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Abstract: Advancements in optical imaging devices and computer vision algorithms allow the
exploration of novel diagnostic techniques for use within engineering systems. A recent field of
application lies in the adoption of such devices for non-contact vibrational response recordings
of structures, allowing high spatial density measurements without the burden of heavy cabling
associated with conventional technologies. This, however, is not a straightforward task due to the
typically low-amplitude displacement response of structures under ambient operational conditions.
A novel framework, namely Magnified Tracking (MT), is proposed herein to overcome this limitation
through the synergistic use of two computer vision techniques. The recently proposed phase-based
motion magnification (PBMM) framework, for amplifying motion in a video within a defined
frequency band, is coupled with motion tracking by means of particle tracking velocimetry (PTV).
An experimental campaign was conducted to validate a proof-of-concept, where the dynamic
response of a shear frame was measured both by conventional sensors as well as a video camera setup,
and cross-compared to prove the feasibility of the proposed non-contact approach. The methodology
was explored both in 2D and 3D configurations, with PTV revealing a powerful tool for the
measurement of perceptible motion. When MT is utilized for tracking “imperceptible” structural
responses (i.e., below PTV sensitivity), via the use of PBMM around the resonant frequencies of
the structure, the amplified motion reveals the operational deflection shapes, which are otherwise
intractable. The modal results extracted from the magnified videos, using PTV, demonstrate MT to
be a viable non-contact alternative for 3D modal identification with the benefit of a spatially dense
measurement grid.

Keywords: vibration-based measurement; SHM; structural identification; motion magnification;
particle tracking velocimetry

1. Introduction

System identification [1–3] and structural health monitoring [4,5] methods are increasingly
gaining industry acceptance as a complementary tool in the life-cycle assessment of engineered
systems. Currently, the most common choice for structural instrumentation lies in the use of wired
accelerometers; this is due to the wide availability of mid-level precision sensors at a fairly low cost.
Such sensors may be permanently installed on a structure at discrete locations; a task which is not
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always straightforward because of accessibility issues, the heavy cabling work involved, as well as the
increased costs of data acquisition [6]. Lowering the spatial density as a means of compensating may
bear the consequence of sacrificing accuracy in system identification and damage detection. Another
alternative is offered via wireless sensing technologies [7,8], albeit at the cost of a short battery life and
limited transmission potential for dynamic measurements [9,10].

On the other hand, non-contact image-based techniques have recently offered an alternative for
low-cost dynamic measurements and structural health monitoring applications [11]. As regards the
outside use of dynamic displacement measurements, applications can be found in crack detection
with the intention of enhancing visual inspection capabilities by employing techniques, such as object
detection and grouping [12], multi-sequential image filtering [13], or region-based deep learning [14].
When it comes to obtaining dynamic displacements, different approaches have been proposed
based on template matching (digital image correlation) [15,16], feature point matching [17], and
optical flow [18,19]. The latter technique received particular interest with the emergence of a video
manipulation technique, namely the phase-based motion magnification (PBMM) [20]. PBMM relies on
revealing imperceptible motion in videos via the utilization of complex-valued steerable pyramids
within defined frequency bands.

The potential of PBMM for inferring modal motion has been explored in numerous studies.
Chen et al. [21] extracted mode shapes of a simple cantilever structure using PBMM and optical flow
and compared these with laser vibrometer measurements. This was later extended by Cha et al. [22]
to detect damage on similar cantilever beams through the use of an unscented Kalman filter.
Yang et al. [23] implemented a modified version of PBMM that can blindly extract modal frequencies,
damping ratios, and continuous mode shapes as an output-only method. This was achieved via
principal component analysis for dimensionality reduction and subsequent complexity pursuit for
blind mode identification. Further extensions of this method includes a technique to obtain modal
information from videos with frame-rates lower than the Nyquist frequency [24], as well as non-ideal
operating conditions [25]. The principle was further adopted in the context of damage detection for
cantilever structures using spatial fractal dimension analysis [26]. Sarrafi et al. [27] performed tests
on healthy and damaged wind turbine blades and estimated their operational deflection shapes via
PBMM and phase-based motion estimations. The use of this concept in outdoor settings was recently
demonstrated by Shang and Shen [28] on steel bridges, additionally employing a maximum likelihood
estimation scheme to automize the selection of frequency bands to be magnified. Fioriti et al. [29]
utilized PBMM for modal identification of a full-scale large historic masonry structure, the Ponte
delle Torri in Spoleto, by using videos taken from a common smartphone device. It should be noted
that as large structures are usually characterized by fundamental frequencies lower than 5 Hz, the
use of such low-sampling devices might prove promising. Interested readers are referred to Xu and
Brownjohn (2017) [30] for a review of the computer-vision techniques for structural health monitoring
(SHM) applications.

The aforementioned works mainly focus on two-dimensional techniques, which might be a
limiting factor for some structures either because of the constraints in camera placement or to the
out-of-plane motion (with respect to the camera) of the structure itself. This issue was addressed by
various researchers utilizing a variety of techniques for cases with perceptible structural response.
To name a few, Park et al. [31] obtained dynamic 3D displacements of a shear frame via a motion
capture system (MCS). Baqersad et al. [32] and Patil et al. [33] utilized 3D digital image correlation
(DIC) to obtain dynamic displacements and operational mode shapes of structures with complex
geometries. Wang et al. [34] identified the model parameters of a car bonnet by extracting the shape
features from 3D-DIC measurements employing an adaptive geometric moment descriptor. Recently,
the out-of-plane vibrations of cantilever beams were tracked via a new camera technology, namely
light field imagers, by Chesebrough et al. [35]. To the best of the authors’ knowledge, studies in
three-dimensions with imperceptible motion employing PBMM are currently limited to the use of
the 3D-DIC technique [36,37]. Particle tracking velocimetry (PTV) was proposed by the authors as
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an alternative technique to obtain dynamic displacements for SHM applications, in both 2D [38] and
3D [39,40], as well as a performance comparison with optical flow [19]. PTV, which is an open source
optical measurement technique [41], has been in use for decades in diverse engineering applications
from the macro to micro scale. Applications include, but are not limited to, assessing the vorticity
dynamics [42] and the dissipation of kinetic energy in turbulent flows [43], investigating the blood
flow patterns for different cardiovascular diseases [44,45], tracking bird and fish migrations [46,47],
the validation of computational fluid dynamics simulations [48,49], and the validation of magnetic
resonance imaging (MRI)-based flow measurements [50]. However, PTV has so far been limited to
assessing high-amplitude displacements, which does not represent the amplitude range of many civil
engineering structures.

In this study, we propose a framework for vision-based structural identification via the synergistic
use of two computer vision techniques. Magnified tracking (MT) first employs phase-based motion
magnification to reveal modal information from videos with imperceptible motion and then PTV
to track amplified motion of small markers placed on the structure. A novelty of this work lies in
the use of the proposed framework both in 2D as well as 3D with high temporal and spatial density.
The capabilities of MT for all range of motions, and the limitations of PTV for the so-called perceptible
motion range are demonstrated by comparing results of a lab-scale shear-frame that is deployed with
conventional sensors.

2. Materials and Methods

2.1. Methodology

In this study, we propose a novel image-based method, MT, which fused PTV and PBMM and we
further compare the proposed method against conventional displacement measurement techniques,
e.g., accelerometer, laser and linear variable differential transformer (LVDT) measurements, and
computational simulations.

2.1.1. Particle Tracking Velocimetry

PTV is a standard method for the time-resolved measurement of the displacement of markers (e.g.,
tracer particles in fluid flow or markers on moving objects) in a three-dimensional space. The main
principle lies in the video recording (using a multi-camera setup) of moving markers, illuminated
with a light source, for subsequent stereo reconstruction of 3D marker positions and their tracking
in time. Spatial coordinates of particles/markers are computed by optical triangulation utilizing the
collinearity condition of the projective geometry of imaging [51]. The formulation of the collinearity
equation, which contains three coordinates X0, Y0, Z0 of the projective center and three rotation angles
describing the direction of the optical axis, may be formulated as provided in Equations (1)–(3) [41]:xi − xh

yi − yh
zi − zh

 = λi · R ·

Xi − X0

Yi − Y0

Zi − Z0

 (1)

xi = xh − c · r11(Xi − X0) + r21(Yi − Y0) + r31(Zi − Z0)

r13(Xi − X0) + r23(Yi − Y0) + r33(Zi − Z0)
(2)

yi = yh − c · r12(Xi − X0) + r22(Yi − Y0) + r32(Zi − Z0)

r13(Xi − X0) + r23(Yi − Y0) + r33(Zi − Z0)
, (3)

where xi, yi, and zi are the image coordinates, xh, yh, and zh are image principle points (camera
parameter), c is the image principle distance (camera parameter), λi is the scale factor, R is the 3 × 3
rotation matrix, rij are the elements of the rotation matrix, Xi, Yi, Zi are object point coordinates, and
X0, Y0, Z0 are the camera projective center coordinates.
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Two camera views are enough for stereoscopic matching. In our experiments, we use four camera
views to enhance the robustness and accuracy of the approach. The stereo reconstruction requires an
appropriate calibration of the cameras. The calibration, which can be either dynamic (with a moving
calibration target) or static (with images of calibration targets), determines the external and internal
camera parameters, e.g., position, orientation, and focal length [52]. In our measurements, a static
calibration target was used with a regular array of 20 × 30 points with a grid distance of 56 mm.

The tracking of a particle is predicted under the assumption of constant velocity up, using a
three-dimensional particle position xp at time step t, and a position xp(t + ∆t) at the consecutive time
step t + ∆t, as derived in Equation (4). Subsequently, linking of the particle positions at time steps t
and t + ∆t can be realized via linear extrapolation [53]. It should be noted that the time increment ∆t
corresponds to the frame rate of the recording.

xp(t + ∆t) = xp(t) + up · ∆t (4)

As described in Figure 1, an initial pre-processing step is required after image acquisition and
calibration. First, images are high-pass filtered to remove pixel noise. Image coordinates of all markers
are detected relying on grey value intensity and connectivity on the 2D image. The center of the
detected markers in the image domain is calculated as the arithmetic mean of the pixel coordinates
weighted by the associated grey value intensity. Stereoscopic matching of markers is realized by
means of calibrated camera orientation parameters and the position information extracted from all four
stereoscopic camera views. This is achieved via epipolar line intersection to extract the 3D positions
of each marker [54]. Linking of the 3D positions of individual markers in time results in establishing
Lagrangian trajectories, which allow calculating displacements.

Post-Processing
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- Obtaining 3D-Coordinates

- Linking
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- Particle Detection
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Figure 1. Workflow process of the 3D particle tracking velocimetry (PTV) algorithm to assess the
displacement of tracer markers.

2.1.2. Phase-Based Motion Magnification

Phase-based motion magnification is a computer vision technique that allows one to manipulate
motions in videos. It relies on the modification of local phase variations of the complex-valued steerable
pyramid coefficients over time in different spatial scales and orientations. By adopting sub-octave
bandwidth complex steerable pyramids to decompose each frame in different scales and orientations,
their amplitude and phase can be separated. The phase information at every location, orientation, and
scale is then temporally filtered, amplified, and then reconstructed into a video [20]. The complex
steerable pyramids can be imagined to operate in a similar fashion to a spatially localized Fourier
transform [55].

In its simplest form, let us assume a 1D intensity signal representing translation within an
image. Assuming an intensity profile f (x + δ(t)) where δ(t) corresponds to displacements, an α-times
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magnified motion f (x + (1 + α)δ(t)) can be achieved by utilizing a global Fourier basis. In the case of
videos, where motion is not global and so the local displacements are instead in the form δ(x, t), the
complex steerable pyramids are utilized to cope with local motion. For the 1D example, the original
intensity profile can be rewritten as a sum of complex sinusoids as shown in Equation (5).

f (x + δ(t)) = Σ∞
ω=−∞ Aωeiω(x+δ(x)) (5)

The band at a specific frequency ω can be written as

Sω(x, t) = Aωeiω(x+δ(t)), (6)

where its phase (ω(x + δ(t))) encompasses information about the motion.
The phase is then temporally filtered via a DC bandpass filter in order to remove the ωx

component. Subsequently, the filtered phase can be multiplied by a factor of α to obtain a magnified
motion at sub-band ω, as demonstrated in Equation (7). Finally, a flowchart of the whole process is
provided in Figure 2.

Ŝω(x, t) = Aωeiω(x+(1+α)δ(t)). (7)

More information on the above-given equations and its framework is provided by
Wadhwa et al. [20] and Rubinstein [56]. Although not explored within this work, the cited
documents further demonstrate that PBMM can also be used to attenuate motion, which can be
used within this context to either: (i) filter out unwanted motion due to cyclic events; or (ii) remove
atmospheric turbulence in long-distance measurement situations. The use of this particular technique
within the structural identification domain offers significant potential as a result of the videos of
structures magnified around the structure’s natural frequencies revealing their respective operational
deflection shapes.

Input 

Video

Decomposition of 

Video with Complex 

Steerable Pyramids
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Separation of 

Amplitude and Phase

Temporal 

Filtering

Output 

Video

Collapse 

Pyramid 

&

 Reconstruct 

Video
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Temporally 

Bandpassed 

Phases

Phase-Based Motion Magnification

Figure 2. Workflow process of the phase-based motion magnification (PBMM) algorithm to amplify
motion in a video within a defined frequency band.

2.1.3. Magnified Tracking

Magnified tracking is a video recording-based measurement framework proposed by the authors,
which utilizes both aforementioned algorithms to extract modal information with high-spatial density
from a large to imperceptible motion range in 2D and 3D. This implies that it can be applied across
diverse conditions, i.e., from experimental/forced testing to operational regimes.

The framework relies on the use of markers placed on the structure of interest, which are
subsequently tracked via the PTV algorithm. When dealing with sufficiently large (perceivable)
motion, PTV can be directly utilized to extract a dynamic displacement response of the recorded
structure. When dealing with imperceptibly small (subtle) motions, first PBMM is employed to amplify
the motion within a certain frequency band, which generally corresponds to the natural frequencies of
the structure that can be reliably obtained through a single conventional (e.g., MEMs-based) sensor.
The amplified motion reveals operational deflection shapes at the frequency of interest [57], and its
Lagrangian trajectories can be tracked at discrete marker locations via PTV. Snapshots from this tracked
motion correspond to the operational deflection shapes and do not require further processing.
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The processing steps of 3D-MT are presented in Figure 3, which offers an example for the case of
subtle motion. For the perceptible motion range, PBMM is not necessary after pre-processing, since
PTV can, in such a case, successfully track the displacements on its own.
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Figure 3. Processing steps of magnified tracking (MT) including pre-processing and PBMM, detection,
linking, and modal analysis.

2.2. Experimental Investigation

An experimental campaign was launched for a comparative assessment of the proposed
measurement framework against conventional sensors. Two separate experimental setups were
prepared, one for the 2D and one for the 3D camera configuration. For this purpose, a three-storey
shear frame with an idealized storey height of 200 mm and a floor area of 200 × 200 mm2 was
constructed. Columns were made of steel with a cross section of 10 × 3 mm2. Plates were made of
aluminum with a thickness of 15 mm. White paper sticker markers with a diameter of 2 mm were
introduced onto the structure on each storey as well as at every third of each column. A uniaxial
shaking table (Quanser, Markham, ON, Canada) was used in both experimental setups to induce
“large-scale” (perceptible) motion through either sinusoidal or earthquake ground excitation (1994
Northridge). The operational bandwidth of the shake table was limited to 20 Hz, hence no random
ground motion was implemented as part of this testing campaign. An impact hammer (Kistler,
Winterthur, Switzerland) was used for impact testing, inducing a visually imperceptible structural
response. All excitations presented in this work are listed in Table 1. All sensors were connected to a
16 channel NI-DAQ data acquisition system (National Instruments, Austin, TX, USA). The frame was
illuminated via two high-power single LED spotlights (HEDLER Profilux, Runkel, Germany) placed
diagonal to the frame to enhance contrast. Figure 4 presents the key-components of the experimental
setup. Both the 2D and 3D cases feature conventional sensors in addition to the camera configuration.

Measurements for the proposed framework were obtained by following a fairly straightforward
testing protocol. A Fastcam SA5 high-speed camera (Photron, Tokyo, Japan) was employed for recording
instantaneous motion, which allows one to record 1.56 s at a full resolution of 1024× 1024 pixels and a
maximum frequency of 7000 fps with 16 GB memory. A 12-bit analog digital converter (ADC) (Bayer
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system color, single sensor) with 20 µm pixel sensor provided higher light sensitivity for high-speed
recordings. A Nikon AF Micro-Nikkor 28 mm f/2.8D lens was used for these experiments.

Contrary to conventional multi-camera configurations, an image splitter system was used to
mimic four different views by using a single camera. The four-way splitter consisted of a set of four
fixed primary slanted mirrors assembled on a regular pyramid and four secondary mirrors [58], which
were arranged such that the acquired images for all four mirrors covered the same domain, within the
focused distance set by the lens [52]. In this study, the camera was positioned at a distance of 2 m from
the frame, with approximately a 45◦ horizontal angle with respect to the object.

Camera

LED 

Spotlights

Frame & 

Shake Table

NI-DAQ

Flat Mirrors Flat Mirrors

Prism Mirror

Figure 4. View of the experimental setup including the frame, shake table for triggering the motion,
camera for recording the motion of the markers on the structure, LED spotlights for illuminating the
investigation domain (left) and optical setup including image splitter and mirrors (right).

2.2.1. 2D Experimental Setup

For the 2D setup, four piezoelectric uniaxial accelerometers (PCB Piezotronics, Depew, NY, USA)
were used, all placed at the centroid of each storey. Displacements were measured via an LVDT
(HBM GmbH, Germany) at the shake-table base and by a laser displacement sensor (SICK, Waldkirch,
Germany) directed towards a corner of the third storey. The test setup and sensor layout of the 2D
configuration is presented in Figure 5a. Measured excitation scenarios are shown in Table 1. For the
2D-PTV measurements, the spatial resolution of the images was 1024 × 1024 pixels and the temporal
resolution was 500 fps.
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Figure 5. Test setup and sensor layout for: (a) 2D; and (b) 3D measurements.
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Table 1. List of experiments for different excitations and measurement techniques compared with the
reference technique.

Experiment No Excitation Dimension Measurement Technique Reference Technique

1 Northridge 2D 2D-PTV Linear variable differential
transformer (LVDT)

2 Hammer 2D 2D-PTV Laser
3 Hammer 2D 2D-PTV Accelerometers
4 Sinusoidal 3D 3D-PTV Laser & LVDT
5 Hammer 3D 3D-PTV Accelerometers
6 Hammer 3D 3D-MT Accelerometers

2.2.2. 3D Experimental Setup

For the 3D setup a uniaxial accelerometer was used at the base and six piezoelectric triaxial
accelerometers (PCB Piezotronics, Depew, NY, USA) were used at the upper floors. As a result
of the insignificant structural response along the z-axis, accelerations were measured only on the
x- and y-axes. In order to capture torsional modes, three accelerometers were installed per storey.
However, because of the channel limitations, it was not possible to employ all storeys at the same time.
For this purpose, a reference-based experimental modal analysis procedure was adopted [59,60]. Three
accelerometers on the second floor (and the base sensor) were kept fixed in every experiment and the
remaining three were placed either at the first or third storey. Both the shake table and the frame was
rotated approximately 30◦–45◦ in order to have out of plane displacement components with respect to
the camera. The spatial resolution of the images in the 3D-PTV measurements was 512 × 512 pixels as
a consequence of the image splitter and the temporal resolution was 500 fps. The test setup and the
sensor layout are presented in Figure 5b.

2.3. Numerical Modelling

A numerical model of the shear frame was constructed in SAP2000 [61] in order to collaborate
the experimental measurements, especially at locations where markers were placed for tracking but
no conventional sensors were installed. The model, comprising beam elements for columns and shell
elements for slabs, was updated and validated relying on the use of accelerometer measurements.

3. Results and Discussion

A series of measurements were performed for different types of excitations, as shown in Table 1.
The comparison between the proposed methods and various reference sensors, e.g., LVDT, laser and
accelerometers, were made both in the time and frequency domains.

3.1. 2D-PTV

2D-PTV measurements were performed for two different base excitations, as shown in Table 1.
The displacements obtained through 2D-PTV were compared against LVDT measurements for the
Northridge earthquake excitation at the shake-table base and the laser at the top of the structure
for a hammer impact test, both of which are plotted in Figure 6. A good match is obtained at both
points, and displacements obtained at the table base contained less noise compared to the LVDT
measurements. Power spectral densities (PSD) estimated from the accelerometer and its corresponding
marker at the top floor following a hammer impact are compared against and provided in Figure 6.
PSD estimates were computed using a Hamming window with 1024 samples and 50% overlap, and
the displacement/acceleration signals were only de-meaned and not filtered for comparison purposes.
Initial observation indicates a close correlation between the two measurement techniques, with the
potential existence of harmonic frequency peaks of the 2D-PTV results.

Further validation of the proposed framework was carried out via modal analysis.
The Eigensystem realization algorithm (ERA) was employed to analyze the structural response
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following hammer impacts. The stabilization diagrams, and corresponding identified frequencies,
reveal that the 2D-PTV measurements closely correlate to the accelerometer measurements in the
frequency domain. The identified natural frequencies are given in Table 2. Mode shapes obtained
through the accelerometers, the 2D-PTV displacements, and the SAP2000 model are compared against
each other, as presented in Figure 7. Information about the third mode was not captured by 2D-PTV
since it corresponds to a torsional mode shape. The SAP2000 model is utilized to provide a reference
with higher spatial density to compare PTV measurements against. Both measurement techniques
correlate very well to the SAP2000 model at the floor levels; however, the accelerometers do not
provide information along the columns, which are nonetheless adequately measured by the 2D-PTV
via markers at those locations. The accuracy of displacements obtained from 2D-PTV is further
quantitatively validated by means of the cross modal assurance criterion (cross-MAC) values, provided
in Table 3. 2D-PTV provides cross-MAC values very close to one, both against the accelerometer-based,
as well as the SAP2000 results.
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Figure 6. (Top) Displacement validation of 2D-PTV against LVDT for Northridge input at shake-table
base. (Middle) Displacement validation of 2D-PTV against laser distometer for a hammer impact
excitation at the top of the frame. (Bottom) Power spectral density validation of 2D-PTV against an
accelerometer for a hammer impact excitation at the top of the frame.
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Table 2. Identified natural frequencies via different sensors and methodologies.

Identified Frequencies [Hz]

Acc. 7.89 22.77 27.07 33.10
2D-PTV 7.90 22.90 - 33.31
3D Magnified tracking (MT) 7.86 22.90 27.15 33.01

Table 3. Cross-MAC values of the mode shapes and operational deflection shapes obtained via 2D-PTV
and 3D-MT, respectively, versus the mode shapes from the accelerations and SAP2000 modal analysis.

2D-PTV 3D-MT

Mode-1 Mode-2 Mode-3 Mode-1 Mode-2 Mode-3 Mode-4

Accelerometer 0.9925 0.9855 0.9850 0.9641 0.9229 0.9535 0.9986
SAP2000 0.9871 0.9883 0.9811 0.9388 0.9329 0.8862 0.9290

3.2. 3D-PTV

As the camera was positioned at a 45◦ angle with respect to the shake table and frame assembly
in the measurement scenarios involving the 3D camera setup, the obtained displacements contained
both in-plane (x-) and out-of-plane (y-) components. These components were converted to the shake
table’s axis in order to compare against the LVDT and laser measurements. Displacements obtained via
LVDT at shake-table base and laser at the top of the frame are compared against 3D-PTV for relatively
high-amplitude sinusoidal inputs and presented in Figure 8. Once again, the 3D-PTV results correlate
well with both sensors and essentially offer a lower noise level than the LVDT. Power spectral densities
of the 3D-PTV measurements, following a low-level hammer impact producing subtle (imperceptible)
motion, are provided in Figure 8. Initial observations hint that subtle motions are not well captured
with 3D-PTV, likely because of the image splitter setup reducing the resolution from 1024 × 1024
to 512 × 512 pixels, as well as the out-of-plane accuracy being lower than that of the in-plane [62].
Similar to the 2D case, the PTV signals contain harmonic peaks in the frequency domain.
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Figure 8. (Top) Displacement validation of 3D-PTV against LVDT for a sinusoidal input at shake-table
base. (Middle) Displacement validation of 3D-PTV against laser distometer for a sinusoidal input at
top of the frame. (Bottom) Power spectral density validation of 3D-PTV against an accelerometer for a
hammer impact excitation at top of the frame.



Sensors 2019, 19, 1229 11 of 16

3.3. Magnified Tracking

In order to validate the proposed MT framework, a video captured via the stereoscopic splitter
setup was magnified within frequency bands determined from a single triaxial accelerometer.
These frequency bands are defined around natural frequencies of the structure, i.e., around peaks
determined from the power spectral density estimate. The original video contains the structural
response induced by a low-amplitude excitation via an impact hammer, in which displacements
due to this excitation are imperceptible to the naked eye and lie below the tracking capability of
3D-PTV. The PBMM algorithm was then employed in order to amplify motion around the defined
frequencies and thus reveal their operational deflection shapes, which approximate the structural
mode shapes, as perceptible motion in the video. The chosen frequency band ranges were 7–9 Hz,
22–23 Hz, 26.5–28.5 Hz, and 33–34 Hz, respectively. These bands were manually adjusted to be as
broad as necessary for yielding the full magnified motion [56]. Magnification factors that result in
high-amplitude perceptible motion in videos without introducing excessive artifacts were determined
manually. This factor, previously defined as α in Equation (7), was determined to be 50, 150, 100, and
250 for each mode, respectively. The magnified videos were then fed into the 3D-PTV algorithm to track
the motion of markers and extract the aforementioned modal information. The original and motion
magnified videos are provided in the online version of this manuscript as Supplementary Material.

The effect of PBMM in the frequency domain is visualized in Figure 9. Each sub-figure,
corresponding to videos magnified between the above-mentioned frequency bands, comprises the
Fourier spectra of tracked motion from a selected marker. It is evident that the frequency range
at which the videos were magnified experience a significant boost. As with other techniques, the
identified resonant peaks via stabilization diagrams for the 3D-MT framework are listed in Table 2.
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Figure 9. Fourier spectra comparison of tracked motion obtained through non-magnified (N.M.) and
magnified videos.

A 3D modal analysis was carried out, in which: (i) operational deflection shapes from 3D-MT were
compared against modal shapes obtained from accelerometer measurements and SAP2000 simulations
at each storey; and (ii) operational deflection shapes from 3D-MT were compared against the mode
shapes obtained via SAP2000 at a higher spatial density, including two additional nodes per column.
As previously mentioned (see Figure 5), the conventional accelerometer-based modal analysis was
realized via a reference-based technique because of the limited channel availability. Reference-based
stochastic subspace odentification (SSI) [63] was employed to this end. The operational deflection
shapes obtained via 3D-MT, the mode shapes computed via accelerometer measurements, as well
as the SAP2000 structural model are presented in Figure 10. 3D-MT delivers a precise replication of
mode shapes compared to the conventional experimental techniques, with the added advantage of
alleviating the need for a reference-based measurement setup because of the absence of “channel”
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constraints. Furthermore, the torsional mode shape was recovered, which was obviously non-existent
via the 2D measurement setup. The cross-MAC values are close to one, as illustrated in Table 3,
thereby demonstrating the precision of the proposed framework when compared against conventional
accelerometer-based sensing.

As previously pointed out for the 2D setup, a main advantage of adoption of computer
vision techniques for dynamic measurement applications lies in its potential to obtain displacement
information of high spatial density. For this purpose, an additional analysis was carried out using the
3D-MT data enhanced with intermediate markers placed at the columns. Since no information
from the accelerometers exists at these points, the operational deflection shapes are compared
only against the SAP2000 simulation results and are presented in Figure 11. These shapes, which
were yet again obtained without the limitations imposed by the number of available channels in
conventional techniques, agree well with the mode shapes obtained via the SAP2000 simulation results.
This indicates that the proposed method can be utilized to obtain modal information at locations where
no conventional sensors may be placed, thereby increasing the potential of damage detection and
localization. The cross-MAC values of the proposed framework, when compared with the SAP2000
results, given in Table 3, deliver values close to unity, further confirming its feasibility as a tool for high
spatial density modal information.

Figure 10. Comparison between the normalized mode shapes obtained via accelerometers and SAP2000,
and the operational deflection shapes via 3D-MT using a “coarse” grid (scaled for better visualization).

Figure 11. Comparison between the normalized mode shapes obtained via SAP2000 and the operational
deflection shapes via 3D-MT using a “fine” grid (scaled for better visualization).
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4. Conclusions and Outlook

A novel framework for obtaining high spatial density dynamic displacements as well as
modal information both in 2D and 3D was proposed and validated against conventional sensing
technologies. This framework relies on the synergistic use of two computer-vision techniques for
system identification, namely PBMM, to amplify imperceptible motion in recorded videos, and PTV,
to track markers placed on the structure. A three-storey shear frame was tested for this purpose,
simultaneously measured by means of conventional (reference) sensors. Perceptible displacements
obtained through PTV both in 2D and 3D were validated against LVDT and laser distometers.
Validation in the frequency domain was achieved by comparison of the power spectral densities
of the proposed methods and the reference measurement system of the accelerometers.

The conducted modal analysis further revealed the identification potential of the proposed
framework, since high spatial density information was acquired without the need for reference-based
system identification techniques. When videos are processed via PBMM, the resulting magnified
motion offers the operational deflection shape of the structure within the amplified frequency band,
which in turn approximates the corresponding structural mode shapes.

A possible limitation for outdoor implementations is related to the fact that PTV requires a certain
contrast between the background and the object, implying that a well separated background needs to
be provided. Moreover, the presented image splitter setup needs to be modified, i.e., a bigger splitter
and larger mirrors ought to be used, to capture the response of large scale structures from a sufficient
distance. The latter issue can also be addressed through the use of multiple cameras.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/5/1229/
s1, Video S1: Original input video and resultant videos following motion magnification. Frame rates are reduced
for a better visualization of the operational deflection shapes, which are denoted below each individual video.
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