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Abstract: The instability of the principal distance of the nighttime light remote-sensing camera of
the Luojia 1-01 satellite directly affects the geometric accuracy of images, consequently affecting the
results of analysis of nighttime light remote-sensing data. Based on the theory of optical passive
athermal design, a mathematical model of optical-passive athermal design for principal distance
stabilization is established. Positive and negative lenses of different materials and the mechanical
structures of different materials are matched to optimize the optical system. According to the index
requirements of the Luojia 1-01 camera, an image-telecentric optical system was designed under
the guidance of the established mathematical model. In the temperature range of −20 ◦C to +60 ◦C,
the principal distance of the system changes from −0.01 µm to +0.28 µm. After on-orbit testing, the
geometric accuracy of the designed nighttime light remote-sensing camera is better than 0.20 pixels
and less than index requirement of 0.3 pixels, which indicating that the principal distance maintains
good stability on-orbit and meets the application requirements of nighttime light remote sensing.

Keywords: Luojia 1-01; nighttime light remote-sensing camera; principal distance; optical-passive
athermal design; thermal stability

1. Introduction

Nighttime light remote sensing generally refers to the process of acquiring visible-light sources
such as land and water by remote sensors under cloudless conditions at night [1]. The main
payload of the Luojia 1-01 satellite, successfully launched by Wuhan University is, as shown
in Figure 1, a remote-sensing camera with nighttime light imaging ability [2,3]. It obtains the
ground nighttime light through the camera system, and uses them for corresponding analysis [4–6].
The applications of nighttime light remote sensing mainly include: military target detection,
urbanization-process analysis, light-pollution analysis, marine-fishery monitoring, battlefield-situation
assessment, and natural-disaster monitoring [7,8].
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Figure 1. Luojia 1-01 satellite. 

The image registration of the Luojia 1-01 nighttime light remote-sensing camera needs to be 
performed at different times. The image-registration accuracy directly affects the accuracy of the 
analysis results [3–6]. Since nighttime light is a point target and sparsely distributed, it is difficult to 
improve the registration accuracy through geometric calibration using the natural objects of extended 
targets, as is done with daytime-imaging remote sensors [9]. Therefore, the stability of the optical 
system’s principal distance is very important; otherwise, the instability of the principal distance will 
affect the accurate positioning of the light in the image coordinates [10–12]. However, the working 
environment of the nighttime light remote-sensing camera is extremely harsh, and temperature 
change is very significant, causing changes to the principal distance of the camera. Due to the limited 
resources of micro/nano satellites, it is difficult to achieve precise temperature control. Compared 
with large satellites, the camera will withstand larger temperature fluctuations. Therefore, it is 
necessary to research the thermal stability of the principal distance [10]. Previously, many researchers 
have studied the thermal stability of space cameras, but they have all used electronic-active, 
mechanical-passive, or optical-passive athermal design to optimize the imaging quality, rather than 
using principal distance as a measurement index [13–18]. 

Aiming at stabilizing the principal distance and imaging quality of the nighttime light remote-
sensing camera, an optical-passive-athermal-design mathematical model with a stable principal 
distance was established. Under the guidance of the established mathematical model, an optical 
system with stable principal distance was designed by selecting positive and negative lenses of 
different materials and the mechanical structure of different materials to optimize the optical system. 
After on-orbit testing, the geometric accuracy of the Luojia 1-01 camera is better than 0.20 pixels, and 
the optical system had higher resolution and excellent imaging quality, meeting the expected design 
requirements. 

2. Materials and Methods 

2.1. The Relationship Between Principal Distance and Image Point 

When the structural parameters of an optical system vary with temperature, the internal-
orientation elements of the system will be changed [19–21]. These elements mainly include the 
principal point, principal distance, and distortion. The principal point and distortion can be obtained 
by ground calibration, to which the position offset of the imaging point can be neglected when the 
temperature changes. However, the stability of the optical system’s principal distance is the most 
important factor affecting imaging-point-position offset of the nighttime light remote-sensing 
camera. Therefore, it is very important to analyze the influence of changes in the principal distance 
of the optical system upon the position offset of the imaging point. 

The relationship between the position offset of the imaging point and the variation of the 
principal distance of the optical system is given by Equation (1): 
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The image registration of the Luojia 1-01 nighttime light remote-sensing camera needs to be
performed at different times. The image-registration accuracy directly affects the accuracy of the
analysis results [3–6]. Since nighttime light is a point target and sparsely distributed, it is difficult to
improve the registration accuracy through geometric calibration using the natural objects of extended
targets, as is done with daytime-imaging remote sensors [9]. Therefore, the stability of the optical
system’s principal distance is very important; otherwise, the instability of the principal distance will
affect the accurate positioning of the light in the image coordinates [10–12]. However, the working
environment of the nighttime light remote-sensing camera is extremely harsh, and temperature change
is very significant, causing changes to the principal distance of the camera. Due to the limited resources
of micro/nano satellites, it is difficult to achieve precise temperature control. Compared with large
satellites, the camera will withstand larger temperature fluctuations. Therefore, it is necessary to
research the thermal stability of the principal distance [10]. Previously, many researchers have studied
the thermal stability of space cameras, but they have all used electronic-active, mechanical-passive,
or optical-passive athermal design to optimize the imaging quality, rather than using principal distance
as a measurement index [13–18].

Aiming at stabilizing the principal distance and imaging quality of the nighttime light
remote-sensing camera, an optical-passive-athermal-design mathematical model with a stable principal
distance was established. Under the guidance of the established mathematical model, an optical
system with stable principal distance was designed by selecting positive and negative lenses of
different materials and the mechanical structure of different materials to optimize the optical system.
After on-orbit testing, the geometric accuracy of the Luojia 1-01 camera is better than 0.20 pixels,
and the optical system had higher resolution and excellent imaging quality, meeting the expected
design requirements.

2. Materials and Methods

2.1. The Relationship Between Principal Distance and Image Point

When the structural parameters of an optical system vary with temperature, the
internal-orientation elements of the system will be changed [19–21]. These elements mainly include the
principal point, principal distance, and distortion. The principal point and distortion can be obtained
by ground calibration, to which the position offset of the imaging point can be neglected when the
temperature changes. However, the stability of the optical system’s principal distance is the most
important factor affecting imaging-point-position offset of the nighttime light remote-sensing camera.
Therefore, it is very important to analyze the influence of changes in the principal distance of the
optical system upon the position offset of the imaging point.

The relationship between the position offset of the imaging point and the variation of the principal
distance of the optical system is given by Equation (1):

∆y = (q + 1) · ∆ f · tan ω (1)
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q =
y − y0

y0
× 100% (2)

y0 = f tan ω (3)

here, ∆y is the position-offset error of the imaging point, ∆ f is the variation of the principal distance,
f is the principal distance of the optical system, ω is the field of view, y0 is the ideal image height, y is
the actual image height, and q is the relative distortion.

According to the imaging geometric relationship of the Luojia 1-01 camera to the ground,
the relationship between the camera-positioning error and the principal-distance variation of the
optical system is given by Equation (4):

L =
H
f
× ∆y (4)

where L is the accuracy of the camera’s ground positioning, and H is the orbital altitude of the satellite.

2.2. Thermal-Stability Research of the Principal Distance

Thermal stability of space optical systems uses an athermalized design method to optimize the
imaging quality [22–26]. The ultimate goal of athermal design is to satisfy the condition that when the
object’s surface is infinite, the change of the principal distance with temperature equals the change of
the lens barrel with temperature, i.e., the normalized change rate of the principal distance is the same
as the linear-expansion coefficient of the lens barrel [27–31].

2.2.1. Focal Power and Achromatic Analysis

When the focal length of an optical system is determined, each optical element must satisfy the
focal power distribution (Equation (5)):

1
h1

n

∑
i=1

hi ϕi = ϕ (5)

here, ϕ is the total focal power of the optical system, ϕi is the focal power of the i-th lens group, and hi
is the incident height of the first paraxial ray on the i-th lens group.

The chromatic aberration of the optical system is one important factor affecting imaging quality.
Therefore, the chromatic aberration of the optical system needs to be corrected. This achromatic
aberration needs to satisfy Equation (6):

1
h1

2 ϕ2

n

∑
i=1

hi
2 ϕi

υi
= 0 (6)

where υi is the Abbe number of the i-th lens group.

2.2.2. Temperature-focal-shift Analysis

For n thin lens groups, the temperature-focal-shift coefficient is X f , as shown in Equation (7):

X f = f
n

∑
i=1

Xi
fi

(7)

Xi =
1
fi

∂ fi
∂T

= αgi −
Bgi

ni − n0
(8)

where f is the focal length of the lens group at the calibration temperature, fi is the focal length
of the i-th lens, T is the temperature, αgi is the linear-expansion coefficient of the lens, Bgi is the
thermal-refractive-index coefficient of the lens, ni is the refractive index of the i-th lens, n0 is the
refractive index of the environmental medium.
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When the temperature changes by ∆t, the resulting temperature focal shift of the thin-lens group
is ∆ f . From Equation (9), it can be seen that, when the optical system and the temperature range are
determined, both the focal length f and the temperature change ∆t are constant. In order to keep the
focal length of the optical system unchanged in a certain temperature range, the temperature-focal-shift
coefficient must be zero, i.e., Equation (10) must be satisfied:

∆ f =
∣∣∣ f · X f · ∆t

∣∣∣ (9)

n

∑
i=1

1
fi

(
αgi −

Bgi

ni − n0

)
= 0 (10)

2.2.3. Defocus Analysis

Equation (11) is the athermalization equation in athermal design. In order to ensure the stability of
the principal distance of the optical system, this distance must be constant with temperature. However,
according to athermal Equation (11), if the temperature focal shift is zero, temperature defocus will
inevitably occur:

∂ f
∂T

= −
(

1
h1 ϕ

)2 n

∑
i=1

(
hi

2Ti ϕi

)
= αhL (11)

here, Ti is the athermal coefficient of the lens, αh is the thermal expansion coefficient of the mechanical
structure, and L is the length of the mechanical structure.

In order to ensure that the defocusing produced by the temperature does not affect the imaging
quality of the optical system, the defocusing amount should be less than the focal depth. To increase the
number of freedom degrees of the athermal design and to reduce the design difficulty, the mechanical
structure between the optical elements in the system is matched by different materials. Therefore,
the defocus of the athermal design of the optical system needs to satisfy Equation (12):∣∣∣∣∣ n

∑
i=1

αhiLi

∣∣∣∣∣ ≤ 2λF2 (12)

where αhi is the thermal-expansion coefficient of the i-th mechanical structure, Li is the length of the
i-th mechanical structure, λ is the central wavelength, and F is the F number of the optical system.

From the above analysis, it is apparent that if the principal distance of the optical system remains
stable while achieving athermal design, Equation (13) must be satisfied:

1
h1

n
∑

i=1
hi ϕi = ϕ

1
h1

2 ϕ2

n
∑

i=1
hi

2 ϕi
υi

= 0
n
∑

i=1

1
fi

(
αgi −

Bgi
ni−n0

)
= 0∣∣∣∣ n

∑
i=1

αhiLi

∣∣∣∣ ≤ 2λF2

(13)

2.3. Optical System Design of the Luojia 1-01 Satellite

2.3.1. Design Requirements of the Optical System

The focal length of a space camera is determined by the resolution, the orbital height of the
satellite, and the size of the pixel. The field of view of the optical system is related to the focal length
and the size of the detector. The larger the F number of the optical system, the better the signal-to-noise
ratio, however, this will increase the weight and volume of the optical system, and the design difficulty
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will be greatly increased. Considering all kinds of factors, the design specifications of the Luojia 1-01
nighttime light remote-sensing camera are shown in Table 1.

Table 1. Indexes of the Luojia 1-01 camera.

Focal length/mm 55
F number 2.8

Full field of view 32.32◦

Spectral range/µm 0.50–0.80
Primary wavelength/µm 0.65

MTF (46 lp/mm) ≥0.50
Temperature range/◦C −20–+60

Image point offset (edge field)/pixels 0.3

2.3.2. Optical System Design

Another factor affecting the position accuracy of imaging points is the defocusing of the image
plane of the optical system. The position of the imaging points in the non-image-telecentric optical
system varies with the defocusing of the image plane, while the principal light emitted from each
field of view in image-telecentric optical system is parallel to the optical axis and the imaging-point
centroid of each field of view does not change with defocusing of the image plane. Therefore,
an image-telecentric structure should be designed for the optical system of the Luojia 1-01.

Aluminum alloy (AA), titanium alloy (TA), and indium steel (IS) can be selected for the
mechanical structure of space-remote-sensing camera, and their corresponding properties are
shown in Table 2. The higher density of indium steel is not conducive to lightweight design.
The linear-expansion coefficient of aluminum alloy is larger, which makes it difficult to achieve
athermal design. Therefore, titanium and aluminum alloys are selected as far as possible in the
matching process of mechanical-structural material.

Table 2. Material properties of mechanical structure.

Material Aluminum Alloy Titanium Alloy Indium Steel

Density/(g/cm3) 2.70 4.51 8.10
Thermal expansion

coefficient/(10−6/◦C) 23.6 9.2 1.6

According to the design requirements of the Luojia 1-01 optical system, the materials of the lens
and mechanical structure are matched under the guidance of the established mathematical model.
The Zemax optical-design software is used to optimize the optical system. The final structure of the
optical system is shown in Figure 2.
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The system is a coaxial-transmission system with compact structure, and the optical elements are
easy to process, detect, and assemble. The first piece of the lens uses fused silica to protect the optical
system, and the materials of each lens are fused silica, H-ZK6, H-ZK9B, H-F2, H-ZF6, H-ZK9B, H-ZK1,
and H-LAK6A. Figure 3 shows the real image of the Luojia 1-01 nighttime light remote-sensing camera.
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requirements. 

Figure 3. Nighttime light remote-sensing camera of Luojia 1-01.

3. Results and Discussion

3.1. Performance Evaluation of the Optical System

It is important to analyze the imaging performance of the designed nighttime light remote-sensing
optical system. The chromatic aberration of this system is one important indicator for measuring the
imaging performance. Figure 4 shows the lateral chromatic-aberration curves of the optical system.
From Figure 4, it can be seen that the lateral chromatic aberration of the optical system in the full field
of view has been well-corrected.
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Figure 5 presents the field curve and distortion curves of the optical system. The relative distortion
of the full field of view of the optical system is seen to be less than 0.1%, meeting the design requirements.Sensors 2019, 19, x FOR PEER REVIEW 7 of 12 
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This camera has high resolution and good imaging quality, and can clearly see roads and blocks, 
thereby meeting the application requirements of nighttime light remote sensing. 

Figure 5. Field curve and distortion of the optical system.

In space-remote-sensing cameras, the modulation transfer function (MTF) is one of the most
important indicators for evaluating imaging quality. Figure 6 presents the graph of the MTF of the
optical system. Figure 6 shows that at the Nyquist frequency of 46 lp/mm, the MTF of the optical
system is better than 0.5 and the imaging quality of the optical system is good.
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This camera has high resolution and good imaging quality, and can clearly see roads and blocks,
thereby meeting the application requirements of nighttime light remote sensing.

3.2. Thermal Analysis of the Optical System

The results of a reasonable matching of the mechanical-structural materials of the optical system
are shown in Table 3.

Table 3. Mechanical structure material distribution table.

Element Spacing Number 1 2 3 4 5 6 7 8 9

Material TA AA TA TA TA AA TA AA TA

Thermal analysis of the designed optical system is performed. In the range of −20 ◦C to +60 ◦C,
the relationship between the principal distance of the optical system and the temperature as shown in
Figure 8, and the relationship between the back focal length of the optical system and the temperature
as shown in Figure 9. From Figure 8, it can be seen that, in the range of −20 ◦C to +60 ◦C, the principal
distance of the optimized optical system varies from −0.01 µm to +0.28 µm, that is, the maximum
change is 0.29 µm, and the corresponding geometric accuracy is 0.008 pixels; Figure 9 shows that the
change range of the back focal length of the optical system is −8.5 µm to +8.5 µm, which is less than
the half-focal depth of 9.8 µm.
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The thermal stability of the MTF of the optical system is analyzed. Figure 10 presents the MTF
curves of the optical system. When the temperature is −20 ◦C, 20 ◦C, or 60 ◦C the MTF of the full field
of view remains stable and both are better than 0.5, which indicates that the imaging quality of the
optical system is stable.
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Figure 10. Graphs of modulation transfer function. (a) −20 ◦C; (b) 20 ◦C; (c) 60 ◦C.
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If the optical system is designed by the optical-passive athermal design method, when the optical
system achieves athermal design, the materials of each lens are fused silica, H-ZK9B, H-ZK9B, H-F2,
H-ZF6, H-ZK9B, H-ZK9B, H-ZK9B, and H-ZBAF52. The material of the mechanical structure adopts
titanium alloy. The variation of the principal distance with temperature is shown in Figure 11.
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Figure 11. Variation of principal distance with temperature.

Figure 11 shows that in the temperature range of −20 ◦C to +60 ◦C, the principal distance of the
optical system changes from −7.8 µm to +7.5 µm, that is, the maximum variation of the principal
distance is 15.3 µm, and the corresponding geometric accuracy is 0.40 pixels, which is much greater
than 0.008 pixels. From the above analysis, it can be seen that the optimization method proposed in
this paper is very effective for the control of the principal distance.

3.3. Distortion Analysis

The principal distance is the most important factor affecting geometric accuracy. After calibrating
other intrinsic parameters of optical system remain almost unchanged, in the temperature range
of −20 ◦C to +60 ◦C, and their impact on geometric accuracy can be neglected, so other intrinsic
parameters can’t be considered.

The two curves in Figure 12 shows the law of the absolute distortion variation of the optical system
in the full field of view at −20 ◦C and +60 ◦C, respectively, compared with the absolute distortion
at 20 ◦C (reference wavelength 650 nm). Figure 12 shows that the maximum distortion of the full
field of view of the optical system is less than 0.14 µm and the corresponding geometric accuracy is
0.012 pixels in the temperature range of −20 ◦C to +60 ◦C. Therefore, the effect of temperature on the
principal distance can be ignored.
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3.4. On-Orbit Geometric Test Result

The principal distance variation of the Luojia 1-01 camera design is controlled at the sub-micron
scale, so the principal distance variation can’t be measured directly and the stability of the principal
distance can only be verified by a calibration method. When the temperature of the camera and
environment is 20 ◦C, the principal distance, principal point and distortion of the camera are calibrated.
When the temperature of the camera changes, the camera images the control point, and then use the
calibration parameters at 20 ◦C to resolve the geometric accuracy of the Luojia 1-01 camera.

The Luojia 1-01 nighttime light remote-sensing camera adopts roller shutter mode to image.
The camera is imaging to the point targets, so its geometric calibration accuracy is very important for
image registration. The residual errors after calibration are mainly reflected in the structural stability
errors of the satellite, which include the attitude accuracy error and the stability of the camera’s
principal distance. Therefore, if the fluctuation of the principal distance occurs on-orbit, the geometric
accuracy cannot be guaranteed. Table 4 presents the geometric validation accuracy of the Luojia 1-01
camera in orbit.

Table 4. Geometric validation accuracy.

Validation Accuracy
Vertical Direction of the Orbit/Pixel Orbit Direction/Pixel

Plane Accuracy/Pixel
MAX MIN RMS MAX MIN RMS

Geometric Accuracy 0.30 0.00 0.13 0.46 0.00 0.15 0.20

In Table 4, Geometric validation accuracy shows that the geometric accuracy of image is better than
0.2 pixels, which indicates that the stability of the satellite’s overall structure is high and the designed
Luojia 1-01 camera based on proposed method is well adapted to the temperature fluctuation on-orbit.

4. Conclusions

Available space resources in micro/nano satellites are limited, so it is difficult to achieve precise
temperature control. In order to ensure the image-registration accuracy of the Luojia 1-01 nighttime
light remote-sensing camera, it is necessary to study the influence of the space thermal environment
upon the principal distance of the optical system and to optimize it accordingly. To ensure the stability
of the principal distance and imaging quality of the optical system and to improve the environmental
adaptability of remote-sensing cameras, a mathematical model of the optical-passive-athermal design
with principal distance stability was established. Under the guidance of the established mathematical
model, the Luojia 1-01 camera was designed. The advantages of the proposed method over the
traditional method are as follows:

(1) When the temperature is in the range of −20 ◦C to +60 ◦C, the influence of the principal distance
variation on geometric accuracy is increased from 0.40 pixels to 0.008 pixels.

(2) The change of the back focal length is less than the focal depth. The imaging performance
of the system is stable, improving the environmental adaptability of the nighttime light
remote-sensing camera.

(3) The effect of the variation of the principal distance of the optical system on the distortion can
be neglected. That is because the principal distance change of the optimized system has been
well controlled.

The principal distance stability research of optical system can expand the use of space cameras and
ensure the performance requirements. This technology has broad application prospects. For example,
the stability of the principal distance of star sensor is an important factor affecting the attitude
measurement accuracy. Therefore, the optical system design method proposed in the paper is very
suitable for the design of the star sensor optical system.
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