torre Canne).

5. Discussion

A coastal monitoring system requires some key characteristics such as cost effectiveness,
high-speed data acquisition and processing and the accuracy of the collected information. Traditional
methods for coastal monitoring, generally ensuring higher accuracy than EO systems, determine
a significant financial burden due to the extension of the areas, the survey frequency and the
long-term continuity.

Since the aim of our research has been to set up an operational tool for coastal observation
ensuring high accuracy, the experimental analysis has been carried out on CSK SAR data due to their
high spatial resolution, low-cost, short revisit period and operational continuity. Moreover, the CSK
satellite constellation has been operating since 2007, providing a large archive of SAR images that
can be exploited for short and long-term analysis. The fast revisit/response time makes it possible to
employ these data even for risk situation assessment. Besides, COSMO-SkyMed Second Generation is
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planned to become operational in 20192020, thus ensuring continuity of service for many more years.
Currently, there are very few SAR satellite missions that combine all these features.

The direct comparison of accuracy results in shoreline extraction with previous studies is not
straightforward since they depend on several factors including sensor characteristics, spatial resolution,
sensor acquisition geometry, shoreline morphology, sea state, and processing methodology [76].
Moreover, it has to be underlined that in most studies the algorithm performance is estimated by
an overall eye inspection [42,43,50] or a comparison with a manually traced coastline [45,48,77].
Few studies comply with ground truth data for accuracy assessment [46,47,51,78]. Focusing attention
only on shoreline identification performance from CSK data estimated by comparing the extracted
coastline with ground truths, our experiments are consistent with previous results [47], that found
accuracies of 1 pixel for shorelines extracted by the CSK Stripmap HIMAGE data using a procedure
based on image segmentation using locally adaptive thresholding method. CSK polarimetric data
produce less accurate results in shoreline detection than those that can be achieved using CSK Stripmap
images, providing a 7 pixel accuracy [51].

Interesting results have also been reported in the recent literature with high-resolution X-band
SAR images acquired by the TSX mission. In particular, Vandebroek et al. [78] monitored a beach
renourishment in the Netherlands. Thanks to the high accuracy of the timing information and orbital
state vectors, TSX allows a sub-decimetric ranging accuracy and a high-quality geocoding [79,80], thus
potentially ensuring a very precise georeferencing of the shoreline. Nevertheless, the authors have
stated in [78] that the errors in the shoreline estimate may amount to some tens of meters, which is
well above the TSX spatial resolution (~3 m).

Although the spatial resolutions of CSK and TSX stripmap data are similar, the results detailed
in [78] are not directly comparable with the outcomes of the present study, because of the very
different settings of the selected test sites. In particular, the significant discrepancies between the
performances achieved in [78] and in the present study, respectively, can be explained in terms of
different environmental conditions, such as meteorological, tidal and topographic factors among the
areas of interest.

In particular, results reported in [78] are heavily affected by the local exposure of the test site,
a mega scale beach renourishment (known as “Sand Motor”) on the Dutch coast facing the North Sea,
and exposed to severe winds, wave and tide conditions. Instead, tidal oscillations, wind and wave
climate conditions are significantly milder in the areas selected for the present study (i.e., Torre Canne
and Porto Cesareo), thus reducing the uncertainty in the still sea level. By selecting only images
acquired in the most favorable weather conditions, wind and wave setup and also wave run-up have
been neglected in the present study.

Moreover, even by assuming a comparable uncertainty in the measurement of the water level,
the errors in the shoreline detection are expected to be significantly affected by the local slope of
the shoreline: the higher the local slope, the better the accuracy of the tidal correction. The slope
of the Dutch test site is much lower than the slope of the two Apulian coastal areas. Finally,
SAR backscattering should be further investigated both in the intertidal zone and in areas covered by
only a few centimeters of water. This further highlights the influence that environmental parameters
play in the coastline extraction.

The main limitation of the presented integrated approach is related to the nature of the radar
data. Unlike optical images, SAR images are not straightforward to be visually interpreted. As an
example, the algorithm cannot recognize objects along the coast, as in the case of Posidonia oceanica
blocks, because as external elements they could not be masked out in the segmentation process. Since
they can affect the backscattering values in SAR images, their occurrence can hinder the accurate
detection of the shoreline through SAR data segmentation analysis.

COSMO-Beach could be successfully applied to other coastal areas because it does not depend on
the location of coastal areas, but it has to be highlighted that the performance in shoreline detection
is strongly linked to the quality and quantity of available field and remotely sensed data, so the
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“one-pixel” potential accuracy can be achieved as long as all the image quality checks have been
satisfied and high accuracy in situ observed data are available.

The proposed procedure for beach monitoring could be also effectively extended to SAR data
provided by other European Space Agency missions released in the framework of the Copernicus
Earth Observation programme. Interestingly, Sentinel-1 interferometric data can reach a revisit time of
one image every six days, thus allowing a quasi real-time monitoring but their use is limited by spatial
resolution (5 x 25 m? in Interferometric Wide Swath mode). The use of these low-resolution images
would likely allow the monitoring of beaches presenting relevant shoreline evolution rates (sand spits,
river deltas) rather than beach environments having a small dynamic range.

6. Conclusions

An integrated approach of remotely sensed and in-situ data has been presented, aimed
at coastal observation on both the local and regional scale for short and long-term analysis.
A semi-automatic coastal monitoring system, known as COSMO-Beach, has been implemented to
detect and analyze the coastline from Cosmo-SkyMed Stripmap HIMAGE data exploiting a mixed
radiometric/interferometric approach. The research conducted on the COSMO-SkyMed SAR images
has shown that this data satisfactorily meets coastal monitoring requirements: (i) a large archive
of low-cost SAR images with a short revisit period and operational continuity; (ii) a segmentation
processing can be quite easily implemented with a low computational time and (iii) a good performance
in shoreline detection ensuring an accuracy lower than image pixel resolution.

The segmentation stage adopts a two-step processing procedure: a coarse shoreline, detected
using a thresholding method, feeds an Active Contour Model (LGDF) that extracts a fine resolution
land-sea interface. A good performance in shoreline detection has been achieved ensuring a high
sub-pixel. The whole processing chain is fully automated except the fine segmentation step that
requires an operator intervention in cases of anomalies in the extracted features. The integration
of remote sensed and in situ data tested in this research has proven to be effective for an accurate
estimation of the shoreline and for the study of its dynamics, allowing: (i) selection of high quality
SAR images, (ii) precise geocoding, (iii) tidal correction, and (iv) shoreline accuracy assessment.
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