
sensors

Article

Real-Time Vehicle Make and Model Recognition with
the Residual SqueezeNet Architecture

Hyo Jong Lee 1,* , Ihsan Ullah 2, Weiguo Wan 1, Yongbin Gao 3 and Zhijun Fang 3

1 Division of Computer Science and Engineering, CAIIT, Chonbuk National University, Jeonju 54896, Korea;
wanwgplus@gmail.com

2 Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology,
Daegu 42988, Korea; ihsanullah736@gmail.com

3 School of Electrics and Electronic Engineering, Shanghai University of Engineering Science,
Shanghai 201620, China; gaoyongbin@sues.edu.cn (Y.G.); zjfang@foxmail.com (Z.F.)

* Correspondence: hlee@chonbuk.ac.kr; Tel.: +82-63-270-2407

Received: 20 December 2018; Accepted: 21 February 2019; Published: 26 February 2019
����������
�������

Abstract: Make and model recognition (MMR) of vehicles plays an important role in automatic
vision-based systems. This paper proposes a novel deep learning approach for MMR using the
SqueezeNet architecture. The frontal views of vehicle images are first extracted and fed into a deep
network for training and testing. The SqueezeNet architecture with bypass connections between the
Fire modules, a variant of the vanilla SqueezeNet, is employed for this study, which makes our MMR
system more efficient. The experimental results on our collected large-scale vehicle datasets indicate
that the proposed model achieves 96.3% recognition rate at the rank-1 level with an economical time
slice of 108.8 ms. For inference tasks, the deployed deep model requires less than 5 MB of space and
thus has a great viability in real-time applications.

Keywords: vehicle make recognition; deep learning; residual SqueezeNet

1. Introduction

In recent years, a plethora of innovative technologies and solutions are bringing intelligent
transportation systems (ITSs) closer to reality. ITSs are advanced transportation systems that aim
to advance and automate the operation and management of transport systems, thereby improving
upon the efficiency and safety of transport. ITSs combine cutting-edge technology such as electronic
control and communications with means and facilities of transportation [1]. The development of
digital image processing and computer vision techniques offers many advantages in enabling many
important ITSs applications and components such as advanced driver-assistance systems (ADASs),
automated vehicular surveillance (AVS), traffic and activity monitoring, traffic behavior analysis,
traffic management, among others. Vehicle make and model recognition (MMR) is of great interest in
these applications, owing to heightened security concerns in ITSs.

Over the years, numerous studies have been conducted to solve different challenges in vehicle
detection, identification, and tracking. However, classification of vehicles into fine categories has
gained attention only recently, and many challenges remain to be addressed [2–5]. The traditional
vehicle MMR system relies on manual human observation or automated license plate recognition
(ALPR) technique, these indirect progresses make the vehicle MMR system hardly meets the real-time
constraints. Through manual observation, it is practically difficult to remember and efficiently
distinguish between the wide variety of vehicle makes and models; it becomes a laborious and
time-consuming task for a human observer to monitor and observe the multitude of screens and
record the incoming or outgoing makes and models or to even spot the make and model being looked

Sensors 2019, 19, 982; doi:10.3390/s19050982 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2581-5268
http://www.mdpi.com/1424-8220/19/5/982?type=check_update&version=1
http://dx.doi.org/10.3390/s19050982
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 982 2 of 14

for. The MMR systems that rely on license plates may suffer from forging, damage, occlusion, etc.,
as shown in Figure 1. In addition, there are some license-plates that can be ambiguous in terms of
interpreting letters (e.g., between “0” and “O”) or license types. Moreover, in some areas, it may not be
required to bear the license plate at the front or the rear. If the ALPR system is not equipped to check
for license plates at both (front and rear) ends of the vehicle, it could fail. Consequently, when ALPR
systems fail to correctly read the detected license plates due to the above issues, the wrong make-model
information could be retrieved from the license-plates registry or database.

Sensors 2019, 19, x FOR PEER REVIEW 2 of 14

shown in Figure 1. In addition, there are some license-plates that can be ambiguous in terms of
interpreting letters (e.g., between “0” and “O”) or license types. Moreover, in some areas, it may not
be required to bear the license plate at the front or the rear. If the ALPR system is not equipped to
check for license plates at both (front and rear) ends of the vehicle, it could fail. Consequently, when
ALPR systems fail to correctly read the detected license plates due to the above issues, the wrong
make-model information could be retrieved from the license-plates registry or database.

(a) Ambiguous (b) Forged (c) Damaged (d) Duplicated

Figure 1. Some cases that cause failure of the license plate recognition-based MMR systems.

To overcome the aforementioned shortcomings in traditional vehicle identification systems,
automated vehicle MMR techniques have become critical. The make and model of the vehicle
recognized by the MMR system can be cross-checked with the license-plate registry to check for any
fraud. In this dual secure way, vision-based automated MMR techniques can augment traditional
ALPR-based vehicle classification systems to further enhance security.

Abdel Maseeh et al. [6] proposed an approach to address this specific problem by combining
global and local information and utilizing discriminative information labelled by a human expert.
They validated their approach through experiments on recognizing the make and model of sedan
cars from single view images. Jang and Turk [7] demonstrated a car recognition application based on
the SURF feature descriptor algorithm, which fuses bag-of-words and structural verification
techniques. Baran et al. [8] presented a smart camera in intelligent transportation systems for the
surveillance of vehicles. The smart camera can be used for MMR, ALPR, and color recognition of
vehicles. In [9], Santos et al. introduced two car recognition methods, both relying on the analysis of
the external features of the car. The first method evaluates the shape of the car’s rear, exploring its
dimensions and edges, while the second considers features computed from the car’s rear lights,
notably, their orientation, eccentricity, position, angle to the car license plate, and shape contour. Both
methods are combined in the proposed automatic car recognition system. Ren et al. [10] proposed a
framework to detect a moving vehicle’s make and model using convolutional neural networks
(CNNs). Dehghan et al. [11] proposed a CNN-based vehicle make, model, and color recognition
system, which is computationally inexpensive and provides state-of-the-art results. Huang et al. [12]
investigated fine-grained vehicle recognition using deep CNNs. They localized the vehicle and the
corresponding parts with the help of region-based CNNs (RCNNs) and aggregated their features
from a set of pre-trained CNNs to train a support vector machine (SVM) classifier. Gao and Lee [13]
proposed a local tiled CNN (LTCNN) strategy to alter the weight-sharing scheme of CNN with a
local tiled structure, which can provide the translational, rotational, and scale invariance for MMR.

In this study, we focus on addressing the challenges in real time and automated vehicle MMR
by utilizing state-of-the-art deep learning-based techniques. Vanilla CNNs have demonstrated
impressive performance in vehicle MMR-related tasks. However, long training periods and large
memory requirements in deployment environments often constrain the use of such models in real-
time applications as well as distributed environments. Thus, in this study, a smaller CNN architecture
named SqueezeNet is adopted, which requires much fewer parameters, consequently reducing
memory constraints and making it suitable for real-time applications. In addition, compared to
vanilla SqueezeNet, the proposed method, using a bypass connection-inspired version of
SqueezeNet, demonstrates a 2.1% improvement in recognition accuracy. Further, we demonstrate the
effectiveness of a data-clustering approach used in our study that considerably improves the speed
of the data preparation and labelling process. The experiment results show that the proposed
approach obtains higher recognition accuracy in less time and with fewer memory constraints.

Figure 1. Some cases that cause failure of the license plate recognition-based MMR systems.

To overcome the aforementioned shortcomings in traditional vehicle identification systems,
automated vehicle MMR techniques have become critical. The make and model of the vehicle
recognized by the MMR system can be cross-checked with the license-plate registry to check for
any fraud. In this dual secure way, vision-based automated MMR techniques can augment traditional
ALPR-based vehicle classification systems to further enhance security.

Abdel Maseeh et al. [6] proposed an approach to address this specific problem by combining
global and local information and utilizing discriminative information labelled by a human expert.
They validated their approach through experiments on recognizing the make and model of sedan
cars from single view images. Jang and Turk [7] demonstrated a car recognition application based
on the SURF feature descriptor algorithm, which fuses bag-of-words and structural verification
techniques. Baran et al. [8] presented a smart camera in intelligent transportation systems for the
surveillance of vehicles. The smart camera can be used for MMR, ALPR, and color recognition of
vehicles. In [9], Santos et al. introduced two car recognition methods, both relying on the analysis
of the external features of the car. The first method evaluates the shape of the car’s rear, exploring
its dimensions and edges, while the second considers features computed from the car’s rear lights,
notably, their orientation, eccentricity, position, angle to the car license plate, and shape contour.
Both methods are combined in the proposed automatic car recognition system. Ren et al. [10] proposed
a framework to detect a moving vehicle’s make and model using convolutional neural networks
(CNNs). Dehghan et al. [11] proposed a CNN-based vehicle make, model, and color recognition
system, which is computationally inexpensive and provides state-of-the-art results. Huang et al. [12]
investigated fine-grained vehicle recognition using deep CNNs. They localized the vehicle and the
corresponding parts with the help of region-based CNNs (RCNNs) and aggregated their features
from a set of pre-trained CNNs to train a support vector machine (SVM) classifier. Gao and Lee [13]
proposed a local tiled CNN (LTCNN) strategy to alter the weight-sharing scheme of CNN with a local
tiled structure, which can provide the translational, rotational, and scale invariance for MMR.

In this study, we focus on addressing the challenges in real time and automated vehicle MMR
by utilizing state-of-the-art deep learning-based techniques. Vanilla CNNs have demonstrated
impressive performance in vehicle MMR-related tasks. However, long training periods and large
memory requirements in deployment environments often constrain the use of such models in real-time
applications as well as distributed environments. Thus, in this study, a smaller CNN architecture
named SqueezeNet is adopted, which requires much fewer parameters, consequently reducing
memory constraints and making it suitable for real-time applications. In addition, compared to
vanilla SqueezeNet, the proposed method, using a bypass connection-inspired version of SqueezeNet,
demonstrates a 2.1% improvement in recognition accuracy. Further, we demonstrate the effectiveness

Sensors 2019, 19, 982 3 of 14

of a data-clustering approach used in our study that considerably improves the speed of the data
preparation and labelling process. The experiment results show that the proposed approach obtains
higher recognition accuracy in less time and with fewer memory constraints.

2. Background

2.1. General Architecture of Vehicle MMR System

The problem of automated vehicle classification into makes and models is an important task
for AVS and other ITSs applications. The general architecture of the vehicle MMR system can be
depicted as shown in Figure 2. Most studies first adopt a vehicle detection step that produces regions
of interests (ROIs) containing the vehicles’ faces (front), segmented from the background. The vehicle
MMR systems then work on these ROIs [14].

Sensors 2019, 19, x FOR PEER REVIEW 3 of 14

2. Background

2.1. General Architecture of Vehicle MMR System

The problem of automated vehicle classification into makes and models is an important task for
AVS and other ITSs applications. The general architecture of the vehicle MMR system can be depicted
as shown in Figure 2. Most studies first adopt a vehicle detection step that produces regions of
interests (ROIs) containing the vehicles’ faces (front), segmented from the background. The vehicle
MMR systems then work on these ROIs [14].

Figure 2. Flowchart of the typical MMR system.

The traditional vehicle detection methods can be mainly divided into three categories [15]. One
is the edge feature-based method, which first detects possible vehicle candidates from input images,
then employing appropriate algorithms for verification [16]. Another method is the color-based
method, which utilizes the large variations in vehicle colors [17]. The third commonly-used vehicle
detection method involves training a robust vehicle detector through active learning tools such as
AdaBoost [18]. Nowadays, the CNNs based vehicle detection methods has been widely applied, such
as Fast R-CNN [19], Faster R-CNN [20], and YOLO [21] etc. As for the vehicle recognition, the
traditional method is to extract vehicle features such as Haar and SIFT features. Then, the classifiers
such as SVM and K-nearest neighbors are learned to classify the vehicle into different models.
Because of the variations in the visual appearances and the confusion between certain vehicle types,
developing a highly accurate vehicle MMR system is still very challenging using the traditional
methods.

2.2. Convolutional Neural Networks

Recently, deep networks are increasingly being used to extract discriminative features for
vehicle MMR. The deep network concept has been around since 1980, with similar ideas including
neural network and backpropagation. The resurgence of interest in deep networks has been brought
about by the breakthrough in Restricted Boltzmann Machines (RBM) from Hinton [22]. In the deep
networks, there are massive parameters which require large-scale datasets for training. The CNNs
are usually adopted to reduce the number of parameters. In addition, many advanced techniques
such as dropout, maxout, and max-pooling have been coupled into the CNN structure. Figure 3
shows one convolutional layer. By going deeper into the convolutional networks, CNNs dictate the
performance of various applications such as AlexNet [23] and GoogLeNet [24].

Figure 3. Illustration of one convolutional layer.

Figure 3 illustrates the architecture of one convolutional layer, in which the bottom layer
includes several N × N inputs and the top layer includes several M × M convolutional outputs. The

Figure 2. Flowchart of the typical MMR system.

The traditional vehicle detection methods can be mainly divided into three categories [15]. One is
the edge feature-based method, which first detects possible vehicle candidates from input images,
then employing appropriate algorithms for verification [16]. Another method is the color-based
method, which utilizes the large variations in vehicle colors [17]. The third commonly-used vehicle
detection method involves training a robust vehicle detector through active learning tools such as
AdaBoost [18]. Nowadays, the CNNs based vehicle detection methods has been widely applied, such as
Fast R-CNN [19], Faster R-CNN [20], and YOLO [21] etc. As for the vehicle recognition, the traditional
method is to extract vehicle features such as Haar and SIFT features. Then, the classifiers such as
SVM and K-nearest neighbors are learned to classify the vehicle into different models. Because of the
variations in the visual appearances and the confusion between certain vehicle types, developing a
highly accurate vehicle MMR system is still very challenging using the traditional methods.

2.2. Convolutional Neural Networks

Recently, deep networks are increasingly being used to extract discriminative features for vehicle
MMR. The deep network concept has been around since 1980, with similar ideas including neural
network and backpropagation. The resurgence of interest in deep networks has been brought about by
the breakthrough in Restricted Boltzmann Machines (RBM) from Hinton [22]. In the deep networks,
there are massive parameters which require large-scale datasets for training. The CNNs are usually
adopted to reduce the number of parameters. In addition, many advanced techniques such as dropout,
maxout, and max-pooling have been coupled into the CNN structure. Figure 3 shows one convolutional
layer. By going deeper into the convolutional networks, CNNs dictate the performance of various
applications such as AlexNet [23] and GoogLeNet [24].

Sensors 2019, 19, x FOR PEER REVIEW 3 of 14

2. Background

2.1. General Architecture of Vehicle MMR System

The problem of automated vehicle classification into makes and models is an important task for
AVS and other ITSs applications. The general architecture of the vehicle MMR system can be depicted
as shown in Figure 2. Most studies first adopt a vehicle detection step that produces regions of
interests (ROIs) containing the vehicles’ faces (front), segmented from the background. The vehicle
MMR systems then work on these ROIs [14].

Figure 2. Flowchart of the typical MMR system.

The traditional vehicle detection methods can be mainly divided into three categories [15]. One
is the edge feature-based method, which first detects possible vehicle candidates from input images,
then employing appropriate algorithms for verification [16]. Another method is the color-based
method, which utilizes the large variations in vehicle colors [17]. The third commonly-used vehicle
detection method involves training a robust vehicle detector through active learning tools such as
AdaBoost [18]. Nowadays, the CNNs based vehicle detection methods has been widely applied, such
as Fast R-CNN [19], Faster R-CNN [20], and YOLO [21] etc. As for the vehicle recognition, the
traditional method is to extract vehicle features such as Haar and SIFT features. Then, the classifiers
such as SVM and K-nearest neighbors are learned to classify the vehicle into different models.
Because of the variations in the visual appearances and the confusion between certain vehicle types,
developing a highly accurate vehicle MMR system is still very challenging using the traditional
methods.

2.2. Convolutional Neural Networks

Recently, deep networks are increasingly being used to extract discriminative features for
vehicle MMR. The deep network concept has been around since 1980, with similar ideas including
neural network and backpropagation. The resurgence of interest in deep networks has been brought
about by the breakthrough in Restricted Boltzmann Machines (RBM) from Hinton [22]. In the deep
networks, there are massive parameters which require large-scale datasets for training. The CNNs
are usually adopted to reduce the number of parameters. In addition, many advanced techniques
such as dropout, maxout, and max-pooling have been coupled into the CNN structure. Figure 3
shows one convolutional layer. By going deeper into the convolutional networks, CNNs dictate the
performance of various applications such as AlexNet [23] and GoogLeNet [24].

Figure 3. Illustration of one convolutional layer.

Figure 3 illustrates the architecture of one convolutional layer, in which the bottom layer
includes several N × N inputs and the top layer includes several M × M convolutional outputs. The

Figure 3. Illustration of one convolutional layer.

Sensors 2019, 19, 982 4 of 14

Figure 3 illustrates the architecture of one convolutional layer, in which the bottom layer
includes several N × N inputs and the top layer includes several M × M convolutional outputs.
The convolutional layer conducts convolution operations across the input maps with a K × K filter for
each map, resulting in a (N − K + 1) × (N − K + 1) feature map. Here, M = N − K + 1.

2.3. SqueezeNet

The SqueezeNet [25] is a smaller CNN architecture that uses fewer parameters while maintaining
competitive accuracy. Several strategies are employed on the CNN basis to design the SqueezeNet: (1)
replace 3 × 3 filters with 1 × 1 filters, (2) decrease the number of input channels to 3 × 3 filters,
(3) downsample late in the network so that the convolution layers have large activation maps.
The SqueezeNet is comprised mainly of Fire modules that are squeeze convolution layers with only
1 × 1 filters. These layers are then fed into an expand layer, which has a mix of 1 × 1 and 3 × 3
convolution filters, as shown in Figure 4.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 14

convolutional layer conducts convolution operations across the input maps with a K × K filter for
each map, resulting in a (N − K + 1) × (N − K + 1) feature map. Here, M = N − K + 1.

2.3. SqueezeNet

The SqueezeNet [25] is a smaller CNN architecture that uses fewer parameters while
maintaining competitive accuracy. Several strategies are employed on the CNN basis to design the
SqueezeNet: 1) replace 3 × 3 filters with 1 × 1 filters, 2) decrease the number of input channels to 3 × 3
filters, 3) downsample late in the network so that the convolution layers have large activation maps.
The SqueezeNet is comprised mainly of Fire modules that are squeeze convolution layers with only
1 × 1 filters. These layers are then fed into an expand layer, which has a mix of 1 × 1 and 3 × 3
convolution filters, as shown in Figure 4.

1×1 convolution filters

Squeeze

Relu

1×1 and 3×3 convolution filters

Expand

Relu

Figure 4. Micro-architectural view: Convolution filters organization in the Fire modules.

3. Vehicle Data Clustering and Labelling

Deep learning typically benefits from large amounts of data. We create a dataset pool designed
specifically for the task of recognition of the vehicle make and model. Date set are collected from
currently driven vehicles in Korea, including Korean manufactured and commonly imported
vehicles for proposed network. In the following sections, data clustering and labeling are discussed
in detail.

3.1. Dataset Clustering

In order to train deep networks, a large-scale dataset is required, labelling of which is difficult
and tedious. Thus, a cluster method is required for speeding up the labelling process. The appearance
of a vehicle will change under varying environmental conditions and also based on market
requirements. This makes the vehicle model recognition a challenging task.

A cluster algorithm aims to differentiate images into groups so that the distance between the
different groups is highest. The K-means algorithm is most efficient and suitable for large-scale
datasets. However, if we apply the K-means directly on the raw images, the accuracy is compromised
because the raw images are not discriminative. This problem will result in burdensome tasks to
manually relabel the incorrect vehicle data. In addition, the computational time of this direct
clustering strategy was high because the raw images were of large size. In this study, a cluster method
that incorporates deep learning is adopted to assist faster labeling of a large-scale vehicle make and
model dataset. The cluster method can automatically divide the images into groups and each group
is divided into classes. The framework for data clustering is shown in Figure 5 and the detailed steps
are as follows:

Figure 4. Micro-architectural view: Convolution filters organization in the Fire modules.

3. Vehicle Data Clustering and Labelling

Deep learning typically benefits from large amounts of data. We create a dataset pool designed
specifically for the task of recognition of the vehicle make and model. Date set are collected from
currently driven vehicles in Korea, including Korean manufactured and commonly imported vehicles
for proposed network. In the following sections, data clustering and labeling are discussed in detail.

3.1. Dataset Clustering

In order to train deep networks, a large-scale dataset is required, labelling of which is difficult and
tedious. Thus, a cluster method is required for speeding up the labelling process. The appearance of a
vehicle will change under varying environmental conditions and also based on market requirements.
This makes the vehicle model recognition a challenging task.

A cluster algorithm aims to differentiate images into groups so that the distance between the
different groups is highest. The K-means algorithm is most efficient and suitable for large-scale datasets.
However, if we apply the K-means directly on the raw images, the accuracy is compromised because
the raw images are not discriminative. This problem will result in burdensome tasks to manually
relabel the incorrect vehicle data. In addition, the computational time of this direct clustering strategy
was high because the raw images were of large size. In this study, a cluster method that incorporates
deep learning is adopted to assist faster labeling of a large-scale vehicle make and model dataset.
The cluster method can automatically divide the images into groups and each group is divided into
classes. The framework for data clustering is shown in Figure 5 and the detailed steps are as follows:

Sensors 2019, 19, 982 5 of 14

(1) The vehicles are first detected based on frame difference and symmetrical filter. The frame
difference method is applied to images by shifting one image with moderate pixels to generate
another image. The difference between these two images is used to detect the vehicle by a
symmetrical filter, which makes use of the symmetrical structure of the vehicles.

(2) Then, the discriminative and simple features are extracted based on deep learning before using
the K-means algorithm. To use deep learning for feature extraction, we introduce a third-party
dataset, which may have a lower number of images and car models. The third-party dataset
named as “compcars” [26] is labelled and used for training the deep network. The trained model
is used to extract features of the unlabeled vehicles. However, the features are still high-dimension
for adopting the K-means algorithm. Thus, we use principal component analysis (PCA) to reduce
the dimensions.

(3) Finally, the K-means algorithm is used to cluster the data and assign the group to each
data. The manual correction of the wrongly clustered data is performed to get a new dataset.
This dataset is added to the third-party dataset to train a more powerful deep network. In this
sense, the labelling is performed iteratively. For every iteration, we introduce 100,000 images as
incremental data.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 14

(1) The vehicles are first detected based on frame difference and symmetrical filter. The frame
difference method is applied to images by shifting one image with moderate pixels to generate
another image. The difference between these two images is used to detect the vehicle by a
symmetrical filter, which makes use of the symmetrical structure of the vehicles.

(2) Then, the discriminative and simple features are extracted based on deep learning before using
the K-means algorithm. To use deep learning for feature extraction, we introduce a third-party
dataset, which may have a lower number of images and car models. The third-party dataset
named as “compcars” [26] is labelled and used for training the deep network. The trained model
is used to extract features of the unlabeled vehicles. However, the features are still high-
dimension for adopting the K-means algorithm. Thus, we use principal component analysis
(PCA) to reduce the dimensions.

(3) Finally, the K-means algorithm is used to cluster the data and assign the group to each data. The
manual correction of the wrongly clustered data is performed to get a new dataset. This dataset
is added to the third-party dataset to train a more powerful deep network. In this sense, the
labelling is performed iteratively. For every iteration, we introduce 100,000 images as incremental
data.

Our study focuses on the surveillance vehicle data while the “compcars” contain only 44,481
images in 281 different models, which is not enough for practical use. Thus, we collect 291,602 images
from the surveillance camera that is set up on an actual street. The data collection time spans one
year, and we divide the images into two sets: set-1 (145,800 images) and set-2 (145,802 images). We
first use the “compcars” images to train a deep model and then extract features for the set-1. After
clustering this set, we use these images to train a new model. The new model is used to cluster the
set-2. Figure 6 shows some examples of clustered images. These images contain many kinds of
variations such as rainy/sunny, daytime/nighttime, illumination variations, and parts missing due to
the car detection failure. As a result, a large-scale dataset containing 291,602 images has been labelled,
which consists of 766 models. The accuracy of the cluster of set-2 reached 85%, which means that the
second iteration of the cluster reduced the manual label work of 85%. Thus, our cluster sped up the
labelling work significantly.

Figure 5. Framework for the proposed car detection and clustering method. Figure 5. Framework for the proposed car detection and clustering method.

Our study focuses on the surveillance vehicle data while the “compcars” contain only
44,481 images in 281 different models, which is not enough for practical use. Thus, we collect 291,602
images from the surveillance camera that is set up on an actual street. The data collection time spans
one year, and we divide the images into two sets: set-1 (145,800 images) and set-2 (145,802 images).
We first use the “compcars” images to train a deep model and then extract features for the set-1.
After clustering this set, we use these images to train a new model. The new model is used to cluster
the set-2. Figure 6 shows some examples of clustered images. These images contain many kinds of
variations such as rainy/sunny, daytime/nighttime, illumination variations, and parts missing due to
the car detection failure. As a result, a large-scale dataset containing 291,602 images has been labelled,
which consists of 766 models. The accuracy of the cluster of set-2 reached 85%, which means that the
second iteration of the cluster reduced the manual label work of 85%. Thus, our cluster sped up the
labelling work significantly.

Sensors 2019, 19, 982 6 of 14

Sensors 2019, 19, x FOR PEER REVIEW 6 of 14

Figure 6. Examples of clustered images.

3.2. Dataset Labelling

As mentioned earlier, we have labelled 766 models for the 291,602 vehicle images collected. We
labelled each vehicle with its respective model name, make and type with its respective class
identification. Some of the datasets are shown in Table 1.

Table 1. Examples of label of make, model, and type with their respective class IDs.

ID Make Model Type ID Make Model Type
1 Hyundai Grand-Starex MiniBus 6 Kia Grand-Carnival SumoCar
2 Hyundai Starex-2006-Model MiniBus 7 Volkswagen New-CC Sedan
3 Chevrolet 25 Tons-Cargo-Truck Truck 8 Samsung QM3 Sedan
4 Kia Sorento SumoCar 9 Hyundai Porter-2 MiniTruck
5 Hyundai The-Luxury-Grandeur Sedan 10 Hyundai Avante-Hybrid Sedan

4. The Proposed MMR System

4.1. Residual SqueezeNet Architecture

After vehicle detection and clustering, we train a deep neural network capable of recognizing
766 models of different companies. In this study, a smaller CNN called SqueezeNet [25] is employed,
which can achieve performance comparable with other CNN frameworks such as AlexNet while
requiring fewer parameters, which is practical in a real-time scenario.

As shown in Figure 7a, the basic SqueezeNet starts with a convolution layer, followed by eight
Fire modules, ending with another convolution layer. The number of filters per Fire module is
increased gradually from the beginning to the end of the network. The max-pooling with a stride of
two is performed after layers conv1, Fire4, Fire8, and conv10. ReLU is adopted as the activations
function and Dropout with a ratio of 0.5 is used after the Fire9 module.

To improve the recognition accuracy, a modified SqueezeNet is designed by adding some simple
bypass connections to the SqueezeNet between some Fire modules. In our simple bypass architecture,
bypass connections are added around Fire modules 3, 5, 7, and 9, requiring these modules to learn a
residual function between input and output as shown in Figure 7b. As in ResNet, to implement a
bypass connection around Fire3, we set the input to Fire4 equal to the output of Fire2 + output of
Fire3, where the + operator is an element-wise addition, as shown in the Figure 8. This changes the
regularization applied to the parameters of these Fire modules and, as per ResNet, can improve the
final accuracy and/or trainability of the full model.

Figure 6. Examples of clustered images.

3.2. Dataset Labelling

As mentioned earlier, we have labelled 766 models for the 291,602 vehicle images collected.
We labelled each vehicle with its respective model name, make and type with its respective class
identification. Some of the datasets are shown in Table 1.

Table 1. Examples of label of make, model, and type with their respective class IDs.

ID Make Model Type ID Make Model Type

1 Hyundai Grand-Starex MiniBus 6 Kia Grand-Carnival SumoCar

2 Hyundai Starex-2006-Model MiniBus 7 Volkswagen New-CC Sedan

3 Chevrolet 25 Tons-Cargo-Truck Truck 8 Samsung QM3 Sedan

4 Kia Sorento SumoCar 9 Hyundai Porter-2 MiniTruck

5 Hyundai The-Luxury-Grandeur Sedan 10 Hyundai Avante-Hybrid Sedan

4. The Proposed MMR System

4.1. Residual SqueezeNet Architecture

After vehicle detection and clustering, we train a deep neural network capable of recognizing
766 models of different companies. In this study, a smaller CNN called SqueezeNet [25] is employed,
which can achieve performance comparable with other CNN frameworks such as AlexNet while
requiring fewer parameters, which is practical in a real-time scenario.

As shown in Figure 7a, the basic SqueezeNet starts with a convolution layer, followed by eight Fire
modules, ending with another convolution layer. The number of filters per Fire module is increased
gradually from the beginning to the end of the network. The max-pooling with a stride of two is
performed after layers conv1, Fire4, Fire8, and conv10. ReLU is adopted as the activations function
and Dropout with a ratio of 0.5 is used after the Fire9 module.

Sensors 2019, 19, 982 7 of 14
Sensors 2019, 19, x FOR PEER REVIEW 7 of 14

227×227

conv1 Fire2

conv10softmax

Fire3 Fire5

95
maxpool 256

Fire4 Fire6

Fire7Fire8Fire9

128
256

maxpool 384

384

128

512
maxpool512

766
avgpool

SUV Hyundai
i30(New)

(a)

227×227

conv1 Fire2

conv10softmax

Fire3 Fire5

95
maxpool 256

Fire4 Fire6

Fire7Fire8Fire9

128
256

maxpool 384

384

128

512
maxpool512

766
avgpool

SUV Hyundai
i30(New)

(b)

Figure 7. Illustration of SqueezeNet-based MMR system. (a) SqueezeNet architecture. (b) Our
proposed Residual SqueezeNet architecture.

Input 1×1 Conv
Squezze 3×3 Conv

Expand

1×1 Conv
Expand Output

Concat/Eltwise
128 16 128

64

64

128

Figure 8. Proposed residual Squeeze Net architecture with simple bypass connections.

During training process, the weight parameters are randomly initialized with a Gaussian
distribution. The learning rate is initially set as 0.01 and decreases with step size of 10. In addition,
the RMSprop is applied as the optimizer.

4.2. Hardware and Software

We used a GeForce GTX 1080 in our setup to benefit from faster training times in deep learning
frameworks with the support of Cuda and cuDNN. The CPU used is an Intel(R) Core (TM) i7-4790
CPU with eight cores operating at 3.60 GHz.

An Nvidia DIGITS is used as a second framework that works on top of Caffe, or more precisely,
a separate Caffe fork by Nvidia of the official repository. For training, DIGITS provide functionality
for on-the-fly data augmentation using random crops with a fixed size, e.g., randomly taking 227 ×
227 regions from a 256 × 256 image in our case, and random horizontal flipping. Furthermore, DIGITS
visualize learning rate decay as shown in Figure 9. Visualizations of training loss, validation loss, and
validation accuracy in an interactive, constantly updating graph make it easy to see whether or not
the training is going well. A disadvantage is that, because DIGITS work on a fork of Caffe, new
developments of the Caffe repository are merged into it only when the developers of DIGITS decide
to do so.

Figure 7. Illustration of SqueezeNet-based MMR system. (a) SqueezeNet architecture. (b) Our proposed
Residual SqueezeNet architecture.

To improve the recognition accuracy, a modified SqueezeNet is designed by adding some simple
bypass connections to the SqueezeNet between some Fire modules. In our simple bypass architecture,
bypass connections are added around Fire modules 3, 5, 7, and 9, requiring these modules to learn
a residual function between input and output as shown in Figure 7b. As in ResNet, to implement
a bypass connection around Fire3, we set the input to Fire4 equal to the output of Fire2 + output of
Fire3, where the + operator is an element-wise addition, as shown in the Figure 8. This changes the
regularization applied to the parameters of these Fire modules and, as per ResNet, can improve the
final accuracy and/or trainability of the full model.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 14

227×227

conv1 Fire2

conv10softmax

Fire3 Fire5

95
maxpool 256

Fire4 Fire6

Fire7Fire8Fire9

128
256

maxpool 384

384

128

512
maxpool512

766
avgpool

SUV Hyundai
i30(New)

(a)

227×227

conv1 Fire2

conv10softmax

Fire3 Fire5

95
maxpool 256

Fire4 Fire6

Fire7Fire8Fire9

128
256

maxpool 384

384

128

512
maxpool512

766
avgpool

SUV Hyundai
i30(New)

(b)

Figure 7. Illustration of SqueezeNet-based MMR system. (a) SqueezeNet architecture. (b) Our
proposed Residual SqueezeNet architecture.

Input 1×1 Conv
Squezze 3×3 Conv

Expand

1×1 Conv
Expand Output

Concat/Eltwise
128 16 128

64

64

128

Figure 8. Proposed residual Squeeze Net architecture with simple bypass connections.

During training process, the weight parameters are randomly initialized with a Gaussian
distribution. The learning rate is initially set as 0.01 and decreases with step size of 10. In addition,
the RMSprop is applied as the optimizer.

4.2. Hardware and Software

We used a GeForce GTX 1080 in our setup to benefit from faster training times in deep learning
frameworks with the support of Cuda and cuDNN. The CPU used is an Intel(R) Core (TM) i7-4790
CPU with eight cores operating at 3.60 GHz.

An Nvidia DIGITS is used as a second framework that works on top of Caffe, or more precisely,
a separate Caffe fork by Nvidia of the official repository. For training, DIGITS provide functionality
for on-the-fly data augmentation using random crops with a fixed size, e.g., randomly taking 227 ×
227 regions from a 256 × 256 image in our case, and random horizontal flipping. Furthermore, DIGITS
visualize learning rate decay as shown in Figure 9. Visualizations of training loss, validation loss, and
validation accuracy in an interactive, constantly updating graph make it easy to see whether or not
the training is going well. A disadvantage is that, because DIGITS work on a fork of Caffe, new
developments of the Caffe repository are merged into it only when the developers of DIGITS decide
to do so.

Figure 8. Proposed residual Squeeze Net architecture with simple bypass connections.

During training process, the weight parameters are randomly initialized with a Gaussian
distribution. The learning rate is initially set as 0.01 and decreases with step size of 10. In addition,
the RMSprop is applied as the optimizer.

4.2. Hardware and Software

We used a GeForce GTX 1080 in our setup to benefit from faster training times in deep learning
frameworks with the support of Cuda and cuDNN. The CPU used is an Intel(R) Core (TM) i7-4790
CPU with eight cores operating at 3.60 GHz.

An Nvidia DIGITS is used as a second framework that works on top of Caffe, or more precisely,
a separate Caffe fork by Nvidia of the official repository. For training, DIGITS provide functionality
for on-the-fly data augmentation using random crops with a fixed size, e.g., randomly taking
227 × 227 regions from a 256 × 256 image in our case, and random horizontal flipping. Furthermore,
DIGITS visualize learning rate decay as shown in Figure 9. Visualizations of training loss, validation
loss, and validation accuracy in an interactive, constantly updating graph make it easy to see whether
or not the training is going well. A disadvantage is that, because DIGITS work on a fork of Caffe,

Sensors 2019, 19, 982 8 of 14

new developments of the Caffe repository are merged into it only when the developers of DIGITS
decide to do so.Sensors 2019, 19, x FOR PEER REVIEW 8 of 14

0 105 15 3020 25
Epoch

0.010

0.008

0.006

0.004

0.002

0

L
ea

rn
in

g
 R

at
e

(a)

0 105 15 3020 25
Epoch

0 105 15 3020 25

100

80

60

40

20

0

7

6

5

4

3

2

1

0

A
cc

ur
ac

y
(%

)

L
os

s

loss (train) accuracy_top1 (val) accuracy_top5 (val) loss (val)
(b)

Figure 9. (a) Learning rate decay is visualized over training epochs. Here, a step function decay is
used, and the learning rate is divided by 10 after one-third and two-thirds of training. (b) Training
loss, validation loss and accuracy are plotted over training epochs.

5. Performance Evaluation

5.1. Dataset

Data from real streets using cameras are collected from seven urban areas in Korea and labelled
to create our own dataset of vehicles, yielding over 291,602 labelled vehicle images for vehicles
recognition. The labelled images are cropped automatically for classification by using symmetrical
filter and split into training, validation and test sets to train and evaluate the neural networks. For
the evaluation, we use the rule of thumb according to the Pareto Principle and select 20% as the test
set and split the remainder again into an 80% training set and a 20% validation set. A subset of our
cropped vehicle dataset which include all the 766 classes and labels will be available at:
https://sites.google.com/view/jbnu-selab.

5.2. Performance of SqueezeNet and Residual SqueezeNet

We evaluate the performance and properties of SqueezeNet and Residual SqueezeNet trained
with vehicle datasets to prove the following hypotheses. First, we show that SqueezeNet recognition
is more accurate as compared to AlexNet in terms of classification and more robust as compared to
AlexNet and GoogLeNet in terms of speed. The performance of Residual SqueezeNet surpasses that
of SqueezeNet in terms of recognition. Second, we analyze the generalization capabilities of the
classifier network and changes to the amount of data provided. Lastly, we compressed SqueezeNet

Figure 9. (a) Learning rate decay is visualized over training epochs. Here, a step function decay is
used, and the learning rate is divided by 10 after one-third and two-thirds of training. (b) Training loss,
validation loss and accuracy are plotted over training epochs.

5. Performance Evaluation

5.1. Dataset

Data from real streets using cameras are collected from seven urban areas in Korea and labelled
to create our own dataset of vehicles, yielding over 291,602 labelled vehicle images for vehicles
recognition. The labelled images are cropped automatically for classification by using symmetrical
filter and split into training, validation and test sets to train and evaluate the neural networks. For the
evaluation, we use the rule of thumb according to the Pareto Principle and select 20% as the test
set and split the remainder again into an 80% training set and a 20% validation set. A subset of
our cropped vehicle dataset which include all the 766 classes and labels will be available at: https:
//sites.google.com/view/jbnu-selab.

5.2. Performance of SqueezeNet and Residual SqueezeNet

We evaluate the performance and properties of SqueezeNet and Residual SqueezeNet trained
with vehicle datasets to prove the following hypotheses. First, we show that SqueezeNet recognition
is more accurate as compared to AlexNet in terms of classification and more robust as compared

https://sites.google.com/view/jbnu-selab
https://sites.google.com/view/jbnu-selab

Sensors 2019, 19, 982 9 of 14

to AlexNet and GoogLeNet in terms of speed. The performance of Residual SqueezeNet surpasses
that of SqueezeNet in terms of recognition. Second, we analyze the generalization capabilities of the
classifier network and changes to the amount of data provided. Lastly, we compressed SqueezeNet
and Residual SqueezeNet to less than 5 MB, which is 53 times smaller than AlexNet and 11 times
smaller than GoogLeNet in size.

As shown in Table 2, we have trained SqueezeNet model with training samples of 233,280,
which contain all 766 classes for 30 epochs and tested the model with 58,322 samples, which contain
all the 766 classes. The SqueezeNet model achieved rank-1 and rank-5 accuracies of 94.23% and 99.38%
respectively. The training loss is almost negligible, as shown in Table 2. After adding the bypass
connections around Fire modules 3, 5, 7, and 9, these modules learn a residual function between input
and output. Interestingly, the simple bypass enabled an improvement in accuracy as compared to the
architecture without bypass connections. Adding the simple bypass connections yielded an increase
of 2.1 percent-age-points in rank-1 accuracy and 0.14 percentage-points in rank-5 accuracy without
increasing the model size.

Table 2. Performance of SqueezeNet and residual SqueezeNet.

Architecture No. of
Classes

No. of Training
Samples

No. of Test
Samples

Rank-1
Accuracy

Rank-5
Accuracy Loss

SqueezeNet 766 233,280 58,322 94.23% 99.38% 0.0516

Proposed Residual
SqueezeNet 766 233,280 58,322 96.33% 99.52% 0.0397

5.3. Generalization of New Data and Processing

Evaluation of the generalization capabilities of the model and dataset is important for
demonstrating its utility for new applications. We tested SqueezeNet and Residual SqueezeNet in
real-time with new video data, which contains 112 vehicles, out of which, 111 are correctly recognized.
We also recorded recognition time per vehicle in the video, which was calculated to be 108.81 ms
using SqueezeNet, as shown in Table 3. Residual SqueezeNet gives the same accuracy in terms of
recognition, but in terms of recognition time, Residual SqueezeNet took 0.44 ms more than SqueezeNet
recognition time. However, the recognition capabilities of both models prove that we can use both
models in real-time due to their fast processing speed.

Table 3. Generalization to new data and processing time.

Architecture Correctly Recognized
Vehicles (out of 112)

Per Vehicle Recognition
Time (ms)

SqueezeNet 111 108.81

Proposed Residual SqueezeNet 111 109.25

5.4. Model Size and Number of Parameters

We proposed decreasing the number of parameters by using squeeze layers to decrease the number
of input channels by 3 × 3 filters. With the reduction in the number of parameters, the SqueezeNet and
Residual SqueezeNet file size is compressed to less than 5 MB, which is 53 times smaller than AlexNet
and 11 times smaller than GoogLeNet in size. The number of parameters and the size of the model is
summarized in Table 4.

Sensors 2019, 19, 982 10 of 14

Table 4. Model size and number of parameters.

AlexNet [23] GoogLeNet [23] SqueezeNet Proposed Residual
SqueezeNet

No. of Parameters 59,983,292 6,752,430 1,118,974 1,118,974

Model Size (MB) 229.0 49.4 4.4 4.4

5.5. Comparison of the Proposed Method with State-Of-The-Art Methods

Owing to the traditional method-based literatures of vehicle MMR difficult-to-handle large-scale
class data, they used fewer vehicle classes for experiments [27–30]. Thus, it is unrealistic to make exact
comparisons. Nevertheless, to provide different views to analyse our work, as did in [31], we list other
relevant works’ results as listed in Table 5.

Table 5. Reported results of few state-of-the-art methods.

Methods Classes No. of Samples Rank-1 Accuracy (%) Recognition Time (ms)

He et al. [2] 30 1196 92.47 500.0

Llorca et al. [4] 52 1342 94.00 -

Pearce et al. [27] 74 262 96.00 432.5

Psyllos et al. [28] 11 110 85.00 363.8

Psyllos et al. [29] 10 400 92.00 913.0

Siddiqui et al. [30] 29 6601 94.84 137.9

Fang et al. [31] 281 44,481 98.63 -

Proposed Method 766 291,602 96.33 109.5

From it, we can observe that the proposed method achieves a state-of-the-art rank-1 accuracy on
the 766 models, which indicates the promising performance of our method for real-world application.
Other performance parameters, such as execution time and memory usage were not compared because
the most of these methods were based on traditional image processing technology instead of deep
neural networks.

For a fair comparison, in this study, we also compared our results with popular deep networks
of AlexNet and GoogLeNet, as reported in [26], which contemplated large-scale vehicle models.
We have proposed steps towards a more disciplined approach for the design-space exploration of
CNNs. Towards this goal, we have presented SqueezeNet and Residual SqueezeNet architectures for
extraction of vehicle information such as make, model, and type. The SqueezeNet CNN architecture,
which required less than 2% of parameters as compared to AlexNet, surpassed the AlexNet-level
architectures by 94.23% in terms of recognition accuracy on our vehicle database. Additionally,
with model compression techniques, we are able to compress SqueezeNet and Residual SqueezeNet
file size to less than 5 MB. Using SqueezeNet, we were able to pull up the accuracy to 94.23% of rank-1
level, which surpasses the accuracy for AlexNet, which is 93.57%. By adding the bypass connections,
we were able to increase the rank-1 accuracy of SqueezeNet by 2.1% and reduce the loss value with
the same model size and comparable time cost. The proposed system, when implemented in real
time, proves to be very efficient, with an economical time slice of 108.81 ms. Our system is highly
reliable for real-time applications given the subsequent decrease in the number of parameters, memory
size and computational time. SqueezeNet and Residual SqueezeNet involve considerably smaller
architectures and perform very well when it comes to processing time as compared to GoogLeNet and
AlexNet. The proposed model is also memory efficient; the total size of the SqueezeNet and Residual
SqueezeNet is 4379 KB, which is much smaller compared to the size of GoogLeNet, which is 49,446 KB
and that of AlexNet, which is 229 MB. Furthermore, the performances of small architectures have been
found to be better than the later models.

Sensors 2019, 19, 982 11 of 14

In fact, for a given accuracy, we can design different architectures with a different number of
parameters and enable them to search for the suitable network architectures that can achieve the
given accuracy. By using the approach provided by SqueezeNet, we were able to achieve better
accuracy than AlexNet with a lesser number of parameters by selecting the most important parameters
that give the best accuracy and neglecting the parameters that have a lower effect on the accuracy.
Another advantage of SqueezeNet over AlexNet and GoogLeNet is fewer number of parameters,
which translates into a lower probability of overfitting. Hence, it performs better on the test set and is
more generalized to the new data as compared to the AlexNet and GoogLeNet.

Our models have been successful to a greater extent in decreasing the vulnerability of such
systems in real-time, especially in terms of recognition. The performance of the proposed Residual
SqueezeNet models as compared to other state-of-the-art deep learning models is given in Table 6.
By our network, the classification time for each vehicle image achieves 109.54 ms, which much faster
than AlexNet and GoogLeNet.

Table 6. Proposed residual SqueezeNet in comparison with the state-of-the-art deep learning models.

Parameter AlexNet [23] GoogleNet [23] SqueezeNet Proposed Residual
SqueezeNet

Rank-1 Accuracy (%) 93.57 94.31 94.23 96.33

Rank-5 Accuracy (%) 99.02 99.46 99.38 99.52

Loss 0.0835 0.1259 0.0516 0.0397

Parameters (K) 59,983 6752 1118 1118

Size (KB) 229,000 49,446 4379 4379

Classification Time (ms) 294.71 531.40 108.81 109.54

5.6. Performance of SqueezeNet with Respect to Fire Modules

To evaluate which architecture was best in terms of accuracy, we performed a series of experiments
during the course of our study. In one of our experiments, we tried to modify the SqueezeNet in
order to know why we selected eight Fire modules. Our experimental results proved that while using
SqueezeNet with four Fire modules we achieved 93.60% of rank-1 accuracy and the simultaneous
training loss was 0.1367, whilst the rank-5 accuracy achieved was 99.19%. Similarly, for six Fire
modules we achieved 93.58% rank-1 accuracy and the training loss was 0.1765 and 99.14% rank-5
accuracy. For nine Fire modules, we achieved 93.56% accuracy with 0.1725 training losses and 99.19%
rank-5 accuracy. Finally, with ten Fire modules we achieved 93.38% accuracy with 0.2044 training
losses and 99.17% rank-5 accuracy. We found that the best accuracy of 94.23% is achieved with eight
Fire modules, as shown in Table 7.

Table 7. SqueezeNet performance of models with respect to Fire modules.

No. of Fire Modules Training Loss Rank-1 Accuracy (%) Rank-5 Accuracy (%)

10 0.2044 93.38 99.17

9 0.1725 93.56 99.18

8 0.0516 94.23 99.38

6 0.1765 93.58 99.14

4 0.1367 93.61 99.19

The graphical trend of the number of parameters with respect to Fire modules is shown in
Figure 10. We can see that with the growing number of Fire modules, the size of parameters also
increases. As it can be seen, the SqueezeNet with 4, 6 and 8 Fire modules have almost the same

Sensors 2019, 19, 982 12 of 14

parameter number of 1,000,000. When the number of Fire modules exceeds eight, the parameter
number increase drastically. This increase results in a corresponding increase in the model size, which,
in turn, makes its implementation difficult for use with embedded systems that have a limited memory.
Sensors 2019, 19, x FOR PEER REVIEW 12 of 14

Figure 10. Number of parameters of SqueezeNet with respect to Fire modules.

6. Conclusions

In this study, an optimized SqueezeNet has been modeled for vehicle MMR. Our contributions
are threefold. First, a large-scale dataset for vehicles recognition with over 291,602 images comprising
766 classes has been created and is made publicly available (http://cse.jbnu.ac.kr). Second, a cluster
method was proposed to incorporate deep learning techniques to assist faster labeling of a large-scale
vehicle make and model dataset. Experimental results demonstrate that our cluster method
significantly speeds up the labeling task compared to the manual labeling of each image. Third, we
proposed and investigated an approach for a highly robust and real-time automated vehicle MMR
based on memory-efficient CNN architectures. Toward this goal, we demonstrated the usefulness of
SqueezeNet deep networks employed to address the challenges in VMMR. The SqueezeNet
architectures employed enable real-time application use because of compressed model sizes without
a considerable change in the recognition accuracy of 96.33% at the rank-1 level. Experimental results
have proved the superiority of our proposed system in vehicle MMR. For future work, we plan to
further optimize Residual SqueezeNet architecture like adaptive networks to achieve better accuracy
and focus on non-frontal vehicle recognition in real-time scenarios. It is also necessary to train our
network with larger dataset to handle more vehicle models.

Author Contributions: H.L., I.U., and W.W. developed the main framework and collaborated in writing the
paper. All other authors contributed by revising the manuscript.

Funding: This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under
the ITRC (Information Technology Research Center) support program (IITP-2018-2015-0-00378) supervised by
the IITP (Institute for Information & communications Technology Promotion). This research was also supported
by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (GR 2016R1D1A3B03931911). This study was also financially supported by the grants of
China Scholarship Council (CSC No.2017 08260057).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lim, S. Intelligent transport systems in Korea. IJEI Int. J. Eng. Ind. 2012, 3, 58–64.
2. He, H.; Shao, Z.; Tan, J. Recognition of car makes and models from a single traffic-camera image. IEEE

Trans. Intell. Transp. Syst. 2015, 16, 3182–3192.
3. Chen, L.; Hsieh, J.; Yan, Y.; Chen, D. Vehicle make and model recognition using sparse representation and

symmetrical SURFs. Pattern Recognit. 2015, 48, 1979–1998.
4. Llorca, D.; Colás, D.; Daza, I.; Parra, I.; Sotelo, M. Vehicle model recognition using geometry and

appearance of car emblems from rear view images. In Proceedings of the 2014 IEEE 17th International
Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 3094–
3099.

0

1

2

3

4

5

4 6 8 9 10

Pa
ra

m
et

er
s

(×
10

6)

Fire Modules

Figure 10. Number of parameters of SqueezeNet with respect to Fire modules.

6. Conclusions

In this study, an optimized SqueezeNet has been modeled for vehicle MMR. Our contributions
are threefold. First, a large-scale dataset for vehicles recognition with over 291,602 images comprising
766 classes has been created and is made publicly available (http://cse.jbnu.ac.kr). Second, a cluster
method was proposed to incorporate deep learning techniques to assist faster labeling of a large-scale
vehicle make and model dataset. Experimental results demonstrate that our cluster method
significantly speeds up the labeling task compared to the manual labeling of each image. Third,
we proposed and investigated an approach for a highly robust and real-time automated vehicle MMR
based on memory-efficient CNN architectures. Toward this goal, we demonstrated the usefulness
of SqueezeNet deep networks employed to address the challenges in VMMR. The SqueezeNet
architectures employed enable real-time application use because of compressed model sizes without a
considerable change in the recognition accuracy of 96.33% at the rank-1 level. Experimental results
have proved the superiority of our proposed system in vehicle MMR. For future work, we plan to
further optimize Residual SqueezeNet architecture like adaptive networks to achieve better accuracy
and focus on non-frontal vehicle recognition in real-time scenarios. It is also necessary to train our
network with larger dataset to handle more vehicle models.

Author Contributions: H.L., I.U., and W.W. developed the main framework and collaborated in writing the paper.
All other authors contributed by revising the manuscript.

Funding: This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea,
under the ITRC (Information Technology Research Center) support program (IITP-2018-2015-0-00378) supervised
by the IITP (Institute for Information & communications Technology Promotion). This research was also supported
by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (GR 2016R1D1A3B03931911). This study was also financially supported by the grants of
China Scholarship Council (CSC No.2017 08260057).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lim, S. Intelligent transport systems in Korea. IJEI Int. J. Eng. Ind. 2012, 3, 58–64.
2. He, H.; Shao, Z.; Tan, J. Recognition of car makes and models from a single traffic-camera image. IEEE Trans.

Intell. Transp. Syst. 2015, 16, 3182–3192. [CrossRef]
3. Chen, L.; Hsieh, J.; Yan, Y.; Chen, D. Vehicle make and model recognition using sparse representation and

symmetrical SURFs. Pattern Recognit. 2015, 48, 1979–1998. [CrossRef]

http://cse.jbnu.ac.kr
http://dx.doi.org/10.1109/TITS.2015.2437998
http://dx.doi.org/10.1016/j.patcog.2014.12.018

Sensors 2019, 19, 982 13 of 14

4. Llorca, D.; Colás, D.; Daza, I.; Parra, I.; Sotelo, M. Vehicle model recognition using geometry and appearance
of car emblems from rear view images. In Proceedings of the 2014 IEEE 17th International Conference on
Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 3094–3099.

5. Fraz, M.; Edirisinghe, E.A.; Sarfraz, M.S. Mid-level-representation based lexicon for vehicle make and
model recognition. In Proceedings of the 2014 22nd International Conference on Pattern Recognition (ICPR),
Stockholm, Sweden, 24–28 August 2014; pp. 393–398.

6. AbdelMaseeh, M.; Badreldin, I.; Abdelkader, M.F.; El Saban, M. Car Make and Model recognition combining
global and local cues. In Proceedings of the 2012 21st International Conference on Pattern Recognition
(ICPR), Tsukuba, Japan, 11–15 November 2012; pp. 910–913.

7. Jang, D.; Turk, M. Car-Rec: A real time car recognition system. In Proceedings of the 2011 IEEE Workshop on
Applications of Computer Vision (WACV), Kona, HI, USA, 5–7 January 2011; pp. 599–605.

8. Baran, R.; Rusc, T.; Fornalski, P. A smart camera for the surveillance of vehicles in intelligent transportation
systems. Multimed. Tools Appl. 2016, 75, 10471–10493. [CrossRef]

9. Santos, D.; Correia, P.L. Car recognition based on back lights and rear view features. In Proceedings of
the 10th Workshop on Image Analysis for Multimedia Interactive Services, London, UK, 6–8 May 2009;
pp. 137–140.

10. Ren, Y.; Lan, S. Vehicle make and model recognition based on convolutional neural networks. In Proceedings
of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing,
China, 26–28 August 2016; pp. 692–695.

11. Dehghan, A.; Masood, S.Z.; Shu, G.; Ortiz, E.G. View Independent Vehicle Make, Model and Color
Recognition Using Convolutional Neural Network. arXiv 2017, arXiv:1702.01721.

12. Huang, K.; Zhang, B. Fine-grained vehicle recognition by deep Convolutional Neural Network.
In Proceedings of the International Congress on Image and Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI), Datong, China, 15–17 October 2016; pp. 465–470.

13. Gao, Y.; Lee, H.J. Local tiled deep networks for recognition of vehicle make and model. Sensors 2016, 16, 226.
[CrossRef] [PubMed]

14. Al-Smadi, M.; Abdulrahim, K.; Salam, R.A. Traffic surveillance: A review of vision based vehicle detection,
recognition and tracking. Int. J. Appl. Eng. Res. 2016, 11, 713–726.

15. Hsieh, J.W.; Chen, L.; Chen, D. Symmetrical SURF and its applications to vehicle detection and vehicle make
and model recognition. IEEE Trans. Int. Transp. Syst. 2014, 15, 6–20. [CrossRef]

16. Ma, X.; Grimson, W.E.L. Edge-based rich representation for vehicle classification. In Proceedings of the
Tenth IEEE International Conference on Computer Vision (ICCV’05), Beijing, China, 17–21 October 2005;
pp. 1185–1192.

17. Aarathi, K.S.; Abraham, A. Vehicle color recognition using deep learning for hazy images. In Proceedings of
the 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT),
Coimbatore, India, 10–11 March 2017; pp. 335–339.

18. Biglari, M.; Soleimani, A.; Hassanpour, H. A Cascaded Part-Based System for Fine-Grained Vehicle
Classification. IEEE Trans. Intell. Transp. Syst. 2018, 19, 273–283. [CrossRef]

19. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV’15), Santiago, Chile, 7–13 December 2015; pp. 1440–1448.

20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal
networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems
(NIPS’15), Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

21. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27–30 June 2016.

22. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006,
313, 504–507. [CrossRef] [PubMed]

23. Alex, K.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA,
3–6 December 2012.

24. Szegedy, C.; Liu, W.; Jia, Y. Going Deeper with Convolutions. Available online: http://arxiv.org/abs/1409.
4842 (accessed on 17 September 2014).

http://dx.doi.org/10.1007/s11042-015-3151-y
http://dx.doi.org/10.3390/s16020226
http://www.ncbi.nlm.nih.gov/pubmed/26875983
http://dx.doi.org/10.1109/TITS.2013.2294646
http://dx.doi.org/10.1109/TITS.2017.2749961
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842

Sensors 2019, 19, 982 14 of 14

25. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50× fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

26. Yang, L.; Luo, P.; Loy, C.C.; Tang, X. A large-scale car dataset for fine-grained categorization and verification.
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Boston, MA, USA, 7–12 June 2015; pp. 3973–3981.

27. Pearce, G.; Pears, N. Automatic make and model recognition from frontal images of cars. In Proceedings
of the 2011 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS),
Klagenfurt, Austria, 30 August–2 September 2011; pp. 373–378.

28. Psyllos, A.; Anagnostopoulos, C.N.; Kayafas, E. Vehicle model recognition from frontal view image
measurements. Comput. Stand. Interfaces 2011, 33, 142–151. [CrossRef]

29. Psyllos, A.; Anagnostopoulos, C.N.; Kayafas, E. SIFT-based measurements for vehicle model recognition.
In Proceedings of the XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal,
6−11 September 2009.

30. Siddiqui, A.J.; Mammeri, A.; Boukerche, A. Real-time vehicle make and model recognition based on a bag of
surf features. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3205–3219. [CrossRef]

31. Fang, J.; Zhou, Y.; Yu, Y.; Du, S. Fine-grained vehicle model recognition using a coarse-to-fine convolutional
neural network architecture. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1782–1792. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.csi.2010.06.005
http://dx.doi.org/10.1109/TITS.2016.2545640
http://dx.doi.org/10.1109/TITS.2016.2620495
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	General Architecture of Vehicle MMR System
	Convolutional Neural Networks
	SqueezeNet

	Vehicle Data Clustering and Labelling
	Dataset Clustering
	Dataset Labelling

	The Proposed MMR System
	Residual SqueezeNet Architecture
	Hardware and Software

	Performance Evaluation
	Dataset
	Performance of SqueezeNet and Residual SqueezeNet
	Generalization of New Data and Processing
	Model Size and Number of Parameters
	Comparison of the Proposed Method with State-Of-The-Art Methods
	Performance of SqueezeNet with Respect to Fire Modules

	Conclusions
	References

