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Abstract: Human driving behaviors are personalized and unique, and the automobile fingerprint
of drivers could be helpful to automatically identify different driving behaviors and further be
applied in fields such as auto-theft systems. Current research suggests that in-vehicle Controller Area
Network-BUS (CAN-BUS) data can be used as an effective representation of driving behavior for
recognizing different drivers. However, it is difficult to capture complex temporal features of driving
behaviors in traditional methods. This paper proposes an end-to-end deep learning framework by
fusing convolutional neural networks and recurrent neural networks with an attention mechanism,
which is more suitable for time series CAN-BUS sensor data. The proposed method can automatically
learn features of driving behaviors and model temporal features without professional knowledge in
features modeling. Moreover, the method can capture salient structure features of high-dimensional
sensor data and explore the correlations among multi-sensor data for rich feature representations of
driving behaviors. Experimental results show that the proposed framework performs well in the real
world driving behavior identification task, outperforming the state-of-the-art methods.
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1. Introduction

Everyone has unique driving habits such as fixed speed, acceleration and braking habits, which
could be considered as a fingerprint [1]. Thus, drivers’ characteristics under driving conditions could be
extracted through the analysis of driving behaviors. Considering different sources of data, we classify
most current driving behavior identification models into three classes, that is, visual image or
video-based, simulation data-based [2–4] and CAN-BUS(Controller Area Network-BUS)/smartphone
multi-sensors data-based [5]. Among these, the visual data can be viewed as a special case of
“multi-sensors data”, and the third one, which is more effective and favorable, is our focus in this
paper. Specifically, we neglect analyzing visual data due to the poor amount of training data.

Generally, multi-sensors data are made up of in-vehicle’s CAN data and Smartphone data.
The in-vehicle’s CAN data include the steering wheel, vehicle speed, engine speed, brake position, etc.,
while the smartphone data include speed, orientation, three-axis accelerometer, etc. Several works
proposed driver identification methods based on in-vehicle’s CAN-BUS data [1,6–8]. In [9,10], deep
sparse autoencoder (DSAE) was developed to extract hidden features for visualization of driving
behavior, which was helpful to recognize distinctive driving behavior patterns in continuous data.
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Some researchers adopted the three-axis accelerometer of an Android-based smart phone to record
and analyze various driver behaviors, external road conditions [11], the degree of aggressiveness of
each driver [12], and accident detection [13]. From the above works, it was concluded that driving
pattern analysis is an efficient method for driver identification.

With the rapid development of Internet of Vehicles (IoV) technology and the popularization of
smart terminal devices like car onboard diagnostic (OBD) devices, multi-dimensional CAN-BUS data
can be easily captured for driving behavior recognition and vehicle owner identification. Driving
behavior identification is essentially a classification task based on in-vehicle’s CAN-BUS data. It is
important to choose key features from these driving data, and find the combination of features.
For instance, driver A likes to accelerate quickly at startup while driver B is used to driving at a
slow speed. However, previous works developed complex feature selection techniques to improve
the performance of driving behavior identification. Among them, there exist several difficulties in
manual feature combination. The first one is feature explosion difficulty, which is hard for experts
to explore exhaustively, especially when the number of raw features is huge. The second one is that
features are difficult to design, where part of the available training data has been desensitized due to
individual privacy protection, leading to impossibility in simply performing feature engineering based
on common sense. Third, combined features are difficult to identify and recognize, since generally
most feature interactions are hidden behind numerous data and difficult to mine, which can only be
captured automatically by machine learning. Fourth, the temporal dynamics of feature activations is
difficult to model explicitly. Moreover, the issue of how to effectively train the model is also a challenge,
since CAN-BUS data sometimes are massive and high-dimensional, therefore large feature space will
lead to a growth of parameter number, increasing the complexity of model training.

Generally, the activity recognition or identification of drivers relies on the combinations of
different CAN-BUS sensor data. However, traditional feature extraction methods for driving behavior
identification adopt sliding window for static and periodic activities modeling [14]. In driving behavior
identification, complex high level behaviors (e.g., trip-long, day-long or more) are usually scaled up
since engineering features are not related to “units of driving behaviors” but to the results of complex
sequences of motor movements. However, in CAN-BUS data, multiple sensors yield multivariate
time series, for instance, a single 3-axis accelerometer produces a 3-dimensional time series. Thus,
it is desirable to consider the spatial dependency among multiple sensors or across the axes of
accelerometers and gyroscopes, as well as the dependency along the temporal dimension.

In this paper, we propose a deep learning framework by fusing deep convolutional and recurrent
neural network, denoted as attention-based DeepConvGRU and DeepConvLSTM respectively,
for driving behavior identification. The outline of our approach is illustrated in Figure 1. First,
in-vehicle CAN-BUS sensor data are collected for each driver to characterize the drivers’ driving
behaviors. Second, the time series CAN-BUS data are split into fragments by normalization and sliding
window. Finally, the annotated data are fed into our proposed deep learning framework for driver
behavior identification.

The main contributions are summarized as follows:
Our framework can perform automatic activity recognition on real-time multi-dimensional

in-vehicle CAN-BUS sensor data, capturing local dependency among the data in temporal dimension
as well as across spatial locations.

By introducing the attention mechanism, our model can capture salient structures of
high-dimensional sensor data and explore the correlations among multi-channel sensor data for
rich feature representations, improving the learning performance of the model.

Our framework can perform end-to-end training without any feature selection and work directly
on the raw sensor data with simple pre-processing, making it universally applicable.
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2. Materials and Methods 

2.1. Related Works 

Many state-of-the-art models were used in modeling individual driving behaviors, such as 
Gaussian Mixture Model (GMM) [2,6,15,16], Hidden Markov Model (HMM) [4,6,17], K-means [8], 
Support Vector Machine (SVM), Random Forest, Naive Bayes (NB), K-Nearest Neighbor (KNN) [1,8], 
Multilayer Perceptron (MLP), Fuzzy-Neural-Network (FNN), statistical method [3], Decision Tree 
(DT) and Symbolic Aggregate Approximation (SAX). However, most of them had various 
shortcomings. HMM was limited to contextual information representation, based on the hypothesis 
that the output observations were strictly independent and the current state was only related to the 
previous state (first-order Markov model). In addition, KNN was affected by unbalanced training 
data, which resulted in higher time complexity when calculating the distance from the unknown 
sample to all known samples. Moreover, the model of NB was based on the hypothesis that sample 
attributes were independent from each other. Therefore, NB might yield a lower classification 
performance when the number of sample attributes or the correlation between attributes became 
larger, which required enough samples to calculate the overall distribution of each class and the 
probability distribution of each sample. For the DT model, it had to scan and sort the data set 
repeatedly during model construction, which would increase the complexity and reduce the 
classification accuracy. 

Deep learning has a great advantage in feature learning. For example, Convolutional Neural 
Network (CNN) [18] is mainly used for data with dense feature learning such as images and speech, 
while RNN and Long Short-Term Memory (LSTM) are popular choices in text homogenization and 
serialization of high-dimensional sparse features [19]. Driving behavior recognition involves 
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2. Materials and Methods

2.1. Related Works

Many state-of-the-art models were used in modeling individual driving behaviors, such as
Gaussian Mixture Model (GMM) [2,6,15,16], Hidden Markov Model (HMM) [4,6,17], K-means [8],
Support Vector Machine (SVM), Random Forest, Naive Bayes (NB), K-Nearest Neighbor (KNN) [1,8],
Multilayer Perceptron (MLP), Fuzzy-Neural-Network (FNN), statistical method [3], Decision Tree (DT)
and Symbolic Aggregate Approximation (SAX). However, most of them had various shortcomings.
HMM was limited to contextual information representation, based on the hypothesis that the output
observations were strictly independent and the current state was only related to the previous state
(first-order Markov model). In addition, KNN was affected by unbalanced training data, which
resulted in higher time complexity when calculating the distance from the unknown sample to all
known samples. Moreover, the model of NB was based on the hypothesis that sample attributes were
independent from each other. Therefore, NB might yield a lower classification performance when
the number of sample attributes or the correlation between attributes became larger, which required
enough samples to calculate the overall distribution of each class and the probability distribution
of each sample. For the DT model, it had to scan and sort the data set repeatedly during model
construction, which would increase the complexity and reduce the classification accuracy.

Deep learning has a great advantage in feature learning. For example, Convolutional Neural
Network (CNN) [18] is mainly used for data with dense feature learning such as images and speech,
while RNN and Long Short-Term Memory (LSTM) are popular choices in text homogenization and
serialization of high-dimensional sparse features [19]. Driving behavior recognition involves classifying
time series data captured from inertial sensors such as 3-axis accelerometers or gyroscopes. Recently,
CNN has established itself as a powerful technique for activity recognition, where convolution and
pooling operations were applied along the temporal dimension of sensor signals [20]. Furthermore,
in most of the state-of-the-art works on CNN for activity recognition, 1D/2D convolution was
employed in individual time series to capture local dependency along the temporal dimension of
sensor signals [21,22]. The combination of CNN and LSTM had already offered state-of-the-art results
in speech recognition, wearable activity recognition, online defect recognition of CO2 welding, etc.,
where modeling temporal information was required [14,23–26]. This kind of architecture was able to
capture time dependencies on features extracted by convolution operations. In this work, we focused
on extracting key features using an end-to-end deep learning approach without the requirement of
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feature selection. In addition, features characterizing both driving behaviors and automotive running
were used to represent a driver’s personality.

2.2. Problem Formulation

2.2.1. In-Vehicle CAN-BUS Sensor Data Preparation and Analysis

Our models are evaluated on Ocslab driving dataset [27,28]. The dataset is used for the AI/ML
based driver classification challenge track in the 2018 Information Security R&D dataset challenge held
in South Korea [29]. The dataset holds a total of 94,401 records, which are created from an experiment
where ten drivers labeled from “A” to “J” completed two round trips in a similar time zone from 8 p.m.
to 11 p.m. on weekdays. The On Board Diagnostics 2 (OBD-II) and CarbigsPare are used as OBD-II
scanner for data collection at 1 Hz sampling rate.

Originally, there are 51-Dimensional (51D) features in the dataset and the data structure of Ocslab
driving dataset is depicted in Figure 2.
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Figure 2. The data structure of Ocslab driving dataset.

Some features are visualized in driver’s driving pattern. Figure 3 shows the difference of
revolutions per minute (RPM) when drivers B and C drove the car in the experiment.
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2.2.2. Data Processing

This work used all 51 original features in the dataset without complex feature selection. Before
feeding to our classification model, the data was normalized and processed using sliding window
technique. The input data is defined as χ ∈ RNχ×Mχ . The data at time step t is defined as:

χt =
(

χ1
t , χ2

t , . . . , χNx−1
t , χNx

t

)T
(1)



Sensors 2019, 19, 1356 5 of 17

where Nχ denotes the dimensionality of χt, and Mχ represents the amount of dataset χ, that is, the
total number of χ in all time steps.

Since the scales of features in the dataset are different, they are needed to be normalized in a
classification algorithm. Specifically, the normalization process for unifying data scales is defined as:

χn
t =

(χn
t −mean(χn))

std(χn)

χt =
(

χ1
t , χ2

t , . . . , χNx−1
t , χNx

t

)T (2)

where mean(χn) and std(χn) represent the mean and standard deviation of the nth dimension of
dataset χ, respectively.

Driving behavior is a continuous process, so sliding window technique is adopted to divide the
entire data set into multiple discrete data segments by time period. In order to extract contextual
features and ensure the continuity of data segments, presuming Tx is window size, data segments
are extracted by the sliding window method with overlapping window. For the dataset with Nχ

dimensions, the windowed sample xi holds Dx = Tx × Nx dimensions, which are generated by

xi =
(

χt−Tχ+1, χt−Tχ+2, . . . , χt

)T
∈ RNx , (t = Tχ, Tχ + ∆t, Tχ+2∆t, . . .) (3)

As shown in Figure 4, the windowing dataset X ∈ RNx×Mx is generated when xi moves at the
time axis by the time step ∆t, where Nx = Nχ and Mx is the amount of the windowing dataset X.
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Figure 4. Overlapping sliding window method. Four windows (w1, w2, w3, w4) were obtained from
the 300 samples when setting the window size Tx to 120 samples and time step ∆t to 60 samples.

2.3. Our Proposed Framework

2.3.1. Main Procedure of Our Proposed Architecture

Compared to the structure of DeepConvLSTM proposed in [14,23–26], we introduce an attention
mechanism in [30], and redesign the convolutional and recurrent layer referring to [31,32]. As shown
in Figure 5, the proposed model for driving behavior identification using in-vehicle CAN-BUS sensor
data consists of an input layer, middle layers and a classifier layer. Dx is the dimension of input data
sample in input layer and Ny is the output categories in output layer.

The middle layers consist of convolutional layers, pooling layers, recurrent layers and a fully
connected layer.

Figure 5 shows the flowchart of our model. First, a window series extracted from the CAN-BUS
sensor data is passed into convolutional layers. Next, attention-based recurrent layers are used for
time series feature extraction, whose inputs are the feature maps of the last convolutional layer. Lastly,
the output layer, followed by the recurrent layers, is used to yield class probability distribution for
driving behavior identification.
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2.3.2. Convolutional and Pooling Layers for Feature Extraction

Our model contains depth-wise separable convolutional layers [33] and a pooling layer in the
beginning, which take convolutional operations on the input time series data. Each group of outputs
of a convolutional layer is called feature map, which are regarded as features extracted from input
signals. It is supposed that the number of feature map from the (l − 1)th convolutional layer is nl−1,
and the size of each feature map is ml−1 = wl−1 × hl−1. The total number of neurons in the l − 1th

layer is nl−1 ×ml−1. The kth feature map output from the lth convolutional layer is:

X(l,k) = σ

(
nl−1

∑
p=1

W(l,k,p) ⊗ X(l−1,p) + b(l,k)
)

(4)

where σ is the ReLU activation function, W(l,k,p) ∈ Ru×v, which is the 2D filter mapping from
the pth feature map of the l − 1th layer to the kth feature map of the lth layer. In addition,
X(l,k) ∈ Rwl×hl , wl = wl−1 − w f + 1, hl = hl−1 − h f + 1, where w f and h f are the width and height of
the filter, respectively.

Generally, the convolutional layers are followed by pooling operations, which could greatly
reduce the dimension of feature maps and avoid over-fitting. The output of the pooling layer is
as follow:

X(l+1) = down
(

X(l)
)

(5)

where down(Xl) is down-sampling function for the lth convolutional layer X(l), which generally takes
the maximum (Maximum Pooling) or average (Average Pooling) of all neurons in pooling region.

From equation (4) and equation (5), we can see that the first convolutional layer operates
sensor data with Dx dimensions into c f1 × m f1 feature maps by applying 2D filters with shape[

h f1 , w f1 , c f1 , m f1

]
, where h f1 , w f1 , c f1 , m f1 are respectively the filter height, filter width, input channel

and channel multiplier of the 1st convolutional layer. The following pooling layer uses a kernel with
shape

[
1, hk1 , wk1 , 1

]
to down-sample feature maps, where hk1 , wk1 are respectively the 1st pooling layer

kernel height and width.
The window inputs are split into Nx instances in time dimension. This Nx instances data is then

fed into recurrent layers, in which each layer owns Nh hidden nodes.

2.3.3. Attention Based Recurrent Layer

There are two extended Recurrent Neural Network (RNN): Long Short-Term Memory (LSTM) [34]
and Gated Recurrent Unit (GRU) [35]. They all use purpose-built memory cells to store information,
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which is helpful to find and exploit long range dependencies in time series data and thus can be
further leading to more efficient driving pattern recognition. Thus, LSTM and GRU are adopted
as the recurrent components that make use of the concept of gating, a mechanism based on the
component-wise multiplication of inputs, which defines the behavior of each individual memory cell
and decides whether to retain the state of the last moment or not, as well as to receive external inputs
at this moment. LSTM is done with forget gates and input gates while GRU adopts update gates.

Time series sensor data contains more complex temporal information. Not all feature maps
have the equal contribution in the identification of driving behaviors. With an attention mechanism,
encoding the full input sequences into a fixed-length vector is no longer required. Thus the attention
mechanism (see Figure 6) introduced by [30] is extended to capture salient structures of data, extracting
more valuable feature maps than others for classification. The attention unit can also be viewed
as a weighted average of output over time, where the weights could be learned automatically
through context.
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As depicted in Figure 6a, the attention unit takes input vector
{

h1, . . . , hNh
}

, which is the hidden
state of the recurrent layer, and outputs a contextual attention-based vector v, which is a weighted
arithmetic mean of the input vector where the weights are learned based on the importance of each
element of the vector. As depicted in Figure 6b, the output of the attention model vt, which remains the
importance of the representation of feature maps, is used as the input vector for the following classifier.

For each segment feature xi at tth time step, the context information is calculated by:
si

t = Wstanh
(
Whhi

t + bs
)

αi
t =

exp(si
t)

Nx
∑

i=1
exp(si

t)
,

Nx
∑

i=1
αi

t = 1 (6)

where Ws, Wh and bs are parameters to be learned, αi
t is the attention weight at tth time step describing

the importance of the input vector. Given the current hidden state ht of the decoder, it returns
un-normalized score si

t. Once the scores St for all the nodes
{

h1, . . . , hNh
}

are computed, the RNN is
able to obtain αi

t at tth time step. The contextual attention-based output is:

vt =
Nh

∑
i=1

αi
th

i
t (7)

where vt represents context vector which is a dynamic representation of the feature map at tth time step.
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Next, vt is augmented to the basic LSTM and the basis formulation of LSTM [34] is below:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)

ht = ottanh(ct)

vt = ∑ αtht

(8)

where σ is logistic sigmoid function, and i, f , o and c are respectively the input gate, forget gate, output
gate, and cell input activation vectors, which are the same size as the hidden vector h and could be
updated at every time step t. Whi is the weight matrix of hidden-input gate and Wxo is the matrix of
input–output gate.

Similarly, vt is added into GRU referred to [35] and the outputs are calculated by:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wtxt + Utht−1 + br)

ht = tanh(Wxt + U(rt ◦ ht−1))

ht = (1− zt) ◦ ht−1 + zt ◦ ht

vt = ∑ αtht

(9)

where ◦ is an element-wise multiplication, zt, rt, ht and ht are the update gate, reset gate, candidate
activation and output activation, respectively.

2.3.4. Classifier Layer for Driving Behavior Identification

Then the output of recurrent layer Xr =
{

x1, . . . , xNh
}

is fed into a classifier layer to generate the
prediction ŷ. In the classifier layer, a learnable matrix Wo with a bias term bo are used to decode Xr

into ŷ, such that ŷ = WoXr + bo. Therefore, the classifier layer is a fully connected layer with sharing
parameter Wo and bo.

2.4. Model Training

(A) Learning:

Since our model is a multi-class classification model, the most commonly used objective function
is cross-entropy cost function, which is similar to the K-L divergence between two distributions:

J(w) = −
m

∑
i=1

(
y(i) log

(
ŷ
(

x(i)
))

+
(

1− y(i)
)

log
(

1− ŷ
(

x(i)
)))

(10)

where
(

x(i), y(i)
)

represents the input sample with label i, and ŷ
(

x(i)
)

is the prediction of the

instance x(i).

(B) Overfitting:

An overfitting model performs poorly since it overreacts to the given training data. Therefore,
dropout is adopted to DeepConvLSTM/DeepConvGRU framework.

2.5. Model Evaluation

In order to compare our models with the state-of-the-art methods, three evaluation metrics are
selected to evaluate our experiments: Accuracy, AUC [36] and weighted F1 score. Previous related
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work used the weighted F1 score as the primary performance metric [14]. The weighted F1 score is
defined as:

F1 = ∑
i

2 ∗ωi
precisionirecalli

precisioni + recalli
(11)

where i is class index and ωi = ni/N is the proportion of samples of the class i, with ni being the
number of samples of the ith class and N being the total number of samples.

3. Results

Our model is evaluated and compared with other two methods, which are variants of our
model created by removing the attention units from our model. It is also compared with some other
state-of-the-art models [27], which are described below:

DeepConvGRU–Attention: This model has two depth wise separable convolutional layers and a
pooling layer in CNN module, followed by stacked GRU with two attention-based layers.

DeepConvLSTM–Attention: Compared to DeepConvGRU–Attention, this model replaces GRU
with LSTM in the recurrent layers.

DeepConvGRU: This model is similar to DeepConvGRU–Attention without attention units in
model training.

DeepConvLSTM: Similarly, this model removes attention units from DeepConvLSTM–Attention.
CNN: This model owns two depth wise separable convolutional layers and a pooling layer with

a softmax classifier in the output. The baseline algorithm is used to verify the effectiveness of the
recurrent layers in finding and exploiting long range dependencies in time series data, which is suitable
for driving pattern recognition.

LSTM: This model has two stacked LSTM layers, referred to in [37,38].
DNN: This model has two stacked hidden layers, referred to in [38].
Our model used all original 51D features to identify driving behaviors. To show the power of our

end-to-end framework, feature selection referred to in [27] was implemented, selecting 15-Dimensional
(15D) features from the original 51D features and deriving three statistical features for original features.
In total, statistical 45-Dimensional (45D) features were obtained. Table 1 shows the selected original
features and statistical features. We chose the KNN, Decision Tree and Random Forest algorithms as
the baselines [27,38] as they have been proven to yield good performance.

Table 1. Selected original features and statistical features.

Selected 15D Features Statistical 45D Features

‘Long term fuel trim bank’, ’Intake air pressure’, ‘Accelerator pedal
value’, ‘Fuel consumption’, ‘Friction torque’, ‘Maximum indicated
engine torque’, ‘Engine torque’, ‘Calculated load value’, ‘Activation of
air compressor’, ‘Engine coolant temperature’, ‘Transmission oil
temperature’, ‘Wheel velocity front left-hand’, ‘Wheel velocity front
right-hand’, ‘Wheel velocity rear left-hand’, ‘Torque converter speed’

Mean
Median

Standard deviation

The Ocslab driving dataset was split into a training set and a test set with a ratio of 7:3 for
validating the model performance. To achieve the best performance for each model in the dataset,
the parameters of models were fully tuned. The hyper-parameters of compared deep models are
listed in Table 2, which shows the structure of layers, window size, dropout, activation function
and optimizer.

The window size Tx and ∆t were set referred to [39]. As shown in Table 3, for different models,
different features were chosen to get the best performance.
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Table 2. Hyper-parameters of models on Ocslab driving dataset.

Model Layers (l) 1 Dropout Activation
Function Optimizer

DeepConvGRU–Attention (1 × 60) − 1 × 20 − 1 × 6 − 128 − 128 − 10 0.5 ReLU Adam
DeepConvLSTM–Attention (1 × 60) − 1 × 20 − 1 × 6 − 128 − 128 − 10 0.5 ReLU Adam

DeepConvGRU (1 × 60) − 1 × 20 − 1 × 6 − 128 − 128 0.5 ReLU Adam
DeepConvLSTM (1 × 60) − 1 × 20 − 1 × 6 − 128 − 128 0.5 ReLU Adam

CNN (1 × 60) − 1 × 20 − 1 × 6 0.5 ReLU Adam
LSTM 128 − 128 0.5 ReLU Adam
DNN 1000 − 1000 0.5 ReLU Adam

1 ‘(1*60)’ represents the kernel size of input-to-state convolutional layer. ‘1*20’ and ‘1*6’ represent the corresponding
kernel sizes of state-to-state convolutional layer and pooling layer. ‘128’ refers to the number of hidden states in the
recurrent layers while ‘10’ represents the size of attention vector. ‘1000’ refers to the number of hidden states in the
hidden layers of DNN.

Table 3. Hyper-parameters of models on Ocslab driving dataset.

Model Window Size (Tx) Time Step (∆t) Selected Features

DeepConvGRU-Attention 90/60/60 45/10/6 original 51D features
DeepConvLSTM-Attention 90/60/60 45/10/6 original 51D features

DeepConvGRU 90/60/60 45/10/6 original 51D features
DeepConvLSTM 90/60/60 45/10/6 original 51D features

CNN 90/60/60 45/10/6 original 51D features
LSTM-51 90/60/60 45/10/6 original 51D features
LSTM-15 90/60/60 45/10/6 selected 15D features
DNN-51 90/60/60 45/10/6 original 51D features
DNN-15 90/60/60 45/10/6 selected 15D features
DNN-45 90/60/60 45/10/6 statistical 45D features

KNN 90/60/60 45/10/6 statistical 45D features
Decision Tree 90/60/60 45/10/6 statistical 45D features

Random Forest 90/60/60 45/10/6 statistical 45D features

In training stage, the effects of the attention and RNN units were investigated in terms of model
learning efficiency and generalization ability under Adam optimizer. The 5-fold cross-validation was
used to make sure the proposed model was generalized over the dataset, in which the total data
samples were divided into five parts, where four of them were used for the training model and the
remaining one was employed for validation. Figures 7–12 illustrate the evaluations of the first fold
training and the verification stage with respect to accuracy.
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ability of RNN cells to capture temporal dynamics within the data sequences. However, the baseline 
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gained similar good performance to LSTM and DNN using artificially designed features. The baseline 
DNN using statistical 45D features yielded poor learning efficiency and generalization ability when 
setting xT  to 60 samples and tΔ  to 10 samples. Furthermore, the baseline DNN using selected 15D 
features could not be converged in all cases. 

To fully show the performance comparison of the models, F1 scores of the models were explored 
except for the models that could not be converged. The results are shown in Table 4. 

Table 4. Driving behavior identification for different methods when setting xT to 60 samples and tΔ  
to 10 samples. 

Model 
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Figure 11. Performance comparison of different models in accuracy using original 51D features when
setting Tx to 60 samples and ∆t to 10 samples. (a) Performance comparison in the training stage.
(b) Performance comparison in the validation stage. Here, the attention-based DeepConvGRU and
DeepConvLSTM performed better than DNN using statistical 45D features.
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DeepConvLSTM also yielded good performance.

The legends of Figures 7–9 are identical. From Figure 7a, LSTM and DNN could not be converged
if using all the original features without performing any feature selection. Other models could
automatically select features because of the convolutional layers. From Figure 7b, DeepConvGRU
and DeepConvLSTM gained better generalization ability, capturing local dependency among the
temporal dimension compared with CNN. DeepConvGRU yielded faster learning efficiency than
DeepConvLSTM because GRU has less parameters and therefore was easier to be converged.
In Figures 8 and 9, it can be seen that the attention based DeepConvGRU and DeepConvLSTM also
performed the best compared with other models. The attention mechanism made the model easier to
be converged.

From the results in Figures 7–9, we can see that the attention based DeepConvGRU/
DeepConvLSTM consistently outperformed the baselines. It can be noticed that DeepConvGRU
made a striking performance improvement. This may be because that LSTM has more parameters
than GRU, which makes it more difficult to be converged on a small dataset. The fact that
DeepConvGRU/DeepConvLSTM obtained better performance than CNN may be due to the ability of
RNN cells to capture temporal dynamics within the data sequences. However, the baseline CNN was
only capable of modelling time sequences up to the length of the kernels. Moreover, LSTM and DNN
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could not be converged if using all original features. So LSTM and DNN with selected 15D features
and statistical 45D features were investigated and compared with other models in Figures 10–12.

The legends of Figures 10–12 are identical. From Figures 10–12, it can be seen that the attention
based DeepConvGRU and DeepConvLSTM using original 51D features without any feature selection
gained similar good performance to LSTM and DNN using artificially designed features. The baseline
DNN using statistical 45D features yielded poor learning efficiency and generalization ability when
setting Tx to 60 samples and ∆t to 10 samples. Furthermore, the baseline DNN using selected 15D
features could not be converged in all cases.

To fully show the performance comparison of the models, F1 scores of the models were explored
except for the models that could not be converged. The results are shown in Table 4.

Table 4. Driving behavior identification for different methods when setting Tx to 60 samples and ∆t to
10 samples.

Model

Tx = 60, ∆t = 10

Accuracy AUC F1 Score

Mean Std Mean Std Mean Std

KNN 0.812 0 0.8986 0 0.8157 0
DecisionTree 0.7432 0.0966 0.8638 0.0502 0.7402 0.1002

RandomForest 0.7049 0.0589 0.8541 0.0275 0.7565 0.0485
DeepConvGRU-Attention 0.9701 0.0052 0.9959 0.0007 0.9702 0.0052
DeepConvLSTM-Attention 0.9524 0.0138 0.9946 0.0015 0.9526 0.0137

DeepConvGRU 0.9565 0.0091 0.9959 0.0011 0.9563 0.0093
DeepConvLSTM 0.905 0.0062 0.9887 0.0008 0.9047 0.0064

CNN 0.9081 0.0096 0.993 0.0013 0.908 0.0096
LSTM-15 0.9774 0.012 0.9982 0.0008 0.9771 0.0124
DNN-45 0.9188 0.0301 0.9731 0.0164 0.9145 0.0337

Tables 4 and 5 illustrates the performance comparison of the proposed four variants of our
framework compared with traditional models including CNN, LSTM, KNN, Decision Tree and Random
Forest under different Tx and ∆t. Experimental results showed that our framework outperformed
traditional methods without any feature selection. Without feature selection, our framework also
performed better than DNN and gained similar good performance to LSTM using artificially designed
features. Moreover, the attention-based DeepConvGRU and DeepConvLSTM–Attention yielded better
improvements than DeepConvGRU and DeepConvLSTM, respectively. In conclusion, the attention
mechanism effectively helps to learn more discriminative features in time series data.

Table 5. Driving behavior identification for different methods when setting Tx to 60 samples and ∆t to
6 samples.

Model

Tx = 60, ∆t = 6

Accuracy AUC F1 Score

Mean Std Mean Std Mean Std

KNN 0.9033 0 0.947 0 0.9045 0
DecisionTree 0.8543 0.0062 0.9213 0.004 0.8537 0.0069

RandomForest 0.8739 0.0044 0.9359 0.0025 0.8934 0.0034
DeepConvGRU-Attention 0.9836 0.0015 0.9978 0.001 0.9836 0.0015
DeepConvLSTM-Attention 0.9786 0.0068 0.9978 0.0006 0.9787 0.0068

DeepConvGRU 0.9772 0.0062 0.9968 0.0008 0.9772 0.0062
DeepConvLSTM 0.9519 0.0186 0.9944 0.0013 0.9497 0.019

CNN 0.9568 0.0072 0.9984 0.0002 0.9567 0.0073
LSTM-15 0.993 0.0015 0.9996 0.0001 0.9929 0.0015
DNN-45 0.9395 0.0358 0.9682 0.0281 0.9315 0.0493
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4. Discussion

From the performance comparison of our attention based DeepConvGRU/DeepConvLSTM with
the baseline models without RNN unit and attention unit in the dense layer, several main findings
were obtained.

First, DeepConvGRU/DeepConvLSTM reaches a higher F1 score. It is significantly more
suitable for identifying disambiguate closely-related activities, which tend to differ with ordering
time series data, and it is applicable for the activities that are longer than the observation window.
The experimental results show that our framework can capture local dependency among the temporal
dimension as well as across spatial locations.

Second, the attention mechanism makes DeepConvGRU/DeepConvLSTM gaining better
generalization ability, which could automatically learn the weights of features and extract important
features for the driving behavior identification.

Third, our framework outperforms traditional methods without any feature selection.
Since CAN-BUS data sometimes are massive and high-dimensional, our framework is very
advantageous in the case of difficult feature selection.

Furthermore, since the driving activity duration is longer than the sliding window size,
experimental results showed that the model can nevertheless obtain a good performance. This might
be because long driving activities are made of several short characteristic patterns, allowing the model
to spot and classify the driving activity even without a complete view of the activity.

5. Conclusions

This paper presented a deep learning framework based on the combination of CNN and
GRU/LSTM recurrent network to identify driving behaviors using in-vehicle CAN-BUS sensor data.
In the framework, the GRU/LSTM cells were integrated into CNN to distinguish activities from
similar driving behaviors. The attention based DeepConvGRU/DeepConvLSTM took advantage of
learning temporal dynamics. Experimental results showed that our proposed method outperformed
the traditional methods on the Ocslab driving dataset.

From the experimental results, it was also obvious that the proposed framework is able to
learn features from original signals and fuse the learned features without any specific preprocessing.
Surprisingly but reasonably, the attention-based DeepConvGRU achieved competitive F1 scores (0.984
and 0.970 respectively) while directly using 51-channel original sensor data. This provided a path to
address a similar issue that sensor data from different sources must be automatically processed.

In the future, further researches can be conducted in the following aspects:
First, a multi-scale approach should be developed to achieve accurate activity recognition on

in-vehicle CAN-BUS sensor data.
Second, due to the individual privacy protection of some driving datasets, most datasets do

not disclose the complete time series data of driving behaviors from different drivers. Therefore,
our framework can only be verified on a public driving behavior dataset. In the future, we need to
investigate our model on more practical large-scale Naturalistic Driving Studies (NDS) datasets, such
as 100-CAR [40], SHRP2 NDS [41,42], etc.
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