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Abstract: Fruit flies (Diptera: Tephritidae) cause losses to world fruit growing. For a fast and effective
control of the pest, it is necessary to identify the species and their populations. Thus, we developed
an infrared optoelectronic sensor using phototransistors to capture the signal of the partial occlusion
of the infrared light caused by the beating of the fly wings. Laboratory experiments were conducted
using the sensor to capture the wing beat signal of A. fraterculus and C. capitata. The captured signals
were used to obtain the characteristics of the flies’ wing beats frequency and for a production of a
dataset made available as one of the results of this work. For the passage detection, we developed the
algorithm of detection of events of passage (PEDA) that uses the root mean square (RMS) value of a
sliding window applied to the signal compared to a threshold value. We developed the algorithm
of detection of events of passage (CAEC) that uses the techniques of autocorrelation and Fourier
transform for the extraction of the characteristics of the wings’ beat signal. The results demonstrate
that it is possible to use the sensor for the development of an intelligent trap with detection and
classification in real time for A. fraterculus and C. capitata using the wing beat frequency obtained by
the developed sensor.

Keywords: fruit fly; optoelectronic sensors; classification of automated insects; signal processing;
precision agriculture; pest monitoring

1. Introduction

Fruit flies (Diptera: Tephritidae) are considered to be the main pests affecting fruit growing worldwide
causing direct and indirect damages in production. In Europe alone, these losses and impacts are estimated
to cost at least EUR 12 billion per year [1]. In Brazil, data from the Ministry of Agriculture, Livestock
and Supply estimates that, in 2015, the damage caused by fruit flies to Brazilian farmers with production
losses and costs in pest control was US$ 120 million [2]. The presence of flies also makes it impossible to
export fresh fruit to more demanding and profitable markets such as Japan, the United States and Chile [2].
The main species of fruit flies of economic importance in Brazil belong to three genera: Anastrepha, Bactrocera
and Ceratitis. Among the species of fruit flies present in Brazil, those that present quarantine restrictions
for importing countries are: Anastrepha fraterculus (Wiedemann, 1830), Anastrepha obliqua (Macquart,
1835), Anastrepha grandis (Macquart, 1846), Ceratitis capitata (Wiedemann, 1824) and Bactrocera carambolae
(Drew and Hancock, 1994) [3].
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Fruit flies have wide geographical distribution and a large number of hosts. In the southern
region of Brazil, C. capitata and A. fraterculus (Figure 1) develop in several fruit trees and can not make
production feasible if control measures are not adopted [4].

Figure 1. Fruit flies C. capita and A. fraterculus.

Fruit growers control the fruit flies in an unruly manner using insecticides in the form of bait-toxic
or by cover without knowledge of the infecting species, levels of infestation and distribution of hosts.
This type of control has several undesirable consequences such as environmental impact, reduction in
fruit quality, export restrictions due to the presence of chemical residues and an increase in the cost of
production [4].

For the management of fruit flies, monitoring is essential through the use of attractive bait traps.
One of the possible types of traps is McPhail that uses food attractions to catch adult fruit flies (Figure 2).
It is also possible to use sex pheromones to attract adults, such as the paraferomonium used in Deltas
traps to attract C. capitata. When the traps are used for monitoring, a technician must perform the
inspection of the traps by classifying and counting the captured flies.

Figure 2. McPhail trap during peach orchard monitoring.

For the use of an intelligent monitoring system that automatically counts and identifies fruit
flies, replacing the use of a specialized technician for this task will both minimize human errors in the
identification and counting of flies and reduce the cost of the monitoring program. The system can be
used both as auxiliary means to corroborate the survey carried out by the technician, as it may be the
main means in situations that there are difficulties for the presence of the technician.
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The use of optoelectronics for insect identification was presented by [5], where a photoreceptor
was used to capture the variation of ambient light generated by the beating of the insect wings during
flight. This variation of light is processed and determines the frequency of the beating of the insect
wings. According to [6], this frequency depends on the physiological characteristics of the species and
can be used for its identification.

Currently, this technique has been employed in the development of an intelligent mosquito
trap [7–9]. For these works, a low cost optoelectronic sensor has been developed in which a light
barrier is created with the use of a low power laser. The created light is reflected by a reflector being
picked up by a phototransistor placed next to the laser. Thus, when the insect crosses the light barrier,
it is partially occluded by its wing movement, this variation being captured by the phototransistor [7].

Optoelectronic sensors were also used in the design of the intelligent trap for olive fruit flies
Bactrocera oleae (Rossi, 1790) [10–14]. The developed sensor uses the infrared LED (LED-IR) as an
emitter to create the light barrier and as receivers uses photodiodes.

For the extraction of the characteristics of the signal, the analysis of the frequency spectrum is
used to locate the fundamental frequency of the signal [7], frequency spectrum, circadian rhythm of
flight activity and geographical location [8], Mel-frequency cepstral coefficients (MFCC) [9], use of
the root mean square value (RMS) of the captured signal to detect passing events [10], use of Fast
Fourier transform(FFT) with Hamming windowing to obtain the captured signal spectrum [11] and
FFT to obtain the fundamental frequency, differences between the real harmonics and the theoretical
harmonics, the distribution of energy in the harmonics and the amplitude of the signal near the
frequency of 0 Hz (related to the body size of the insect) [14].

Several types of classifiers are used for the identification of insects through the wing beat signal
such as: Bayesian classifiers [7,8], Support Vector Machines (SVM) with Radial Basis Function (RBF) [9],
comparison with a reference spectrum using the algorithm K-means [11], and classification through a
set of rules when using traps with attractive pheromone and without the presence of other fruit flies.
In the work presented by [14], several classifiers such as Linear Support Vector Machines, Radial Basis
Function kernel Support Vector Machine [14], Random Forests, Adaptive Boost, X-TREE, Group-Based
Classification and Convolutional Neural Network were analyzed.

This work presents the development of an optoelectronic sensor for use in a McPhail trap and
the study of signal processing techniques for detecting and discriminating fruit flies (C. capitata and
A. fraterculus) in real time, which can be integrated into an automated alert system to inform farmers
about pest status. A desirable feature of the sensor was to use readily available and inexpensive parts.
A dataset of the signals generated by wing beat of flies was produced for this work and made available
for later performance evaluation.

2. Materials and Methods

2.1. Optoelectronic Sensor Prototype

The developed optoelectronic sensor was based in the work presented by [15], where the authors
present an optoelectronic sensor using as emitters infrared LEDs and, as phototransistors receivers,
the hardware was developed for the treatment of the captured signal and a base for the sensor to
be coupled to a McPhail trap. The sensor was evaluated through an insect wing beat simulator
developed for the work. The base developed with the emitter and receiver circuits is shown in
Figure 3, the infrared LED TIL32 being used as an emitter and the phototransistor TIL78 as a receiver.
The drawing of the fly in Figure 3 indicates the area of passage through the sensor and the direction of
flight of the flies. Thus, the sensor may be coupled to a McPhail trap for the future development of an
intelligent trap (Figure 4).
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Figure 3. Optoelectronic sensor base with emitter and receiver circuits (left) and optoelectronic sensor
ready for use (right).

Figure 4. Proposal of a McPhail intelligent trap using the developed sensor optoelectronic sensor.

The hardware for the optoelectronic sensor proposed by [15] was revisited and modified,
being divided into eight functional blocks based on the diagram presented in Figure 5. The blocks
LED-IR, phototransistor receiver and LED-IR control were not modified and the blocks transimpedance
amplifier, analog high-pass filter, analog low-pass filter, amplifier signals and computerized system
were modified, being described in the sequence:

Figure 5. Diagram in sensor circuit blocks.
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1. Transimpedance amplifier—The block of the transimpedance amplifier has the function of
converting the current generated by the incidence of light on the phototransistors into a voltage.
For the circuit of the transimpedance amplifier, three configurations were evaluated (Figure 6),
the one that presented better performance in the experiments with respect to the noise and signal
distortion was configuration A.

2. Analog high-pass filter—The analog high-pass filter has as its function the elimination at the
DC level generated by the base light emitted by the TIL32, allowing the passage of only the
electrical signal corresponding to the variation of light caused by the beating of the wings of the
insects. The Butterworth approximation was used to calculate the filter, since it has a flat frequency
response in the passband without the presence of ripple at the cut-off frequency. This characteristic
is important because of the close-up of the cut-off frequency of the high-pass filter (70 Hz) with
the lowest frequency of interest 89.1 ± 4.5 Hz (fundamental frequency of the wing beat signal
of the A. fraterculus [6]). The order of the implemented filter was determined experimentally by
evaluating the noise generated by the electric network (60 Hz) that is close to the cut-off frequency
(70 Hz). Thus, a sixth order filter was implemented using the Butterworth approximation, having as
characteristics a cut-off frequency of 70 Hz, unit gain in the bandwidth, attenuation of−60 dB per
decade and a 0 dB ripple in the passband. The bode diagram of analog filter implemented is shown in
Figure 7, where the cut-off frequency is observed at 70 Hz without ripple and with an attenuation of
−10 dB at 60 Hz. For the filter design, the Multiple Feedback topology (MFB) was used. The filter
was implemented with three second order stages connected in cascade. The choice of the MFB
topology was due to its greater robustness to the variation of the component values [16], allowing
the use of components with higher tolerance and lower cost.

3. Analog low-pass filter—The analog low-pass filter has the function of limiting the upper
frequency of the passband, serving as an anti-alias filter. Thus, the use of a low-pass filter
of sixth order, cut-off frequency of 5000 Hz, with unit gain in the passband and 0 dB ripple
in the passband was defined. In this way, the filter allows the passage of the frequencies of
interest that are below 1000 Hz and that in the future a sample rate of at least 10 ksamples/s
could be used, without modifications in the hardware. Using the Butterworth approximation
and the design requirements, the following transfer function was obtained for the low pass filter.
The bode diagram of the filter developed using the Butterworth approximation is shown in
Figure 8, where the cut-off frequency is observed at 5000 Hz without ripple. The low-pass filter
design was performed using the MFB topology with a three-stage implementation of second
order cascade connected.

4. Signal amplifier—The signal amplifier block functions to amplify the signal conditioned by
the analog filters on the full scale of the A/D converter. In this way, it is possible to obtain a
higher resolution of the signal during the conversion. This block is composed of a two-stage
amplifier, and both stages were designed using an operational amplifier configured as an inverter
amplifier. The two-stage configuration was chosen to minimize the signal offset error caused by
a high gain single stage amplifier. To determine the total gain required in the signal amplifier,
we considered: the full scale voltage of 2 Vpp of the line input of the sound card used as the
A/D converter, the intensity of the light generated by the transmitter with an active and current
line of polarization of 20 mA and gain adjustment was made using as reference the passage of
A. fraterculus, which, being the largest insect, caused the greatest variation in signal amplitude.
Thus, the signal amplifier circuit has a total gain of 270 with a lower cut-off frequency of 0.72 Hz
and a cut-off frequency over 48.2 kHz. The sensor hardware composed of the transimpedance
amplifier, analog high-pass filter, analog low-pass filter and signal amplifier has an estimated
total gain of 405× 106, lower cut-off frequency of 70 Hz, and a higher cut-off frequency 5 kHz.

5. Computerized system—In the implementation of the computerized system block, a Dell Optiflex
9010 PC computer was used, with an Intel (R) Core i5-3570M 3.40 GHz processor, 8.00 GB memory,
Windows 10 PRO operating system, sound Realtek High Definition Audio version 6.0.1.6075. Thus,
the output of the signal amplifier was connected to the audio line input of the computer, using
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the A/D converter of the audio card for the conversion of the captured signal. Audacity software
version 2.1.3 was used to record signal files. The amplitude of the recorded signal was normalized
by the software to values between −1 and 1. The recording was performed with 16-bit resolution,
mono and sampling rate of 192 ksamples/s. Although the sensor has an upper cut-off frequency
of 5 kHz, allowing a minimum sampling rate of 10 ksamples/s, the highest sampling rate available
in the computerized system (192 ksamples/s) was used. This allowed, at this stage of the project,
to verify in the captured signal the existence of undesired frequencies generated by spurious
sources (e.g., computerized system or due to problems in the design of the sensor), which could
hinder signal analysis. Another goal was to make the dataset more flexible, allowing the future
evaluation of lower sampling rates, by performing sub-sampling of the signals that make up
the dataset. The digital processing of the captured audio signals was performed using SciLab
software version 6.0.0, where the scripts used in the analysis were implemented.

Figure 6. Evaluated configurations for the transimpedance circuit.

Figure 7. Bode diagram, with the Bode Magnitude plot (a) and the Bode Phase plot (b), of analog
high-pass filter implemented.

2.2. Method of Measuring the Signals Generated by the Beating of Wings of Fruit Flies A. fraterculus and
C. capitata

The Embrapa Clima Temperado company, located in the city of Pelotas, RS, Brazil, provided the
A. fraterculus and C. capitata flies used in the experiments. The flies were produced in the laboratory
according to the creative technique [17]. Thus, insects with integral wings and with full flight capacity
were used.
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Figure 8. Bode diagram, with the Bode Magnitude plot (a) and the Bode Phase plot (b), of analog of
analog low-pass filter implemented.

The system used in the experiment to measure the wing beat signal generated by A. fraterculus
and C. capitata (Figure 9) consisted of an adapted cage where puparium was placed within a PVC pipe
(10 cm length × 10 cm diameter), positioned under the sensor passage area. The interior of the PVC
tube was coated with white talc to prevent the flies from climbing walking. Forcing them to perform
a vertical flight upwards to leave the PVC pipe. Thus, flying through the passage area of the sensor.
The experiments were performed with natural light and with an ambient temperature of 28 ± 1 ◦C.

Signal recording was performed by connecting the output of the sensor signal amplifier to the
line input of the computer system sound card. The signal was recorded using the Audacity software
that normalized the amplitude of the signals to values between −1 and 1. Recording was performed
on signal tracks for one hour each. The experiment was completed when it was visibly observed that
the remaining insects did not make attempts to fly out of the PVC pipe passing through the sensor.

For the identification of possible events of passage of flies, the algorithm of detection of events
of passage (PEDA) was developed. The algorithm calculates the RMS value of the captured signal
and compares it to an experimentally established detection threshold. A passing event is detected
when the RMS value exceeds the detection threshold. The RMS value was obtained using Equation (1),
with a sliding window of 30 ms on the signal and 10 ms overlap between the windows:

RMS value =

√
1
n

n

∑
i=1

x2
i , (1)

where n represents the number of samples in the evaluation window. When the RMS value exceeds
an established threshold value, it was considered that a possible event of passage of a fly occurred
through the sensor. Figure 10 presents a captured signal extract, with background noise and luminosity
fluctuations (I, II, III, IV and V).

Figure 11 shows the result of the PEDA algorithm with the threshold of 1 applied to the signal
shown in Figure 10. It can be observed that insect passage events exceeded the considered threshold
(I, II and V) and insect fluctuations that tried to pass through the sensor and did not obtain success
being below the threshold considered (III and IV).
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Figure 9. System used in the experiment to measure the signal of fruit flies, with the detail of the
positioning of the PVC pipe and the sensor.

Figure 10. Signal extract captured with brightness fluctuations in I, II, III, IV and V.

When a passing event is detected, its start and end are evaluated and, based on these values,
the signal window of the event is stored. The window was stored with the 50 ms of signal before the
start of the event and with the 50 ms of signal after the end of event (Figure 12). This interval has been
defined experimentally to ensure that the signal from the insect passage is within the window.

The localized events were analyzed and classified into a standard group for characterization of
the insect signal. The criterion used to classify events in the standard group was that the signal should
be at least 100 ms in duration without considering the 50 ms added at the beginning and end of each
passing event and be a direct passage through the sensor.

For the extraction of characteristics of the signals of detected events of passage, an algorithm of
automatic extraction of characteristics (CAEA) was developed. Initially, a Blackman–Harris window
was applied to the stored signal, as suggested by [18], with its mathematical model given by

ω(n) = a0 − a1cos
(

2πn
N − 1

)
+ a2cos

(
4πn

N − 1

)
− a3cos

(
6πn

N − 1

)
, (2)

where a0 = 0.35875, a1 = 0.48829, a2 = 0.14128 and a3 = 0.01168.
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Figure 11. Results of the RMS value using threshold one obtained with the PEDA algorithm applied to
the signal of Figure 10, with passages detected in I, II and V and disregarded in III and IV.

Figure 12. Stored signal window based on insect passage detection.

The application of the Blackman–Harris window on the stored signal consists of calculating
the mathematical model of the window used for each stored point of the signal; this allows for the
smoothing of the edges caused by the clipping of the event signal of the original signal, minimizing
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the appearance of frequencies nonexistent or fictitious in the spectrum of this signal during the FFT.
With the signal submitted to the Blackman–Harris window, it has been expanded by inserting new
samples with a value of zero until the size of the analysis window has the time of one second. In this
way, a resolution of 1 Hz was obtained in the execution of the FFT method (CAEA algorithm), allowing
a more detailed analysis of the wing beat signal of the insects.

The CAEA algorithm uses the autocorrelation and FFT techniques to extract the characteristics
of the signal. The autocorrelation (Equation (3)) was used to obtain information on the fundamental
frequency of signal generated by the wing beat of flies. The autocorrelation method was implemented
using the xcorr() function of Scilab:

rxx(l) =
Nw

∑
i=1

x(i + l)x(i). (3)

The results of the CAEA algorithm (autocorrelation method) for the signal shown in Figure 12
are presented in Figure 13, where it is noted that the peak of greater amplitude has a delay of 10 ms.
This means that the analyzed signal has a fundamental period (T0) of 10 ms, that is, a fundamental
frequency (F0) of 100 Hz.

Figure 13. Results of the CAEA algorithm (autocorrelation method) with a fundamental frequency in
100 Hz.

For the analysis of the frequency spectrum of the signal, the CAEA algorithm uses the FFT method
Equation (4), being implemented with the function fft() of Scilab. The peak of greater magnitude is
located in the frequency spectrum of the signal, considered the fundamental frequency of the signal.
After the next four peaks of greater magnitude are located, they are located above the fundamental
frequency, considering the other four analyzed components of the signal:

FFT =
Wn−1

∑
i=0

xi.e
−j2π
Wn . (4)

The frequency spectrum result obtained with the CAEA algorithm (FFT method) in the signal
analysis of Figure 12 is presented in Figure 14. Note that the fundamental frequency of 105 Hz
corresponds to that obtained by the CAEA algorithm (autocorrelation method) (100 Hz) and the peaks
of magnitude at 125 Hz, 210 Hz and 305 Hz correspond to the other four frequency components.

The characteristics of the signal of each passing event obtained with the CAEA algorithm were
stored in a file and the statistical analysis of the data was performed. The statistical methods applied
were based on the one proposed by [19], using software [20] for their implementation.
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For the analyses, we obtained the descriptive measures statistical arithmetic mean (X̄),
sample standard error (Sx), sample standard deviation (S), kurtosis coefficient (K), Coefficient of
asymmetry (As), sample range (H), minimum sample value (Min) and maximum sample value (Max).

Figure 14. Frequency spectrum of the signal obtained by the CAEA algorithm (FFT method).

Regarding the frequency data, we analyzed the fundamental frequency by the CAEA algorithm
(autocorrelation method), the five frequency components by the CAEA algorithm (FFT method) and
the differences between the fundamental frequency by the CAEA algorithm (FFT method) and the
frequencies of the other four components by the CAEA algorithm (FFT method). In the magnitude
data, we analyzed the magnitudes of the five frequency components obtained by the CAEA algorithm
(FFT method), the relations between the magnitude of the fundamental frequency by the magnitudes of
the other four components and the relationships among the magnitudes of the subsequent components.

In order to verify the normality of the statistical analysis, the one proposed by [21] was used,
and the graphical evaluation was performed using boxplot, frequency distribution (histogram) and
P–P (probability–probability). As a complementary evaluation to the graphical evaluation of normality,
the Shapiro–Wilk test was performed, where a p-value > 0.05 was obtained as a response and the
distribution can be considered normal.

In the data that can be represented by a normal distribution and, due to the size of the samples,
the T-Student distribution was used to obtain the confidence interval of the population mean,
being considered a confidence level of 95%. Thus, the confidence interval of the population mean is
given by

IC(µ) = X̄± T.Sx, (5)

where IC(µ) is the population mean with the confidence interval, X̄ is the sample mean, Sx is the
standard error and T is the correction value obtained by the distribution T-Student.

To evaluate the probability of identification errors among fruit flies using the characteristics
extracted from the captured wing beat signal, the cumulative probability value was used for a normal
distribution, Equation (6), based on the intersection of the curves of the evaluated characteristics of
the insects:

Pr(x1 ≤ x ≤ x2) =
∫ x2

x1

1√
2πσ2

e−
(x−µ)2

2σ2 dx, (6)

where x1 and x2 represent the cumulative probability interval, x the integrated sample set, σ the
population standard deviation, and µ the population mean.
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3. Results and Discussion

3.1. Measurement of the Wing Beat Signal Generated by A. fraterculus

The experiments performed with A. fraterculus were recorded at about seventeen hours of
signal, separated into seventeen signal tracks of one hour each, for easier signal processing software.
Each signal track was submitted to the PEDA algorithm, with 466 possible events of passage.
The possible localized passage events were analyzed and classified in the standard group for the
characterization of the wing beat signal generated by A. fraterculus. The localized events were analyzed
and classified into a standard group for characterization of the insect signal, and 66 events were
selected from the 466 events located (according to the criteria presented in Section 2.2). Figure 15
displays an event passing signal of A. fraterculus sorted in the default group, and Figure 16 displays
an unordered event signal in the default group. The unclassified event signal in the standard group
was discarded for having a decrease in signal strength (time 0.12 s), despite having a duration greater
than 100 ms. This decrease in signal intensity represents that the insect did not make a direct passage
through the sensor.

The 66 events of the standard group were analyzed and the characteristics of the signals were
extracted using the CAEA algorithm. Figure 17 shows the output resulting from the CAEA algorithm
(autocorrelation method) of one of these events. Note that the CAEA algorithm output highlights the
fundamental period of the signal (peak of greater amplitude), the calculation of its inverse to obtain the
fundamental frequency being necessary. Thus, the fundamental period (T0) of 9.12 ms corresponding
to the fundamental frequency (F0) of 109.65 Hz was obtained.

Figure 15. Anastrepha fraterculus passing event signal classified in the standard group.

Figure 16. Anastrepha fraterculus passing event signal not classified in the standard group.
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Figure 17. Results of the CAEA algorithm (autocorrelation method) graph of the A. fraterculus passing
event of the standard group.

At the output of the CAEA algorithm (FFT method), the five highest peaks corresponding to
the fundamental frequency (F0), 2nd component (F1), 3rd component (F2), 4th component (F3) and
5th component (F4), respectively, were detected Figure 18. The values obtained with the algorithm
are 110 Hz (fundamental frequency), 218 Hz (2nd component), 328 Hz (3rd component), 447 Hz
(4th component) and 545 Hz (5th component). It was observed that, for the 4th component and
5th component, a degradation of the signal occurs that makes it difficult to correctly detect the
corresponding peaks. This degradation of the signal occurs due to the use of the phototransistor as a
receiver element, as already observed by [11,15].

Figure 18. Frequency spectrum of the signal of an event of passage of the standard group of A. fraterculus
obtained by the CAEA algorithm (FFT method).

The data obtained by extracting the characteristics of the signals from the 66 events of passage
of the standard group of A. fraterculus stored in the file were analyzed and the descriptive measures’
complete statistics are presented in Appendix A. Tables A1 and A2 present the descriptive measures of
the data of the complete samples. In addition, Tables A3 and A4 present the descriptive measures with
the removal of outliers in each characteristic of the analyzed signal, and we considered data outliers
that are outside the minimum and maximum limits of the boxplot.

In the analysis of the complete data without removal of outliers (Table A1), it was observed that,
due to the degradation in the higher frequency frequencies obtained from the signals, as previously
reported, there was a difficulty in locating the peaks corresponding to the their components. Thus,
it was not possible to use the data for characterization of the signal, since they present great variation
between the minimum and maximum values. Thus, the fundamental frequency obtained by the
CAEA algorithm (autocorrelation method) (F0 Aut), the fundamental frequency obtained by the
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CAEA algorithm (FFT method) (F0 FFT) and the frequency obtained by the difference between the
frequency of the 2nd componte and the fundamental frequency, both obtained by the CAEA algorithm
(FFT method) (F1-F0 Aut), were analyzed. Figure 19 presents the visual evaluation performed.

Figure 19. Graphics of the visual evaluation of the data obtained with the events of passage of
A. fraterculus of the standard group without removal of outliers.
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In the first line of Figure 19, the boxplot graphics are presented, where, in the measurement of the
fundamental frequency by autocorrelation, a symmetrical distribution is observed with the midline in
the center of the box, with symmetrical mustaches and slightly longer than the subsections of the box
and no outliers data, indicating a normal distribution. In the data concerning the measurement of the
fundamental frequency obtained in the CAEA algorithm (FFT method), we observe an asymmetric
distribution with the median line near the lower part of the box, asymmetric and short mustaches,
a sparse distribution pattern in relation to the medium generating a long box, not presenting data
outliers, indicating a distribution that may not be represented by a normal one. In the data concerning
the frequency of the difference between the 2nd component and the fundamental frequency obtained in
the CAEA algorithm (FFT method), an asymmetrical distribution is observed with the median line near
the lower part of the box, slightly asymmetrical mustaches and slightly longer than the subsections
of the box and four outliers above 200 Hz, indicating that this distribution can be represented by
normal distribution.

In the second line of Figure 19, the histograms (blue) and curve of the superimposed normal
(red) distribution are presented. With respect to the data of the first column, it is observed the highest
concentration of values near the mean, the distribution being practically symmetrical, with the format
of bell, without gaps in the data and without outliers data, indicating a normal distribution. In the
second column, we observe the displaced mean being to the right of most of the data, presenting a
gap between the data and the left of the mean of a new concentration of data, indicating a non-normal
distribution. In the third column, we observe a greater concentration of data slightly to the left of the
mean, having some data outliers above 200 Hz, indicating a normal distribution.

In the third line of Figure 19, we present the P–P graphics with the probability distribution of
the sample data (blue) superimposed on the probability distribution of a normal curve (red). In the
first column, it is observed that the probability distribution of the data tends to follow the probability
distribution of a normal curve, indicating a normal distribution. In the second column, it is observed
that the probability distribution of the data does not follow the distribution of probability of a normal
curve, with a gap between the data, indicating a non-normal distribution. In the third column, it is
observed that the probability distribution of the data does not follow the distribution of probability
of a normal curve, with a gap and downward spacing caused by the outliers data, indicating a
non-normal distribution.

As a complementary evaluation, the normality test of Shapiro–Wilk was performed, obtaining
a p-value of 0.7018 (above the limit of 0.05 for normality) for fundamental frequency by the CAEA
algorithm (autocorrelation method), p-value of 1.589 × 10−8 (below the 0.05 limit for normality)
for the fundamental frequency obtained in the CAEA algorithm (FFT method) and a p-value of
9.097× 10−11 (below the limit of 0.05 for normality) for the frequency of the difference between the
2nd component and the fundamental frequency obtained in the CAEA algorithm (FFT method). Based
on the visual evaluation and the Shapiro–Wilk normality test, it was found that the fundamental
frequency data obtained by the CAEA algorithm (autocorrelation method) can be represented by
a normal distribution, the fundamental frequency data obtained by the peak location in the CAEA
algorithm (FFT method) can not be represented by a normal distribution and that the frequency
data obtained by the difference between the frequency of the 2nd component and the fundamental
frequency both obtained by the location of its peaks in the CAEA algorithm (FFT method) can not be
represented by the normal distribution.

With the results obtained with the normality evaluation, the visual analysis of the data dispersion
(fourth line—Figure 19) was performed, being observed in the third column that the data are grouped
below 150 Hz (green line), with 62 occurrences and above 200 Hz (red line), with four occurrences,
these data being considered outliers that can be removed from the dataset. In the second column,
the data are grouped below 150 Hz (green line), with 48 occurrences and above 200 Hz (red line),
with 18 occurrences. Based on the performed analyses, it is noted that data above 200 Hz, although not
considered outliers, represent that the localized peak does not correspond to the fundamental frequency



Sensors 2019, 19, 1254 16 of 31

of A. fraterculus (Figure 20)—it being possible to remove them from the dataset. The fundamental
frequency obtained by the CAEA algorithm (autocorrelation method) presented errors of evaluation
(Figure 21), in which case the measured value is below the expected one.

Figure 20. Frequency spectrum obtained by the CAEA algorithm (FFT method) with peak location
error referring to the fundamental frequency of A. fraterculus of the standard group.

Figure 21. The CAEA algorithm (autocorrelation method) graph with peak location error referring to
the fundamental frequency of A. fraterculus of the standard group.

Figure 22 presents the visual evaluation of the data with removal of outliers referring to Table A3.
Each column, from left to right, presents the data for fundamental frequency measurements obtained
by the CAEA algorithm (autocorrelation method), fundamental frequency obtained by the location of
the peak in the CAEA algorithm (FFT method) and the frequency obtained by the difference between
the frequency of the 2nd component and the fundamental frequency both obtained by the location of
their peaks in the CAEA algorithm (FFT method). The results for the fundamental frequency obtained
by the CAEA algorithm (autocorrelation method) were not altered, once they did not have outliers
data, kept for comparison with the data obtained with the removal of the outliers of the fundamental
frequency obtained in the CAEA algorithm (FFT method) and the frequency by the difference between
the 2nd component and the fundamental frequency obtained in the CAEA algorithm (FFT method).
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Figure 22. Graphics of the visual evaluation of the data obtained with the events of passage of
A. fraterculus of the standard group with removal of outliers.
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In the first line of Figure 22, the boxplot graphics are displayed. In the data concerning
the measurement of the fundamental frequency obtained in the CAEA algorithm (FFT method),
second column, a slightly asymmetrical distribution is observed with the median line near the
upper part of the box, slightly asymmetrical mustaches and no outliers data, indicating that this
distribution may be normal. In the data concerning the frequency of the difference between the
2nd component and the fundamental frequency obtained in the CAEA algorithm (FFT method),
third column, a slightly asymmetrical distribution is observed with the median line near the lower
part of the box, slightly asymmetrical mustaches and slightly longer than the subsections of the box
and without outliers, indicating that this distribution may be normal. In relation to the fundamental
frequency boxplot by the CAEA algorithm (autocorrelation method), the first column, the graph with
the greatest similarity is the one in the third column, and the one in the second column presents a
larger dispersion data and with a larger average.

In the second line of Figure 22, the histograms (blue) and curve of the superimposed normal
distribution (red) are shown. In the second column, we observe the highest concentration of values
close to the average with a longer tail on the left, with the bell format, with no data gaps and no outliers
data, indicating a normal distribution. In the third column, we observe the highest concentration
of near-average values with a longer tail on the right, with the bell shape, without gaps in the data
and without outliers data, indicating a normal distribution. In comparison with the histogram of the
first column, the similarity between its distributions is observed, being that in the second and third
columns the distribution is more sparse.

In the third line of Figure 22, we present the P–P graphics with the probability distribution
of the sample data (blue) superimposed on the probability distribution of a normal curve (red).
In the second and third columns it is observed that the probability distribution of the data tends to
follow the probability distribution of a normal curve, indicating that both can be represented by a
normal distribution.

The Shapiro–Wilk normality test was performed as a complementary assessment, obtaining a
p-value of 0.2211 (above the limit of 0.05 for normality) for the fundamental frequency obtained by the
CAEA algorithm (FFT method) and a p-value of 0.287 (above the limit of 0.05 for normality) for the
frequency of the difference between the 2nd component and the fundamental frequency obtained in
the CAEA algorithm (FFT method). Based on the visual evaluation and the Shapiro–Wilk normality
test it was observed that the fundamental frequency data obtained by the peak location in the CAEA
algorithm (FFT method), considering the erroneous detections as outliers, can be represented by a
normal distribution and the frequency data obtained by the difference between the frequency of the
2nd component and the fundamental frequency both obtained by the location of its peaks in the CAEA
algorithm (FFT method), without the outliers data, can be represented by the normal distribution.

Due to sample sizes (66 for fundamental frequency by the CAEA algorithm (autocorrelation
method), 46 for fundamental frequency by FFT and 62 for frequency by difference between peaks
in FFT) and that the data can be represented by a normal distribution, the T- Student to obtain the
confidence interval of the population mean, considering a confidence level of 95%.

Considering that the best results obtained the A. fraterculus wing beat signal as having a
fundamental frequency by the CAEA algorithm (autocorrelation method) with the population
mean of 113.75 ± 2.04 Hz with a confidence level of 95%, with a dispersion given by the standard
deviation of 7.97 Hz, with a slight flattening (kurtosis coefficient of −0.54) and practically symmetric
(asymmetry coefficient of −0.05) with respect to a normal distribution and with values in the range
of 95.52 Hz to 129.38 Hz. For measurement by fundamental frequency obtained by the location of
the peak in the CAEA algorithm (FFT method), the signal has a population mean of 116.40 ± 3.10 Hz
with a confidence level of 95%, with a dispersion given by the standard deviation of 10.09 Hz, with a
slight flattening (kurtosis coefficient of −0.72) and slightly asymmetric (asymmetry coefficient of
−0.35) with respect to a normal distribution and with values in the range of 94.00 Hz to 132.00 Hz.
In the case of measurement of the frequency by the difference between the 2nd component and the
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fundamental frequency obtained in the CAEA algorithm (FFT method), the signal has a population
mean of 110.50 ± 3.33 Hz with a confidence level of 95%, with a dispersion given by the standard
deviation of 12.56 Hz, with a slight flattening (kurtosis coefficient of −0.64) and slightly asymmetric
(coefficient of asymmetry of 0.19) with respect to a normal distribution and with values in the range of
84.00 Hz to 136.00 Hz.

Due to the difficulty of locating the higher frequency components, it was not possible to use their
data for the characterization of the signal, since they present great variation in their minimum and
maximum values. Thus, only the relationship between the magnitude of the fundamental frequency
and the magnitude of 2nd component, obtaining a sample mean of 2.26, with a dispersion given
by the standard deviation of 0.75, with a slight flattening (kurtosis coefficient of −0.66) and slightly
asymmetric (coefficient of asymmetry of 0.44) with respect to a normal distribution and with values in
the range of 1.07 to 3.92.

3.2. Measurement of the Wing Beat Signal Generated by C. capitata

In the experiments performed with C. capitata were recorded at about seventeen hours of signal,
separated into seventeen signal tracks of one hour each, to facilitate signal processing realized.
Each signal track was submitted to the PEDA algorithm, with 1010 possible events of passage.
The possible localized passage events were analyzed and classified in the standard group for the
characterization of the wing beat signal generated by C. capitata. In addition, 111 passing events
were selected, (Figure 23), from the 1010 possible events of passage located (according to the criteria
presented in Section 2.2).

Figure 23. Ceratitis capitata passing event signal of the standard group.

The data obtained by extracting the characteristics of the signals from the 111 events of passage
of the standard group of C. capitata using the CAEA algorithm were analyzed and the descriptive
measures complete statistical are presented in Appendix A. Tables A5 and A6 present the descriptive
measures of the data of the complete samples. In the Tables A7 and A8, the descriptive measures with
the removal of outliers in each characteristic of the analyzed signal, we considered data outliers that
are outside the minimum and maximum limits of the boxplot.

In the analysis of the complete data without removal of outliers (Table A5), it was observed that,
due to the degradation in the higher frequency frequencies obtained from the signals, there was a
difficulty in locating the peaks corresponding to the their components. Thus, it was not possible to use
the data for characterization of the signal, since they present great variation between the minimum and
maximum values. Thus, the fundamental frequency obtained by the CAEA algorithm (autocorrelation
method) (F0 Aut), the fundamental frequency obtained by the CAEA algorithm (FFT method) (F0
FFT) and the frequency obtained by the difference between the frequency of the 2nd component
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and the fundamental frequency, both obtained by the CAEA algorithm (FFT method) (F1-F0 Aut),
were analyzed. Figure 24 presents the visual evaluation performed.

Figure 24. Graphics of the visual evaluation of the data obtained with the events of passage of the
C. capitata of the standard group without removal of outliers.
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In the measurement of the fundamental frequency by the CAEA algorithm (autocorrelation
method), three data (186.41 Hz, 188.79 Hz and 189.41 Hz) were observed above the maximum limit for
outliers (184.7 Hz), in the measurement of the fundamental frequency obtained in the CAEA algorithm
(FFT method), the second column, we observed 14 data (with values from 303 Hz to 364 Hz) with
possibilities of being outliers (maximum limit 201.75 Hz), in the measurement of the frequency by
the difference between the 2nd component and the fundamental frequency obtained in the CAEA
algorithm (FFT method) were observed four data (with values from 50 Hz to 58 Hz) and six data
(with values from 297 Hz to 469 Hz) with the possibility of being outliers (lower limit 117.75 Hz and
upper limit 199.75 Hz). Based on the boxplot graphics, the data with removal of the outliers indicate
that the possibility of being represented by a normal distribution.

In the second line of Figure 24, the histograms (blue) and curve of the superimposed normal
distribution (red) are shown. With respect to the data of the first column, the highest concentration
of values near the mean is observed, distribution being practically symmetrical, with the bell format,
without data gaps and without outliers data, indicating a normal distribution. In the second column,
we observe the displaced mean being to the right of most of the data, presenting a gap between the data
with a new concentration of data (possible outliers) to the left of the mean, indicating a non-normal
distribution. In the third column, we observe a higher concentration of values near the mean, having
outliers data above 250 Hz and below 80 Hz, indicating a non-normal distribution.

In the third line of Figure 24, we present the P–P graphics with the probability distribution of
the sample data (blue) superimposed on the probability distribution of a normal curve (red). In the
first column, it is observed that the probability distribution of the data tends to follow the probability
distribution of a normal curve, indicating a normal distribution. In the second column, it is observed
that the probability distribution of the data does not follow the distribution of probability of a normal
curve, with a gap between the data, indicating a non-normal distribution. In the third column, it is
observed that the probability distribution of the data does not follow the probability distribution of a
normal curve, having gaps in the lower and upper part, indicating a non-normal distribution.

As a complementary evaluation, the Shapiro–Wilk normality test was performed. A p-value
of 0.08254 (above the 0.05 limit for normality) was obtained for fundamental frequency by the
CAEA algorithm (autocorrelation method), a p-value of 1.33 × 10−15 (below the limit of 0.05 for
normality) was obtained for fundamental frequency obtained in the CAEA algorithm (FFT method)
and frequency for the difference between the 2nd component and the fundamental frequency obtained
in frequency spectrum—FFT had a p-value of 8.442× 10−15 (below the limit of 0.05 for normality).
Based on the visual evaluation and the Shapiro–Wilk normality test, it was found that the fundamental
frequency data obtained by the CAEA algorithm (autocorrelation method) can be represented by
a normal distribution, the fundamental frequency data obtained by the peak location in frequency
spectrum—FFT can not be represented by a normal distribution and the frequency data obtained
by the difference between the frequency of the 2nd harmonic and the fundamental frequency both
obtained by the location of its peaks in the CAEA algorithm (FFT method) can not be represented by
the normal distribution.

With the results obtained with the normality evaluation, the visual analysis of the data dispersion
(fourth line—Figure 24) was performed, it being observed in the third column that the data are grouped
between 100 Hz and 200 Hz (green lines), with 100 occurrences and below 70 Hz, five occurrences,
and above 280 Hz (red line), six occurrences, the data being considered outliers and can be
removed from the dataset. In the second column, the data are grouped below 220 Hz (green line),
with 97 occurrences and above 280 Hz (red line), with 14 occurrences. Based on the performed analyses,
it is noted that data above 280 Hz represent an error in the location of the peak corresponding to the
fundamental frequency, being considered outliers and retired from the set of data. With respect to
the scatter plot of the first column, it was observed that the three data with the possibility of being
considered outliers (186.41 Hz, 188.79 Hz and 189.41 Hz) are close to the maximum limit obtained by
boxpot (184.7 Hz) and do not present discrepancies with the the dispersion pattern presented by the
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remainder of the data, carrying were not considered outliers. The fundamental frequency obtained by
the CAEA algorithm (autocorrelation method) presented evaluation errors, in which case the measured
value is below the expected value.

Figure 25 presents the visual evaluation of data with outliers removal. Each column, from left to
right, presents the data for fundamental frequency measurements obtained by the CAEA algorithm
(autocorrelation method), fundamental frequency obtained by the location of the peak in the CAEA
algorithm (FFT method) and the frequency obtained by the difference between the frequency of the
2nd component and the fundamental frequency both obtained by the location of their peaks in the
CAEA algorithm (FFT method). The results for the fundamental frequency obtained by the CAEA
algorithm (autocorrelation method) were not changed. Once they did not have outliers data, they
were kept for comparison with the data obtained with the removal of the outliers of the fundamental
frequency obtained in the CAEA algorithm (FFT method) and the frequency by the difference between
the 2nd component and the fundamental frequency obtained in the CAEA algorithm (FFT method).

In the first line of Figure 25, the boxplot graphics are shown. In the data concerning the
fundamental frequency measurement obtained in the CAEA algorithm (FFT method), the second
column, a slightly asymmetrical distribution is observed with the median line near the lower part
of the box, slightly asymmetrical mustaches and slightly longer than the subsections of the box and
with two data (201 Hz and 193 Hz) slightly above the upper limit (192 Hz) not being considered
outliers, indicating that this distribution may be normal. In the data concerning the fundamental
frequency of the difference between the 2nd component and the fundamental frequency obtained in the
CAEA algorithm (FFT method), the third column, a symmetrical distribution is observed, symmetrical
mustaches and slightly longer than the subsections of the box and with a die (120 Hz) slightly
below the lower limit (124 Hz) not being considered outliers, indicating that this distribution may be
normal. In relation to the fundamental frequency boxplot by the CAEA algorithm (autocorrelation
method), the first column, the graphics present similarities in their dispersions, with averages and
medians nearby.

In the second line of Figure 25, the histograms (blue) and curve of the superimposed normal
distribution (red) are shown. In the second column, we observe the highest concentration of values
near the mean with a longer tail on the right, with bell shape, with a small gap above 200 Hz and
without outliers data, indicating a normal distribution. In the third column, we observe the highest
concentration of values close to the mean with symmetrical distribution, with the bell format, with no
data gaps and no outliers data, indicating a normal distribution. In comparison with the histogram of
the first column, the similarity between its distributions is observed, being that in the second and third
columns the distribution is wider.

In the third line of Figure 22, we present the P–P graphics with the probability distribution
of the sample data (blue) superimposed on the probability distribution of a normal curve (red).
In the second and third columns, it is observed that the probability distribution of the data tends to
follow the probability distribution of a normal curve, indicating that both can be represented by a
normal distribution.

The Shapiro–Wilk normality test was realized as a normality complementary evaluation being
obtained a p-value of 0.09642 (above the 0.05 limit for normality) for the fundamental frequency by the
CAEA algorithm (FFT method) and a p-value of 0.5932 (above the limit of 0.05 for normality) for the
frequency obtained by the difference between the 2nd component and the fundamental frequency by
the CAEA algorithm (FFT method). Based on the visual evaluation and the Shapiro–Wilk normality
test, it was observed that the fundamental frequency data obtained by the peak location in the CAEA
algorithm (FFT method), considering the erroneous detections as outliers, can be represented by a
normal distribution and the frequency data obtained by the difference between the frequency of the
2nd component and the fundamental frequency both obtained by the location of its peaks in the CAEA
algorithm (FFT method), without the outliers data, can be represented by the normal distribution.
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Figure 25. Graphics of the visual evaluation of the data obtained with the events of passage of C. capitata
of the standard group without outliers.
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Due to sample sizes (111 for fundamental frequency by the CAEA algorithm
(autocorrelation method), 100 for fundamental frequency by the CAEA algorithm (FFT method) and
97 for frequency by difference between peaks by the CAEA algorithm (FFT method)) and that the data
can be represented by a normal distribution, the T-Student to obtain the confidence interval of the
population mean, considering a confidence level of 95%.

Considering the best results obtained the wing beat signal generated by C. capitata have a
fundamental frequency by the CAEA algorithm (autocorrelation method) with the population
mean of 160.81±2.02 Hz with a confidence level of 95%, with a dispersion given by the standard
deviation of 10.71 Hz, slightly accentuated (kurtosis coefficient of 0.11) and slightly asymmetrical
(asymmetry coefficient of 0.41) with respect to a normal distribution and with values in the range of
140.15 Hz to 189.91 Hz. For measurement by the fundamental frequency obtained by location of the
peak using the CAEA algorithm (FFT method), the signal has a population mean of 162.25 ± 2.63 Hz
with a confidence level of 95%, with a dispersion given by the standard deviation of 13.06 Hz, slightly
accentuated (kurtosis coefficient of 0.33) and slightly asymmetric coefficient (asymmetry coefficient
of 0.44) with respect to a normal distribution and with values in the range of 134.00 Hz to 201.00 Hz.
The frequency by the difference between the 2nd component and the fundamental frequency obtained
in the CAEA algorithm (FFT method) it has a population mean of 158.00 ± 2.97 Hz with a confidence
level of 95%, with a dispersion given by the standard deviation of 14.95 Hz, with a slight flattening
(kurtosis coefficient of -0.03) and slightly asymmetrical (asymmetry coefficient of −0.04) with respect
to a normal distribution and with values in the range of 120.00 Hz to 192.00 Hz.

Due to the difficulty of locating the higher frequency components, it was not possible to use
their data for the characterization of the signal, since they present great variation in their minimum
and maximum values. Thus, it was analyzed only the relationship between the magnitude of the
fundamental frequency and the magnitude of the frequency by the difference between the 2nd
component and the fundamental frequency, both obtained by the CAEA algorithm (FFT method),
being obtained a sample mean of 2.05, with a dispersion given by the standard deviation of 0.96,
with an accentuation (kurtosis coefficient of of 2.93) and slightly asymmetric (coefficient of asymmetry
of 1.61) in relation to a normal distribution and with values in the range of 1.01 to 6.06.

3.3. Analysis of the Wing Beat Signal Generated by A. fraterculus and C. capitata

In the analysis of the wing beat signal generated by A. fraterculus and C. capitata were
utilized the signal characteristics obtained through the CAEA algorithms-autocorrelation method
(fundamental frequency), CAEA-FFT method (fundamental frequency) and CAEA-FFT method
(frequency measured by the difference between the fundamental frequency and the frequency of the
2nd harmonic).

Figure 26 presents the comparison between the normal curves for the fundamental frequencies
for A. fraterculus and C. capitata obtained through the CAEA algorithm (autocorrelation method),
location of the peak in the CAEA algorithm (FFT method) and the frequency relation between the peak
of the 2nd component and the peak of the fundamental frequency in the CAEA algorithm (FFT method).
Note that a distinction is made between the two species in relation to the fundamental frequency of
wing beat and the difference frequency between the 2nd component and the fundamental frequency,
despite the overlap in the limit of the normal distributions.

From the evaluation performed, it is possible to obtain the probability that a passing event of
A. fraterculus is identified as C. capitata, or vice versa, calculating the cumulative probability for a
normal distribution based on the intersection of the curves. With this overlap, a probability of 0.0042
was obtained for the fundamental frequency by the CAEA algorithm (autocorrelation method) that an
event of A. fraterculus is identified as C. capitata and a probability of 0.0073 that a C. capitata event is
identified as A. fraterculus. For the evaluation with the fundamental frequency obtained by location of
the peak in the CAEA algorithm (FFT method), it was obtained a probability of 0.0201 that an event of
A. fraterculus is identified as C. capitata and a probability of 0.0270 that a C. capitata event is identified
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as A. fraterculus. In the case of the evaluation with the frequency obtained by the relation between the
peak of the 2nd component and the fundamental frequency peak in the CAEA algorithm (FFT method),
a probability of 0.0375 was obtained that an event of A. fraterculus is identified as C. capitata and a
probability of 0.0479 that an event of C. capitata be identified as A. fraterculus.

Figure 26. Comparison between the normal curves for fundamental frequency by the CAEA algorithm
(autocorrelation method) (F0 Aut.), fundamental frequency by the CAEA algorithm (FFT method)
(F0 FFT) and frequency by the difference between the frequencies of the 2nd component and the
fundamental frequency by the CAEA algorithm (FFT method) (F1-F0 FFT) of the events of passage of
C. capitata of the standard group and A. fraterculus of the standard group.
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Regarding the analysis of data concerning the magnitudes, C. capitata has a mean magnitude
ratio of 1.79 with a dispersion given by the standard deviation of 0.64 and A. fraterculus has a
mean magnitude ratio of 2.05 with one dispersion given by the standard deviation of 0.65. Due to
the overlapping of values, it is not possible to use the relationship between the magnitude of the
fundamental frequency and the magnitude of the 2nd component for species recognition.

Analyzing the signs of events of passage with the methods of the CAEA algorithm, it was
possible to extract the characteristics concerning the fundamental frequency (autocorrelation and
FFT methods), frequency of the 2nd component (FFT method), the magnitude of the fundamental
frequency (FFT method) and magnitude of the 2nd component (FFT method). It was observed that the
use of phototransistors as receiving elements did not allow the correct evaluation of the characteristics
referring to the 3rd to 5th components. This occurred due to the degradation of the signal spectrum
in the upper frequencies that made it difficult to correctly locate the peaks corresponding to the
components. This problem was also observed in [11].

With the characteristics of the extracted signal, the fundamental frequency of the wing beat of
fruit flies was obtained using the value obtained by the CAEA algorithm (autocorrelation and FFT
methods) and the difference between the frequencies of the 2nd component and the fundamental
frequency by the CAEA algorithm (FFT method). Observing the statistical measures performed and
the probability of identification errors occurring among the fruit flies analyzed, it was verified that the
most effective method to obtain the fundamental frequency of the signal generated by the wing beat is
CAEA algorithm (autocorrelation method) followed by obtaining the CAEA algorithm (FFT method)
and finally that the frequency measurement of the difference between the 2nd component and the
fundamental frequency presented the worst result for the classification.

However, it was observed that all three methods have measurement errors. The CAEA algorithm
(autocorrelation method) presented erroneous measurements with values corresponding to half of the
expected value for the fundamental frequency.The CAEA algorithm (FFT method) presented erroneous
measures for the fundamental frequency with values corresponding to twice the correct fundamental
frequency (next to what would be the frequency of the second component). For the frequency
measurement of the difference between the 2nd component and the fundamental frequency, the CAEA
algorithm (FFT method) presented values below and above that expected for the fundamental
frequency. With these measurement errors, an A. fraterculus can be incorrectly identified as a C. capitata
using the fundamental frequency obtained by the CAEA algorithm (FFT method), once this error
indicates a frequency close to the fundamental frequency of C. capitata, as well as the measurement
of the fundamental frequency by the CAEA algorithm (autocorrelation method) of a C. capitata,
may present an error that approximately corresponds to the fundamental frequency of A. fraterculus.
Therefore, to minimize fundamental frequency measurement errors, the best results are obtained by
using the three methods together.

3.4. Dataset

The dataset obtained by the wing beat signal generated by A. fraterculus contains 17 h of raw signal,
separated in signal tracks of one hour each, with easier signal processing software. With the analysis
through the PEDA algorithm, 466 events of passage were located. Being that 66 of these events were
labeled for the standard group and analyzed in the characterization of the signal corresponding to the
wing beat of A. fraterculus using the CAEA algorithm, the remaining 400 events were not analyzed in
the scope this work. For the 66 events of passage analyzed, it was possible to measure the fundamental
frequency of the signal by the CAEA algorithm (autocorrelation method) in all. For the fundamental
frequency obtained by location of the peak in the CAEA algorithm (FFT method), it was possible to
perform the measurement in 48 events and 18 events presented measurement errors with values above
200 Hz. In the case of the frequency obtained by the difference between the frequency of the 2nd
component and the fundamental frequency both obtained by the location of its peaks in the CAEA
algorithm (FFT method), it was possible to perform the measurement in 62 events, and four events
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presented measurement errors with values above 200 Hz. Values with measurement errors were
considered outliers and taken from the dataset for characterization of the wing beat signal generated
by A. fraterculus.

The dataset obtained by the wing beat signal generated by C. capitata contains 17 h of raw signal,
separated in signal tracks of one hour each, with easier signal processing software. With the analysis
through the PEDA algorithm, 1010 events of passage were located. Being that 111 of these events were
labeled for the standard group and analyzed in the characterization of the signal corresponding to
the wing beat of C. capitata, the remaining 899 events were not analyzed in the scope of this work.
For the 111 events of passage analyzed, it was possible to measure the fundamental frequency of
the signal by the CAEA algorithm (autocorrelation method) in all. For the fundamental frequency
obtained by location of the peak in the CAEA algorithm (FFT method), it was possible to perform the
measurement in 97 events and 14 events presented measurement errors with values above 280 Hz.
In the case of the frequency obtained by the difference between the frequency of the 2nd component
and the fundamental frequency both obtained by the location of its peaks in the CAEA algorithm (FFT
method), it was possible to perform the measurement in 100 events, six events presented measurement
errors with values above 280 Hz and five events presented measurement errors with values below
70 Hz. Values with measurement errors were considered outliers and taken from the dataset for
characterization of the wing beat signal generated by C. capitata.

4. Conclusions

This work presented a study and development of a real-time optoelectronic detection of insects.
Based on the study, an optoelectronic sensor was developed to be used in the detection of fruit fly
species A. fraterculus and C. capitata.

Regarding the fruit fly experiments, the characterization of the wing beat signal generated by
A. fraterculus and C. capitata was performed using the developed optoelectronic sensor. For A. fraterculus,
the fundamental frequency of the wing beat signal was determined with 113.75 ± 2.04 Hz with
a confidence level of 95%, with a dispersion given by the standard deviation of 7.97 Hz.
C. capitata presenting a fundamental frequency of the wing beat signal generated with the value
of 160.81 ± 2.02 Hz with a confidence level of 95%, with a dispersion given by the standard deviation
of 10.71 Hz. Both results were obtained with the CAEA algorithm (autocorrelation method), which
was considered the most effective method for the extraction of characteristics.

A dataset of the wing beat signal generated by A. fraterculus and C. capitata captured by the
developed optoelectronic sensor was elaborated. The A. fraterculus dataset has 17 h of raw signal
recording, separated in one-hour signal tracks with 466 event-of-passage signals located through
the PEDA algorithm (RMS method). Of these, 66 events were selected and analyzed for signal
characterization generated by the beat wings of A. fraterculus. For C. capitata, the dataset has 17 h
of raw signal recording separated in one-hour signal tracks with 1010 event-passing signals located
through the PEDA algorithm (RMS method). Of these, 111 events were selected and analyzed for the
wing beat signal generated by C. capitata.

Finally, with the strong evidence that the optoelectronic sensor presented can be used in an
intelligent trap, the authors expect to build, deploy and collect field data to extend the findings of this
work. Future work includes improvements in the sensor for lower power, analyzing the wing beat
signal generated by wild flies, better detection characteristics, evaluating classifiers for be applied to
insect recognition, telemetry and in the years following, collecting data currently not available in part
of the globe.
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Abbreviations

The following abbreviations are used in this manuscript:

RMS Root mean square
Aut Autocorrelation
DC Direct current
FFT Fast Fourier transform
F0 Fundamental frequency
F1 2nd component frequency
F2 3rd component frequency
F3 4th component frequency
F4 5th component frequency
M0 Fundamental frequency magnitude
M1 2nd component magnitude
M2 3rd component magnitude
M3 4th component magnitude
M4 5th harmonic magnitude
X̄ Arithmetic mean
Sx Sample standard error
S Sample standard deviation
S(%) Sample standard deviation percentage
K Kurtosis coefficient
As Coefficient of asymmetry
H Sample range
Min Minimum sample value
Max Maximum sample value
LED-IR Infrared light emitting diode
MFB Multiple feedback
Mag Magnitude
CAEA Algorithm of automatic extraction of characteristics
PEDA Algorithm of detection of events of passage

Appendix A. Statistical Descriptive Measures of the Data Concerning the Standard Group of
A. fraterculus and C. capitata

The statistical descriptive measures of the frequencies and magnitude characteristics of the wing
beat signal generated by A. fraterculus are presented in Tables A1 and A2 (complete data) and in
Tables A3 and A4 (outlier values removed). Tables A5 and A6 (complete data) and Tables A7 and A8
(outliers values removed) present the statistical descriptive measures of the frequency and magnitude
characteristics of the wing beat signal generated by C. capitata.



Sensors 2019, 19, 1254 29 of 31

Table A1. Statistical descriptive measures of the frequency data of the standard group of A. fraterculus.

X̄(Hz) Sx(Hz) S(Hz) S(%) K As H(Hz) Min(Hz) Max(Hz)

F0 Aut. 113.75 1.02 7.97 7.01 −0.54 −0.05 33.86 95.52 129.38
F0 FFT 146.46 6.14 47.93 32.72 −1.06 0.86 148.00 94.00 242.00
F1 FFT 264.49 7.99 62.38 23.59 2.04 1.46 284.00 192.00 476.00
F2 FFT 391.59 10.71 83.63 21.36 3.99 1.53 462.00 272.00 734.00
F3 FFT 512.90 13.22 103.23 20.13 0.92 0.92 499.00 332.00 831.00
F4 FFT 630.13 14.41 112.52 17.86 0.65 0.63 581.00 390.00 971.00

F1-F0 FFT 118.03 4.00 31.28 26.50 7.78 2.76 155.00 84.00 239.00
F2-F0 FFT 245.13 8.26 64.53 26.33 3.98 1.88 352.00 153.00 505.00
F3-F0 FFT 366.44 10.39 81.13 22.14 0.23 0.81 389.00 213.00 602.00
F4-F0 FFT 483.67 11.61 90.70 18.75 0.23 0.38 471.00 271.00 742.00

Table A2. Statistical descriptive measures of the magnitude data of the standard group of A. fraterculus.

X̄(Mag) Sx(Mag) S(Mag) S(%) K As H(Mag) Min(Mag) Max(Mag)

M0-FFT 536.12 28.48 222.43 41.49 3.14 1.54 1148.92 245.60 1394.52
M1-FFT 249.34 16.12 125.91 50.50 2.28 1.37 589.54 68.08 657.63
M2-FFT 116.93 5.49 42.87 36.66 2.40 0.97 242.13 31.57 273.69
M3-FFT 74.33 3.56 27.83 37.44 −0.50 0.53 120.17 18.97 139.14
M4-FFT 50.62 2.58 20.13 39.77 −0.10 0.62 87.46 10.99 98.45
M0/M1 2.41 0.12 0.92 38.29 −0.06 0.76 3.58 1.07 4.66
M0/M2 4.86 0.24 1.84 37.83 0.93 1.17 7.93 2.54 10.46
M0/M3 7.73 0.39 3.05 39.45 1.43 1.18 14.84 3.15 17.99
M0/M4 11.65 0.66 5.13 44.07 3.10 1.47 27.47 3.93 31.39
M1/M2 2.16 0.09 0.74 34.31 −0.49 0.44 2.99 1.01 4.00
M2/M3 1.64 0.07 0.51 31.09 12.07 2.58 3.33 1.01 4.34
M3/M4 1.53 0.05 0.38 24.81 0.04 0.87 1.52 1.01 2.53

Table A3. Statistical descriptive measures of data without outliers by frequency measurement of the
standard group of A. fraterculus.

X̄(Hz) Sx(Hz) S(Hz) S(%) K As H(Hz) Min(Hz) Max(Hz)

F0 Aut. 113.75 1.02 7.97 7.01 −0.54 −0.05 33.86 95.52 129.38
F0 FFT 116.4 1.53 10.09 8.67 −0.72 −0.35 148.00 94.00 132.00
F1 FFT 258.66 7.09 54.47 21.06 2.80 1.47 284.00 192.00 476.00
F2 FFT 381.75 8.37 64.30 16.84 −0.84 0.37 264.00 272.00 536.00
F3 FFT 496.02 10.96 82.76 16.69 0.63 0.53 430.00 332.00 762.00
F4 FFT 626.63 13.51 103.78 16.56 0.06 0.35 488.00 390.00 878.00

F1-F0 FFT 110.50 1.66 12.56 11.36 -0.64 0.19 155.00 84.00 136.00
F2-F0 FFT 237.80 6.60 50.73 21.33 1.19 1.35 227.00 153.00 380.00
F3-F0 FFT 359.42 9.44 72.47 20.16 -0.30 0.60 307.00 213.00 520.00
F4-F0 FFT 477.56 10.20 77.04 16.13 -0.46 0.30 321.00 322.00 643.00

Table A4. Statistical descriptive measures of the data without outliers by magnitude measurement of
the standard group of A. fraterculus.

X̄(Mag) Sx(Mag) S(Mag) S(%) K As H(Mag) Min(Mag) Max(Mag)

M0-FFT 536.12 28.48 222.43 41.49 3.14 1.54 1148.92 245.60 1394.52
M1-FFT 249.34 16.12 125.91 50.50 2.28 1.37 589.54 68.08 657.63
M2-FFT 116.93 5.49 42.87 36.66 2.40 0.97 242.13 31.57 273.69
M3-FFT 74.33 3.56 27.83 37.44 −0.50 0.53 120.17 18.97 139.14
M4-FFT 50.62 2.58 20.13 39.77 −0.10 0.62 87.46 10.99 98.45
M0/M1 2.26 0.10 0.75 33.26 −0.66 0.44 2.85 1.07 3.92
M0/M2 4.54 0.19 1.41 31.14 0.22 0.83 5.67 2.54 8.20
M0/M3 7.42 0.33 2.56 34.53 −0.19 0.72 10.30 3.15 13.45
M0/M4 11.04 0.59 4.48 40.58 6.29 1.75 27.47 3.93 31.39
M1/M2 2.10 0.09 0.68 32.26 −0.87 0.26 2.58 1.01 3.59
M2/M3 1.60 0.05 0.37 23.38 −0.05 0.45 1.53 1.01 2.54
M3/M4 1.51 0.05 0.36 23.74 −0.11 0.81 1.39 1.01 2.39
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Table A5. Statistical descriptive measures of the frequency data of the standard group of C. capitata.

X̄(Hz) Sx(Hz) S(Hz) S(%) K As H(Hz) Min(Hz) Max(Hz)

F0 Aut. 160.81 1.02 10.71 6.66 0.11 0.41 49.76 140.15 189.91
F0 FFT 182.43 5.24 55.26 30.29 3.29 2.15 230.00 134.00 364.00
F1 FFT 345.68 7.98 84.07 24.32 3.82 1.80 461.00 190.00 651.00
F2 FFT 520.50 10.76 113.31 21.77 1.94 0.95 659.00 300.00 959.00
F3 FFT 690.60 13.81 145.51 21.07 0.44 0.51 748.00 362.00 1110.00
F4 FFT 834.58 15.81 166.62 19.96 −0.07 0.31 759.00 484.00 1243.00

F1-F0 FFT 163.25 4.89 51.52 31.56 13.42 2.63 419.00 50.00 469.00
F2-F0 FFT 338.06 8.49 89.40 26.44 1.43 0.79 487.00 154.00 641.00
F3-F0 FFT 508.17 11.64 122.61 24.13 0.68 0.40 661.00 223.00 884.00
F4-F0 FFT 652.14 13.95 146.93 22.53 0.23 0.31 716.00 326.00 1042.00

Table A6. Statistical descriptive measures of the magnitude data of the standard group of C. capitata.

X̄(Mag) Sx(Mag) S(Mag) S(%) K As H(Mag) Min(Mag) Max(Mag)

M0-FFT 428.58 14.03 147.86 34.50 0.41 0.61 767.45 157.28 924.73
M1-FFT 237.45 11.51 121.26 51.07 2.77 1.42 678.26 70.60 748.86
M2-FFT 103.54 4.69 49.41 47.72 2.35 1.40 267.13 22.20 289.33
M3-FFT 64.98 3.29 34.64 53.31 1.89 1.32 181.68 17.23 198.91
M4-FFT 42.16 2.00 21.07 49.97 1.16 1.14 105.40 13.11 118.51
M0/M1 2.10 0.10 1.03 48.80 2.25 1.54 5.06 1.01 6.06
M0/M2 4.74 0.21 2.21 46.70 3.75 1.60 13.06 1.43 14.49
M0/M3 7.86 0.37 3.89 49.47 2.60 1.47 20.77 2.39 23.16
M0/M4 11.85 0.53 5.55 46.79 2.85 1.42 32.14 2.81 34.96
M1/M2 2.50 0.11 1.20 47.98 3.13 1.48 6.78 1.00 7.78
M2/M3 1.74 0.06 0.66 37.95 2.84 1.59 3.46 1.00 4.46
M3/M4 1.59 0.05 0.51 32.25 2.83 1.46 2.71 1.02 3.73

Table A7. Statistical descriptive measures of data without outliers by frequency measurement of the
standard group of C. capitata.

X̄(Hz) Sx(Hz) S(Hz) S(%) K As H(Hz) Min(Hz) Max(Hz)

F0 Aut. 160.81 1.02 10.71 6.66 0.11 0.41 49.76 140.15 189.91
F0 FFT 162.25 1.33 13.06 8.05 0.33 0.44 67.00 134.00 201.00
F1 FFT 329.14 5.37 54.79 16.65 2.34 0.91 295.00 190.00 485.00
F2 FFT 510.39 9.26 96.24 18.86 −0.36 0.22 441.00 300.00 741.00
F3 FFT 668.55 11.84 120.79 18.07 −0.01 0.00 589.00 362.00 951.00
F4 FFT 820.23 14.67 151.79 18.51 −0.20 0.09 702.00 484.00 1186.00

F1-F0 FFT 158.00 1.49 14.95 09.45 −0.03 −0.04 72.00 120.00 192.00
F2-F0 FFT 331.74 7.84 81.50 24.57 1.31 0.58 473.00 154.00 627.00
F3-F0 FFT 494.83 10.03 102.32 20.68 0.50 0.03 549.00 223.00 772.00
F4-F0 FFT 645.22 12.40 127.10 19.70 0.02 0.19 603.00 353.00 956.00

Table A8. Statistical descriptive measures of the data without outliers by magnitude measurement of
the standard group of C. capitata.

X̄(Mag) Sx(Mag) S(Mag) S(%) K As H(Mag) Min(Mag) Max(Mag)

M0-FFT 428.58 14.03 147.86 34.50 0.41 0.61 767.45 157.28 924.73
M1-FFT 237.45 11.51 121.26 51.07 2.77 1.42 678.26 70.60 748.86
M2-FFT 103.54 4.69 49.41 47.72 2.35 1.40 267.13 22.20 289.33
M3-FFT 64.98 3.29 34.64 53.31 1.89 1.32 181.68 17.23 198.91
M4-FFT 42.16 2.00 21.07 49.97 1.16 1.14 105.40 13.11 118.51
M0/M1 2.05 0.09 0.96 46.99 2.93 1.61 5.06 1.01 6.06
M0/M2 4.43 0.16 1.66 37.57 0.19 0.69 7.62 1.43 9.05
M0/M3 7.32 0.29 3.02 41.19 0.70 0.89 15.22 2.39 17.61
M0/M4 11.36 0.45 4.71 41.45 1.21 0.97 24.12 2.81 26.94
M1/M2 2.31 0.09 0.90 38.98 0.23 0.72 3.86 1.00 4.87
M2/M3 1.67 0.06 0.58 34.50 4.73 1.74 3.46 1.00 4.46
M3/M4 1.56 0.04 0.46 29.54 1.51 1.16 2.34 1.02 3.36
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