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Abstract: The accuracy and rate of convergence are two important performance factors for initial
ground alignment of a strapdown inertial navigation system (SINS). For navigation-grade SINS, gyro
biases and accelerometer offsets can be modeled as constant values during the alignment period,
and they can be calibrated through two-position ground alignment schemes. In many situations for
SINS ground alignment, the azimuth of the vehicle remains nearly constant. This quasi-stationary
alignment information can be used as an augmented measurement. In this paper, a piecewise
combined Kalman filter utilizing relative azimuth constraint (RATP) is proposed to improve the
alignment precision and to reduce the time consumption for error convergence. It is presented that
a piecewise time-invariant linear system can be combined into a whole extended time-invariant
linear system so that a piecewise combined Kalman filter can be designed for state estimation.
A two-position ground alignment algorithm for SINS is designed based on the proposed piecewise
combined Kalman filter. Numerical simulations and experimental results show its superiority to the
conventional algorithms in terms of accuracy and the rate of convergence.

Keywords: piecewise combined Kalman filter; SINS; relative azimuth constraints; two-position
initial alignment

1. Introduction

Ground alignment is divided into integrated alignment and self-alignment. The initial-self
alignment process generally consists of two stages called coarse alignment and fine alignment [1–6].
This paper focuses on fine alignment, which plays a pivotal role in the alignment accuracy and the rate
of convergence. The rotation modulation technique (RMT) is one of the effective techniques available
for self-alignment without any external information [7,8], and improves the alignment performance
compared with traditional alignment schemes [9,10]. The RMT includes single-axis modulation,
dual-axis modulation, and tri-axis modulation [11]. Single-axis modulation is much more widely used
in practice because it is simpler and easier to operate [1,9,12]. In recent years, scholars have conducted
much research on single-axis modulation. Acharya et al. [13] used augmented measurement to improve
the rate of convergence of azimuth error. Refs. [14–16] utilized adding angular rates as measurements
to provide good alignment performance, while Ref. [17] proposed an improved initial alignment based
on horizontal alignment information in inertial frame, and the authors of [18] employed linear equality
to improve the observability of strapdown inertial navigation system (SINS). A self-alignment method
was put forward based on three vectors of gravitational apparent motion in an inertial frame [19].
Ref. [20] proposed a dual mathematical calculation system (DMCS) to improve the alignment accuracy
when there is a large initial misalignment angle. Furthermore, nonlinear filters [12,21] were also
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used to solve the large misalignment angle, but system model and computation became complex.
Meanwhile, the error of coarse alignment is less than one degree in general situations [2,6], therefore
the Kalman filter is mostly employed, although an alternative method was proposed to perform the
initial alignment [22]. Hence, we consider the initial misalignment angle as a small angle after coarse
alignment in this paper.

Different schemes can be implemented for single-axis rotation, such as two-position alignment
schemes [13,15,16,23–27], reciprocating rotation schemes, continuously rotation schemes [7,9,18], and
others. Two-position alignment schemes can improve the observability of the system and allow nearly
all error states to be estimated, including gyro biases and accelerometer offsets. The heading change
of the IMU (inertial measurement unit) is generally arranged as approximately 180◦ for two-position
alignment with the same time duration to achieve optimal estimation results [23,25,26].

The north and east velocities are generally used as measurements in the Kalman filter for SINS
self-initial alignment [23,28]. Recently, adding angular rates as measurements to get faster convergence
was proposed [13,15–17,21]. The observation models are established in the body frame [13,17] and
navigation frame [15,16,21], respectively.

In many inertial navigation applications, both high initial alignment precision and fast error
convergence are required [15,16,18]. Ref. [16] considered the influence of cross-correlation between
system noises and measurement noises. The output of the equivalent east gyro in geographic frame [29]
and a nonlinear state constraint [18] are used to improve the speed of convergence. It is shown from the
above literature that adding effective measurement information can accelerate the convergence speed
of azimuth error. The current two-position alignment research is mainly concentrated on adding gyro
information, and the vehicle rotation rate constraint as measurements [13–18,21,30]. The performance
of this method is limited in practical applications because the observation noise related with gyro
information and the vehicle rotation rate constraint can be generally much larger, even under small
angular vibrations.

On the other hand, for ground self-alignment applications, the SINS is approximately stationary
with respect to Earth, and the azimuth remained nearly constant during the quasi-stationary alignment
period. The azimuth constraint information could be used as observation, based on which the vehicle
velocity, attitude, and IMU errors could be estimated and calibrated. The observation noise related with
the IMU azimuth constraint information is generally much smaller under quasi-stationary situations.

Using the above considerations, a piecewise combined Kalman filter is proposed in this paper to
improve the accuracy and rate of convergence of the two-position alignment based on IMU azimuth
constraint information.

The rest of the paper is organized as follows. The piecewise combine Kalman filter, the new
two-position alignment models and alignment performance by simulation are shown in Section 2.
Results and discussions of experiments are presented in Section 3. Conclusions are given in Section 4.

2. Materials and Methods

The concept of the piecewise combined time-invariant linear system model and the piecewise
combined Kalman filter is proposed in this section. The conventional two-position alignment model
as well as the augmented observation model based on gyro information and vehicle rotation rate
constraint are briefly introduced. Finally, an improved two-position alignment scheme is presented
based on the piecewise combined Kalman filter, which utilizes IMU azimuth constraint information
for self-alignment.

2.1. The Piecewise Combined Time-Invariant Linear System Model

The system equation and observation equation of a piecewise time-invariant linear system [31,32]
can be expressed as follows:
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Equation (4) and observation model in Equation (5) can be constructed, which is named as PC-KF in
the following sections. The PC-KF can be widely used in piecewise constant linear systems for state
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where x1(t) =
[

φN φE φD δvN δvE

]T
and x2 =

[
εb

x εb
y ∇b

x ∇b
y

]T
; φn =[

φN φE φD

]T
represents the attitude error vector; δvn =

[
δvN δvE δvD

]T
represents the

velocity error vector expressed in local navigation frame n. εb =
[

εb
x εb

y εb
z

]T
and ∇b =[

∇b
x ∇b

y ∇b
z

]T
represent the gyro triad bias vector and the accelerometer triad offset vector,

respectively, which can be seen as constant values for rapid SINS self-alignment. δvD and ∇b
z are
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generally not considered for SINS self-alignment in land vehicle applications, in addition, εb
z is difficult

to estimate accurately in a short time, so it is not considered. Components of w(t) are process noises of

φn and δvn which can be denoted in a combined vector as w(t) =
[

wφN wφE wφD wvN wvE

]T
.

The process covariance matrix of w(t) is Q which can be written as:

Q =

[
n2

gI3×3 03×2

02×3 n2
aI2×2

]
(7)

The matrix F takes the following form:
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The conventional Kalman filter KF) can be designed based on the observation model shown in 
Equation (10) and the dynamic error model shown in Equation (6). The corresponding conventional 
two-position initial alignment algorithm is noted as TP in the following sections. 
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can be written as 

(9)

Cij(i, j = 1, 2, 3) represents the element of Cn
b which denotes the attitude transformation matrix from b

frame to n frame. ωn
ie =

[
ωn

ieN ωn
ieE ωn

ieD

]T
is the earth rotation rate with respect to the inertial

frame expressed in n frame, while ωn
en is the rotation rate of the n frame with respect to the e frame

expressed in n frame. f represents the specific force acceleration. For quasi-stationary base initial
alignment, the following simplification can be made: fn = −gn, ωn

en = 0.
The conventional north and east velocity error observation model is given by Refs. [10–13]

z1(t) =
[

δvN δvE

]T
=
[

02×3 I2×2 02×4

]
x(t) + υ1(t)

= H1(t)x(t) + υ1(t), υ1(t) ∼ N(0, R1)
(10)

where υ1(t) represents the observation noise vector; R1 represents the observation noise
covariance matrix.

R1 =

[
r2

v 0
0 r2

v

]
(11)

The conventional Kalman filter KF) can be designed based on the observation model shown in
Equation (10) and the dynamic error model shown in Equation (6). The corresponding conventional
two-position initial alignment algorithm is noted as TP in the following sections.

2.3. The Conventional Augmented Observation Model Based on Angular Rate Measurements

As shown in Refs. [13,15,16], angular rate measurements and the vehicle rotation rate constraint
can be used in order to improve the convergence rate of alignment. Theoretically, ωn

ie can be written as

ωn
ie = Cn

b ωb
ib −ωn

nb −ωn
en. (12)
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However, during the ground initial alignment period, ωn
nb and ωn

en can be seen as nearly zero if the
vehicle or the SINS is in quasi-stationary situations. The estimated transformation matrix C̃

n
b is used

for attitude update and Cn
b = [I−φn×]Cn

b . Therefore,

Cb
n

(
Cn

b ωb
ib −ωn

nb −ωn
en

)
≈
(

ω̃b
ib − εb

)
⇒ C̃

b
n(I− [φn×])ωn

ie =
(

ω̃b
ib − εb

)
⇒ (I− [φn×])ωn

ie = C̃
n
b

(
ω̃b

ib − εb
)

⇒ C̃
n
b ω̃b

ib = (I− [φn×])ωn
ie + C̃

n
b εb

⇒ C̃
n
b ω̃b

ib −ωn
ie =

[
ωn

ie×
]
φn + C̃

n
b εb

(13)

If we ignore small quantities and take the equivalent east gyro error as measurement, then the
following equation can be obtained:[

0 1 0
](

C̃
n
b ω̃b

ib −ωn
ie

)
= δωn

ieE = −ωn
ieDφN + ωn

ieNφD + C21εb
x + C22εb

y (14)

As can be seen in Equation (14), the augmented observation model can be obtained by adding
angular rate measurements. Then, the observation model can be expressed as
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Here, the corresponding angular rate measurement-augmented two-position initial alignment 
algorithm is denoted as ARTP. Although sometimes the angular vibration amplitude of the vehicle 
is very small, the vibration angular rate can be large, especially along horizontal directions. For 
example, if the vehicle engine is still working in the quasi-stationary situations, n

nbω  and n
enω  are 

no longer zero, which lead to the changing of measurement noise ( )E tωυ . Thus, the ARTP 
algorithm has limitations in these cases. 

2.4. The Piecewise Combined Kalman Filter for Improved Two-Position Initial Alignment 

In this section, a piecewise combined Kalman filter (noted as PC-KF) is designed for the 
two-position SINS initial alignment to improve the azimuth accuracy and the rate of convergence. 

For the two-position initial alignment, we suppose that the SINS is in state A when the IMU is 
in the first position, and in state B after the IMU has rotated 180° while the two positions have the 
same time duration [23]. 

(15)
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algorithm is denoted as ARTP. Although sometimes the angular vibration amplitude of the vehicle is
very small, the vibration angular rate can be large, especially along horizontal directions. For example,
if the vehicle engine is still working in the quasi-stationary situations, ωn

nb and ωn
en are no longer zero,

which lead to the changing of measurement noise υωE(t). Thus, the ARTP algorithm has limitations in
these cases.

2.4. The Piecewise Combined Kalman Filter for Improved Two-Position Initial Alignment

In this section, a piecewise combined Kalman filter (noted as PC-KF) is designed for the
two-position SINS initial alignment to improve the azimuth accuracy and the rate of convergence.

For the two-position initial alignment, we suppose that the SINS is in state A when the IMU is in
the first position, and in state B after the IMU has rotated 180◦ while the two positions have the same
time duration [23].
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Differently from the conventional SINS alignment system model shown in Equation (6), the
combined system model expands to 14 dimensions containing both error states in state A and state B.
The system model can be described according to Equation (4):
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n
bAC  and n

bBC  represent the attitude transformation matrix in state A and state B. ( ), 1, 2,3ijAC i j =  

and ( ), 1, 2,3ijBC i j =  represent the element of attitude matrix n
bAC  and n

bBC , respectively. 

The observation model is constructed by taking the north velocity error, the east velocity error, 
and the relative azimuth error angle as the measurements. The relative azimuth error angle can be 
obtained based on the IMU azimuth relationship between state A and state B. 
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 (22) 

Suppose the horizontal Euler angles between state A and state B are ABγΔ  and ABθΔ , while 
the azimuth change is ABπ ϕ+ Δ . ABγΔ , ABθΔ  and ABϕΔ  are seen as unknown small angles. Thus, 

(18)

where x(t) =
[

φNA φEA φDA δvNA δvEA φNB φEB φDB δvNB δvEB εb
x εb

y ∇b
x ∇b

y

]T
.

The covariance matrix of w(t) is Q, which is written as

Q =

[
Q 05×5

05×5 Q

]
(19)

The matrixes G1 and G2 take the following form:
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Suppose the horizontal Euler angles between state A and state B are ABγΔ  and ABθΔ , while 
the azimuth change is ABπ ϕ+ Δ . ABγΔ , ABθΔ  and ABϕΔ  are seen as unknown small angles. Thus, 

(20)

Cn
bA and Cn

bB represent the attitude transformation matrix in state A and state B. CijA(i, j = 1, 2, 3) and
CijB(i, j = 1, 2, 3) represent the element of attitude matrix Cn

bA and Cn
bB, respectively.

The observation model is constructed by taking the north velocity error, the east velocity error,
and the relative azimuth error angle as the measurements. The relative azimuth error angle can be
obtained based on the IMU azimuth relationship between state A and state B. Cn

bA
and C̃

n
bB

are the
computational values of Cn

b in two states:

C̃
n
bA

= [I−φn
A×]Cn

bA
C̃

n
bB

= [I−φn
B×]Cn

bB
(21)

in which φn
A =

[
φNA φEA φDA

]
, φn

B =
[

φNB φEB φDB

]
. The relationship between Cn

bA
and

C̃
n
bB

can be written as

CbB
bA

=
(

Cn
bB

)T
Cn

bA
=
(
[I + φB×]C̃

n
bB

)T
[I + φA×]C̃

n
bA

= C̃
bB
n [I−φB×][I + φA×]C̃

n
bA

≈ C̃
bB
n [I + (φA −φB)×]C̃

n
bA

= C̃
bB
bA

+

 c̃11B c̃21B c̃31B
c̃12B c̃22B c̃32B
c̃13B c̃23B c̃33B


 0 −(φDA − φDB) (φEA − φEB)

(φDA − φDB) 0 −(φNA − φNB)

−(φEA − φEB) (φNA − φNB) 0


 c̃11A c̃12A c̃13A

c̃21A c̃22A c̃23A
c̃31A c̃32A c̃33A


(22)
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Suppose the horizontal Euler angles between state A and state B are ∆γAB and ∆θAB, while the
azimuth change is π + ∆ϕAB. ∆γAB, ∆θAB and ∆ϕAB are seen as unknown small angles. Thus,

CbB
bA
≈

 1 0 ∆θAB
0 1 −∆γAB

−∆θAB ∆γAB 1


 cos(π + ∆ϕAB) sin(π + ∆ϕAB) 0
− sin(π + ∆ϕAB) cos(π + ∆ϕAB) 0
0 0 1


=

 cos(π + ∆ϕAB) sin(π + ∆ϕAB) ∆θAB
− sin(π + ∆ϕAB) cos(π + ∆ϕAB) −∆γAB
−∆θAB cos(π + ∆ϕAB)− ∆γAB sin(π + ∆ϕAB) −∆θAB sin(π + ∆ϕAB) + ∆γAB cos(π + ∆ϕAB) 1


≈

 −1 −∆ϕAB ∆θAB
∆ϕAB −1 −∆γAB
∆θAB −∆γAB 1


(23)

C̃
bB
bA

can be rewritten as

C̃
bB
n C̃

n
bA

= C̃
bB
bA

=

 c̃11AB c̃12AB c̃13AB
c̃21AB c̃22AB c̃23AB
c̃31AB c̃32AB c̃33AB

. (24)

Taking c̃21AB as the measurement, we then have

c̃21AB = −c̃11A[c̃22B(φDA − φDB)− c̃32B(φEA − φEB)]

−c̃21A[−c̃12B(φDA − φDB) + c̃32B(φNA − φNB)]

−c̃31A[c̃12B(φEA − φEB)− c̃22B(φNA − φNB)] + ∆ϕAB
= (c̃21A c̃12B − c̃11A c̃22B)(φDA − φDB) + (c̃11A c̃32B − c̃31A c̃12B)(φEA − φEB)+

(c̃31A c̃22B − c̃21A c̃32B)(φNA − φNB) + ∆ϕAB

(25)

Hence, the modified observation model is given by
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= +

z

0 I 0 0 0
υ

0 0 0 I 0 X
H 0 H 0 0

H X υ υ R



 ,

 (26) 

where 1
1 3×H  is expressed as 

[ ]1
1 3 31 22 21 32 11 32 31 12 21 12 11 22A B A B A B A B A B A Bc c c c c c c c c c c c× = − − −H             . (27) 

The observation noise covariance matrix R  takes the following form: 

1 2 2 2 1

2 2 1 2 1
2

1 2 1 2 rϕ

× ×

× ×

× ×

 
 

=  
 
 

R 0 0
R 0 R 0

0 0

.

 
(28) 

Consequently, the piecewise combined Kalman filter (PC-KF) based on the error dynamic 
model shown in Equation (18) and the modified observation model shown in Equation (26) can be 
designed. The corresponding two-position initial alignment algorithm with relative azimuth 
constraints is denoted as RATP in the following sections. 

2.5. Comparison of Simulation Results among Different Alignment Schemes 

(26)

where H1
1×3 is expressed as

H1
1×3 =

[
c̃31A c̃22B − c̃21A c̃32B c̃11A c̃32B − c̃31A c̃12B c̃21A c̃12B − c̃11A c̃22B

]
. (27)

The observation noise covariance matrix R takes the following form:
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1 3 31 22 21 32 11 32 31 12 21 12 11 22A B A B A B A B A B A Bc c c c c c c c c c c c× = − − −H             . (27) 

The observation noise covariance matrix R  takes the following form: 

1 2 2 2 1

2 2 1 2 1
2

1 2 1 2 rϕ

× ×

× ×

× ×

 
 

=  
 
 

R 0 0
R 0 R 0

0 0

.

 
(28) 

Consequently, the piecewise combined Kalman filter (PC-KF) based on the error dynamic 
model shown in Equation (18) and the modified observation model shown in Equation (26) can be 
designed. The corresponding two-position initial alignment algorithm with relative azimuth 
constraints is denoted as RATP in the following sections. 

2.5. Comparison of Simulation Results among Different Alignment Schemes 

. (28)

Consequently, the piecewise combined Kalman filter (PC-KF) based on the error dynamic model
shown in Equation (18) and the modified observation model shown in Equation (26) can be designed.
The corresponding two-position initial alignment algorithm with relative azimuth constraints is
denoted as RATP in the following sections.
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2.5. Comparison of Simulation Results among Different Alignment Schemes

According to the system dynamic error model constructed in Section 2, the third diagonal element
of the covariance matrix P(t) in the conventional TP and ARTP algorithms, which is denoted as
P(3,3)(t), or the eighth element diagonal of the covariance matrix P(t) in the new RATP algorithm,
which is denoted as P(8,8)(t), may be regarded as a quantitative measurement of observability of the
azimuth error and the alignment performance [23,26,29]. This section uses covariance simulation to
compare P(3,3)(t) or P(8,8)(t) among the three alignment schemes. The simulation parameters are set
in Table 1.

Table 1. Parameters for simulation.

Local Latitude L 28.21◦

Bias instability of gyros
Constant bias of gyros

0.003◦/h
0.015◦/h

Angular random walk of gyros 0.0005◦/
√

h
Bias instability of accelerometers
Constant bias of accelerometers

20 µg
100 µg

Noise power spectrum density of
accelerometers 20µg/

√
Hz

Process noise covariance parameters
in Q, Q na = 20µg/

√
Hz, ng = 0.0005◦/

√
h

Measurement noise covariance
parameters of TP in R1

rv = 0.01 m/s

Measurement noise covariance
parameters of ARTP in R2

rv = 0.01 m/s, rg = 0.01◦/s (Con.1), rg = 0.1◦/s (Con.2),
rg = 0.2◦/s (Con.3)

Measurement noise covariance
parameters of RATP in R

rv = 0.01 m/s, rϕ = 0.012◦ (Con.1), rϕ = 0.018◦ (Con.2)
rϕ = 0.024◦ (Con.3)

Initial error covariance parameters of
TP and ARTP in P10, P20

P10 = P20 = diag

(
(0.1◦)2, (0.1◦)2, (0.5◦)2, (0.01 m/s)2, (0.01 m/s)2,
(0.015◦/h)2, (0.015◦/h)2, (100µg)2, (100µg)2

)

Initial error covariance parameters of
RATP in P30

P30 = diag

 (0.1◦)2, (0.1◦)2, (0.5◦)2, (0.01 m/s)2, (0.01 m/s)2,
(0.1◦)2, (0.1◦)2, (0.5◦)2, (0.01 m/s)2, (0.01 m/s)2,
(0.015◦/h)2, (0.015◦/h)2, (100µg)2, (100µg)2


Con.1 represents the stationary condition, Con.2 represents angular vibrations with an amplitude of approximately
5 arcsec and a random frequency of 5–10 Hz, and Con.3 represents angular vibrations with an amplitude
of approximately 10 arcsec and a random frequency of 5–10 Hz. TP conventional two-position initial
alignment algorithm; ARTP, angular rate measurement-augmented two-position initial alignment algorithm; RATP,
two-position initial alignment algorithm with relative azimuth constraints.

Simulation analysis is divided into two parts. The first part analyzes the variation of 1 − σ

value of the final estimated azimuth error with the total alignment time changing from 30 to 300 s
under different angular vibration conditions. The simulation results can be seen in Table 2 and from
Figures 1–3. It is shown that the 1− σ final azimuth error of RATP is smaller than that of TP and ARTP.
The alignment accuracy of RATP is less affected by angular vibration conditions compared with that of
ARTP under different angular vibration conditions. The estimated azimuth error of ARTP tends to be
equal to TP if the alignment time is long enough. The performance of ARTP is better than that of TP
under stationary conditions, but its performance becomes worse when there are angular vibrations. In
the case of angular vibration, ARTP can achieve faster convergence rate than TP for rapid alignment,
but its accuracy is inferior to TP when the alignment time is longer. The second part analyzes the
azimuth error convergence process through time history curves of the three schemes with the same
total alignment time (180 s). The simulation result can be seen in Figures 1–3. The convergence speed
of RATP is faster than that of TP and ARTP, and ARTP is even slower than TP under large angular
vibration conditions. Therefore, RATP is more suitable for rapid initial alignment.

Con.1 represents the stationary condition, Con.2 represents angular vibrations with an amplitude
of about 5 arcsec and a random frequency of 5–10 Hz, and Con.3 represents angular vibrations with an
amplitude of about 10 arcsec and a random frequency of 5–10 Hz.
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Table 2. Performance comparison of three alignment schemes.

Condition
1−σ Final Azimuth Error Value in 180 s (arcmin) 1−σ Final Azimuth Error Value in 300 s (arcmin)

TP ARTP RATP TP ARTP RATP

Con.1 1.51 1.01 0.72 0.54 0.50 0.40
Con.2 2.06 2.55 0.96 0.67 1.81 0.58
Con.3 2.61 4.01 1.21 0.80 2.93 0.78
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Figure 1. Simulation results under stationary condition. (a) 1− σ final azimuth error when the total
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alignment time is 180 s.
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Figure 2. Simulation results under angular vibrations with an amplitude of 5 arcsec and a random
frequency between 5 and 10 Hz. (a) 1− σ final azimuth error when the total alignment time T changes
from 30 to 300 s. (b) Azimuth error curve when the total alignment time is 180 s.
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Figure 3. Simulation results under angular vibrations with an amplitude of 10 arcsec and a random
frequency between 5 and 10 Hz. (a) 1− σ final azimuth error when the total alignment time T changes
from 30 to 300 s. (b) Azimuth error curve when the total alignment time is 180 s.
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3. Results and Discussion

Two-Position Initial Alignment Experiment

Practical experimental tests were carried out to compare the two-position alignment performance
by using the three schemes described earlier. The total alignment time is 180 s. For the first 90 s, the
IMU is in state A, then the IMU rotated 180◦ to state B. The experimental environment is shown in
Figure 4. The main parameters of the inertial devices are shown in Table 3.
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Figure 4. The experimental environment.

Table 3. Main parameters of inertial devices.

Laser gyro Zero-bias stability 0.003◦/h(1σ)
Angle random walk 0.0005◦/

√
h(1σ)

Quartz pendulous accelerometer Zero-bias stability 20 µg(1σ)
Noise power spectrum density 20 µg/

√
Hz(1σ)

Sampling frequency 500 Hz

The velocity error curves under different conditions are shown in Figure 5. We can see from
Figure 5 that the velocity errors of the three schemes are all less than 0.0005 m/s under different angular
vibrations. Therefore, the velocity errors of the three schemes all meet the performance requirements.
Figure 6 shows the horizontal curves of the three schemes, hence, we can make the conclusion that
TP, ARTP, and RATP have a rate of convergence of horizontal attitude error which is similar with the
velocity error. Furthermore, the convergence time of horizontal attitude errors is less than 10 s when
SINS is in state B.
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Figure 5. Velocity curves under different conditions from 90 to 180 s. (a) North velocity error under 

stationary condition; (b) East velocity error under stationary condition; (c) North velocity error 

under angular vibrations with an amplitude of about 5 arcsec and a random frequency between 5 

and 10 Hz; (d) East velocity error under angular vibrations with an amplitude of about 5 arcsec and a 

random frequency between 5 and 10 Hz; (e) North velocity error under angular vibrations with an 

amplitude of about 10 arcsec and a random frequency between 5 and 10 Hz; (f) East velocity error 

under angular vibrations with an amplitude of about 10 arcsec and a random frequency between 5 

and 10 Hz. 

Figure 5. Velocity curves under different conditions from 90 to 180 s. (a) North velocity error under
stationary condition; (b) East velocity error under stationary condition; (c) North velocity error under
angular vibrations with an amplitude of about 5 arcsec and a random frequency between 5 and 10 Hz;
(d) East velocity error under angular vibrations with an amplitude of about 5 arcsec and a random
frequency between 5 and 10 Hz; (e) North velocity error under angular vibrations with an amplitude
of about 10 arcsec and a random frequency between 5 and 10 Hz; (f) East velocity error under angular
vibrations with an amplitude of about 10 arcsec and a random frequency between 5 and 10 Hz.
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Figure 6. Horizontal curves under different conditions from 90 to 180 s. (a) Roll curve under 

stationary condition; (b) Pitch curve under stationary condition; (c) Roll curve under angular 

vibrations with an amplitude of about 5 arcsec and a random frequency between 5 and 10 Hz; (d) 

Pitch curve under angular vibrations with an amplitude of about 5 arcsec and a random frequency 

between 5 and 10 Hz; (e) Roll curve under angular vibrations with an amplitude of about 10 arcsec 

and a random frequency between 5 and 10 Hz; (f) Pitch curve under angular vibrations with an 

amplitude of about 10 arcsec and a random frequency between 5 and 10 Hz. 
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Figure 6. Horizontal curves under different conditions from 90 to 180 s. (a) Roll curve under stationary
condition; (b) Pitch curve under stationary condition; (c) Roll curve under angular vibrations with
an amplitude of about 5 arcsec and a random frequency between 5 and 10 Hz; (d) Pitch curve under
angular vibrations with an amplitude of about 5 arcsec and a random frequency between 5 and 10 Hz;
(e) Roll curve under angular vibrations with an amplitude of about 10 arcsec and a random frequency
between 5 and 10 Hz; (f) Pitch curve under angular vibrations with an amplitude of about 10 arcsec
and a random frequency between 5 and 10 Hz.

The azimuth errors of the three schemes for 180 s rapid alignment are shown in Table 4, and
Figures 7–9. The 1− σ values of the final azimuth error of TP at 180 s are 89.26, 117.23, and 141.83 arcsec
in the different experimental conditions. The 1− σ values of the final azimuth error of ARTP at 180 s
are 61.96, 124.01, and 254.55 arcsec, respectively. The convergence rate of RATP is better than that of
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TP under static conditions, and its performance decreases obviously compared with TP when angular
vibration increases. As shown in Table 4 and Figure 8, the 1− σ values of final azimuth error of RATP at
180 s are 43.75, 50.75, and 87.83 arcsec, respectively. RATP shows superior performance under different
conditions. Above all, the azimuth error convergence to a steady value is much faster for RATP than
for the other two schemes under different conditions. The azimuth error accuracy of RATP in the
same total alignment time is significantly higher than that of the traditional algorithms. Therefore,
the experimental results have shown the effectiveness and superiority of the proposed algorithm.

Table 4. Azimuth error under different conditions for 180 s rapid alignment.

Num
TP (arcsec) ARTP (arcsec) RATP (arcsec)

Con.1 Con.2 Con.3 Con.1 Con.2 Con.3 Con.1 Con.2 Con.3

1 −110.26 −199.00 272.94 −95.08 −52.74 −94.134 −1.76 45.31 144.47
2 −38.26 56.85 −183.61 9.02 −148.55 51.26 34.64 10.83 −69.82
3 110.46 −24.70 34.60 7.41 78.65 59.75 3.39 −58.99 14.40
4 −70.55 237.23 68.07 −59.90 −334.08 −66.70 −40.21 −53.06 90.46
5 6.14 −73.86 −254.07 35.43 217.33 −132.19 −59.04 12.49 −127.33
6 102.48 3.48 62.07 103.11 239.40 182.01 62.99 43.42 −52.17
7 −96.24 −18.10 −124.30 −4.95 −7.66 −476.15 −8.63 −20.32 −50.61
8 −84.72 −91.60 −20.84 −85.77 −157.55 −14.43 −78.16 −85.72 65.65
9 18.52 100.76 −39.40 29.03 −83.69 −191.20 28.56 37.15 −107.95

10 104.79 130.65 112.16 81.13 101.39 508.14 44.86 77.35 85.82
11 −55.33 −97.28 91.85 −45.65 −54.37 −142.47 −22.21 −40.75 −50.62
12 124.49 −24.43 −19.46 26.22 201.87 −316.57 35.58 32.29 57.71

STD
value 89.26 117.23 141.83 61.96 174.01 254.55 43.75 50.75 87.83
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Figure 7. Azimuth error time history curve under stationary conditions when the total alignment time
is 180 s.
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Figure 8. Azimuth error time history curve under angular vibrations with an amplitude of about
5 arcsec and a random frequency between 5 and 10 Hz when the total alignment time is 180 s.
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4. Conclusions

To improve alignment precision and reduce the time needed for error convergence, this paper
proposes a novel piecewise combined Kalman filter for state estimation. A two-position ground
alignment algorithm for SINS is designed based on the proposed piecewise combined Kalman filter.
Simulation results show that the proposed RATP algorithm presents better performance under different
experimental conditions compared with the conventional alignment algorithms. ARTP performs better
than TP under stationary condition, and it can achieve a faster convergence rate than TP for rapid
alignment, but the accuracy of ARTP accuracy was inferior to TP when the alignment time under
angular vibrations was longer. The real experimental results indicate that for the SINS in this paper, the
azimuth error of RATP is about 40% less than that of the conventional algorithms under stationary or
angular vibration conditions for 180 s rapid alignment. The proposed two-position ground alignment
scheme, which is based on a piecewise combined Kalman filter and azimuth constraint information,
has important engineering value for rapid SINS self-alignment.
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