
sensors

Article

A Wavelet Transform-Based Neural Network
Denoising Algorithm for Mobile Phonocardiography

Dawid Gradolewski 1,*, Giovanni Magenes 2 , Sven Johansson 1 and Wlodek J. Kulesza 1

1 Blekinge Institute of Technology, Institute of Applied Signal Processing, 371 79 Karlskrona, Sweden;
sven.johansson@bth.se (S.J.); wlodek.kulesza@bth.se (W.J.K.)

2 Dipartimento di Ingegneria Industriale e dell’Informazione, University of Pavia, 27100 Pavia, Italy;
giovanni.magenes@unipv.it

* Correspondence: dawid.gradolewski@bth.se; Tel.: +46-455-385-890

Received: 31 December 2018; Accepted: 20 February 2019; Published: 24 February 2019
����������
�������

Abstract: Cardiovascular pathologies cause 23.5% of human deaths, worldwide. An auto-diagnostic
system monitoring heart activity, which can identify the early symptoms of cardiac illnesses, might
reduce the death rate caused by these problems. Phonocardiography (PCG) is one of the possible
techniques able to detect heart problems. Nevertheless, acoustic signal enhancement is required since
it is exposed to various disturbances coming from different sources. The most common denoising
enhancement is based on the Wavelet Transform (WT). However, the WT is highly susceptible
to variations in the noise frequency distribution. This paper proposes a new adaptive denoising
algorithm, which combines WT and Time Delay Neural Networks (TDNN). The acquired signal
is decomposed by means of the WT using the coif five-wavelet basis at the tenth decomposition
level and then provided as input to the TDNN. Besides the advantage of adaptive thresholding,
the reason for using TDNNs is their capacity of estimating the Inverse Wavelet Transform (IWT).
The best parameters of the TDNN were found for a NN consisting of 25 neurons in the first and
15 in the second layer and the delay block of 12 samples. The method was evaluated on several
pathological heart sounds and on signals recorded in a noisy environment. The performance of the
developed system with respect to other wavelet-based denoising approaches was validated by the
online questionnaire.

Keywords: adaptive filters; auscultation techniques; auto-diagnostic system; cardiovascular
pathologies; Inverse Wavelet Transform (IWT), noise cancellation; signal denoising; Time Delay
Neural Networks (TDNN)

1. Introduction

Auscultation techniques, generally performed using a stethoscope, allow a quick examination of
the condition of circulatory, respiratory or gastrointestinal systems by listening to breath, heart or bowel
sounds, respectively. These simple methods have no risk or side effects and allow a fast evaluation of
the respective systems’ conditions. Because of their features, general practitioners use auscultation
methods at an early stage of diagnosis. However, using a stethoscope, which only acquires the sound
level, still requires much practice and experience. In the phonocardiography (PCG)-based stethoscope,
it is most useful to listen for sounds and murmurs of the heart resulting from the vibrations created by
the closure of heart valves and turbulent blood flow through the vessel [1].

According to the World Health Organization (WHO), failures of the cardiovascular system cause
23% of deaths all over the world [2]. Early recognition of pathological changes could save many lives.
Therefore, the development of a reliable auto-diagnostic system, which could be applied to both home
healthcare and in a clinical environment, is in great need. Phonocardiography, due to its simplicity and
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non-invasiveness, is a possible solution and could facilitate monitoring of both hospitalized people
and those whose health conditions can be checked at home.

The main problem of such a system are the interferences that occur during acquisition of the PCG
signal (Figure 1) [3–6]. There are interferences of external origin derived from surroundings, such as
speech or external sounds, and of internal origin mainly caused by respiratory and digestive sounds,
as well as those induced by patients’ movements [3,4]. Occasionally, some other disturbances may
occur from sensor rubbing, swallowing, muscle movements, coughing, etc. [5].
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2. Survey of Related Works

Several attempts were made to develop reliable denoising algorithms for PCG signals. Adaptive
algorithms represent a possible approach [6,7] relatively effective to remove human’s internal sounds
like respiration [8] or digestive sounds [9]. However, these methods require additional sensors placed
on the patients’ body, making the test inconvenient and difficult to implement as a mobile or wearable
system capable of working remotely in patients’ homes [10–12]. Furthermore, the problem of external
origin disturbances, like movements [3] or speech [4], requires the implementation of suitable filters.

Another category of PCG denoising algorithms refers to blind source separation techniques
grounded on some quasi-periodic properties of heart sounds [13,14]. Among these solutions,
the model-based Bayesian denoising framework, developed by Almasi et al. [15], and the single
channel method proposed by Jimenez-Gonzalez and James [16,17] show promising results. The
similarities of spectral features were also used for detection of ambient, vocal and physiological
disturbances of PCG signals [18].

Nowadays, the common approaches are based on the wavelet thresholding algorithms [4,19–24],
which are also widely applied for a denoising processes of other bio-signals such as ECG [25,26]
or EMG [27,28]. The Wavelet Transform (WT), due to its high resolution both in time and
frequency domains, has also been successfully used for PCG signal processing [29–31] and feature
extraction [32,33].

Naseri et al. applied the WT to binary quality assessment system [20] and noise/spike detection
in PCG signals [21]. The authors of [19] adopted the WT-based denoising technique in PCG signal
filtration. They found that the rigsure thresholding method and the non-rescaling sln function are
suitable to remove white noise from heart sound signals. Liu et al. showed good results with the
minimaxi thresholding algorithm [23]. In [4], the authors reported that the noise recorded by a mobile
PCG acquisition device in a noisy environment had a distribution similar to pink noise, and the
minimaxi thresholding method and mln function, rescaled using a noise level dependent estimation,
are suitable to remove this environmental noise. Cherif et al. observed that the Discrete Wavelet
Transform (DWT) more efficiently removes murmurs and clicks than the Packet Wavelet Transform
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(PWT) [29]. Overall, many wavelet-based denoising approaches using thresholding algorithms have
been proposed to improve the PCG signal quality [4,19,23,24,29].

It has been observed that the optimal parameters of the wavelet denoising algorithm for a PCG
signal [4,19–24] depend on the initial simulation conditions [21]. The use of an adaptable threshold
value might be suitable for systems working in variable surrounding environments, where the sources
of noise change instantaneously [5,21]. Consequently, several recent studies approach the problem
of automatic determination of the threshold value [34,35]. An adaptive overlapping-group sparse
denoising heart sound signal algorithm proposed by Deng and Han outperforms the conventional
wavelet methods in lower noise level [36]. An adaptive threshold estimation method for wavelet
based denoising reported by Jain and Tiwari estimates the threshold value on the basis of domain
knowledge about the heart sound signal [37]. The algorithm efficiently distinguishing heart murmur
from dataset using the wavelet transform and combination of artificial neural network was developed
by Eslamizadeh and Barati [38].

3. Problem Statement and Main Contribution

The review of related works shows that the existing auto–diagnostic methods require enhancement
of the PCG denoising system. Most of the research focuses on removing white noise contamination.
However, recent studies demonstrate that the sources of noise on the PCG signal vary widely [4],
affecting the power distribution of the disturbance signals. Therefore, there is a need for a denoising
system adaptable to various noises, regardless of their origin, power or distribution. Furthermore,
the reported studies do not consider that some of the useful heart sounds such as snaps, rumbles
or murmurs are similar to noise and can be unduly affected by a filtration process changing the
signal morphology.

The main objective of the paper is to design of a phonocardiography denoising algorithm
adaptable to the changing surrounding interferences without compromising its complexity
and usability.

The proposed denoising system combines two techniques: WT and the Time Delayed Neural
Network (TDNN), where the WT decomposes the PCG signal to provide its valuable frequency content
to the TDNN. Whereas, the TDNN, besides filtering the wavelet coefficients below the adaptively
adjusted threshold, estimates the Inverse Wavelet Transform (IWT) from the wavelet coefficients
exclusively associated with the desired heart sound.

The main contribution of the paper is the modelling and implementation of the new adaptive
denoising algorithm aimed at the self-adjustment to the changeable surrounding environment.
The proposed wavelet-based Neural Network (NN) denoising method was modelled and then
implemented in Matlab. The design of the TDNN is based on two optimisation parameters,
Signal to Noise Ratio (SNR) and fit coefficient. The solution evaluation has been performed on
several pathological heart sounds and signals recorded by mobile devices in a noisy environment.
The performance of the developed system, with respect to other wavelet-based denoising
approaches [4,19], was validated by an online questionnaire. Moreover, the proposed solution was
verified using the heart sound classifier.

4. System Architecture

The proposed system combines two methods: Wavelet Packet Decomposition (WPD), known
also as Wavelet Packets or Subband Tree, and the TDNN. The used decomposition technique applies
a series of low-pass and high-pass filters. The used two-channel sub-band coder was developed by
Mallat [19,39–41].

In [4,19], it was shown that WPD provides a sparse representation of PCG signals, wherein
the coefficients of small value represent the noise, while the main signal features are included in
a few large-magnitude wavelet coefficients [19]. Therefore, the proposed denoising algorithm aims at
removing the irrelevant wavelet coefficients, exclusively attributed to the noise, in order to reconstruct
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of the originally desired signal through the remaining informative coefficients [41]. During the training
process, based on noise input and clean output data, the NN learns which part of signal is relevant,
and which is associated with noise and should be removed. However, it is crucial to find the relevant
threshold value for preserving the only the desired coefficients [21]. To fulfil this request, instead of
finding a constant threshold value, we apply a NN, which reconstructs the desired heart sound signal
based on the recorded signal and corresponding wavelet coefficients. The purpose of the NN is to
preserve only these wavelet coefficients, which contain heart sound features and then to estimate the
IWT. We used the TDNNs due to the time series data [42] and ability to recognize the series features
independent of time-shift [43,44].

The block diagram of the proposed system is presented in Figure 2. The core of the system is
the TDNN placed after the WPD. Previous studies [4,19] show that, when dealing with PCG signals
affected by noise of varying distribution, the best parameters for WPD can be obtained by means of
Coif 5 wavelet basis using M = 10 decomposition levels [29]. Therefore, these parameters are applied in
our solution. The wavelet detail coefficients (d1 − dM) of the decomposed signal are resampled to get
TDNN input data of the same length. The PWD coefficients are up-sampled by placing a sample value
of the previous coefficients, which duplicates the length of the series. The Tapped Delay Line (TDL)
of the NN delays the signal by n samples, therefore, each created vector is made up of the current
time wavelet coefficients dk(i) and N coefficients of the delayed samples. The NN applies N-samples
of each normalized wavelet coefficient vectors (D1 − DM) and real signal Xr to estimate the desired
signal xd(i), where Dj = [dj(z) dj(z − 1) . . . dj(z − N)] and Xr = [xr(z) xr (z − 1) . . . xr(z − n)] and j is
a decomposition level. Each of the NN inputs collects data for time windows with different lengths.

The logical layout for the NN training process of the applied denoising system is also depicted in
Figure 2, where the dashed lines represent the training scheme of the NN. The desired heart sound
signal xd(i) is compared with the NN response y(i), and thus the output error e(i) is used to train the
TDNN using a backpropagation algorithm [44].
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5. Design of the TDNN

To determine the best configuration and its parameters of the TDNN, the system performance
is evaluated for various doses of white and pink noise. The noise was added to desired heart sound
signals with gradually increasing power from 1 dBm to 15 dBm, with an incremental step of 1 dBm.
As a quality measure of the proposed system, the SNR of the desired signal to the denoised signal
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was used. Moreover, to ensure that during filtration important information is not lost, an adopted fit
coefficient was proposed:

f it = 100 ×

1 −
∑L

j=1[y(j)− xd(j)]2

∑L
j=1

[
xd(j)− 1

L ∑L
j=1 xd

]2

, (1)

where L is the number of the signal samples, xd is the desired signal and y is the denoised signal.
The proposed fit is the normalized complement to one of the determination coefficients [45],

commonly applied to evaluate ECG [25] and PCG [4,6] denoising systems. The greater fit value
denotes better matching between the desired and denoised signals.

5.1. Bases of Heuristic Design Optimisation

For system heuristic design optimisation, we used records from five online databases:
Michigan [46], eGeneral Medical Inc. [47], 3M Litttmann [48], University of Washington [49] and
Thinklabs [50]. Each dataset consists of 10 different sets of records including physiological heart
sounds (S1 - S4), as well as sounds that indicate the occurrence of a cardiovascular pathology: Normal
Split S1 (NS S1), Normal Split S2 (NS S2), Early Systolic Murmur (ESM), Late Systolic Murmur
(LSM), Ejection Click (EC), Opening Snap (OS), Pansystolic Murmur (PM), and Diastolic Rumble (DR).
The overview of databases’ dataset is presented in Table 1.

Table 1. Details about the dataset used for the simulations and tests.

Base Michigan eGeneral Littmann Washington Thinklabs Sum

Pathology CC tr [s] CC tr [s] CC tr [s] CC tr [s] CC tr [s] CC tr [s]

S1 156 130 6 4 6 4 10 10 10 10 188 158

S2 156 130 6 4 6 4 10 10 10 10 188 158

S3 167 132 6 4 6 4 11 10 9 8 199 158

S4 160 139 7 5 7 5 12 10 12 10 198 169

EC 155 135 6 4 6 4 - - - - 167 143

NS S1 102 71 6 4 6 4 - - - - 114 79

NS S2 145 132 6 4 6 5 13 10 12 10 182 161

LMS 64 61 7 7 7 7 12 10 16 12 106 97

HM 152 125 7 5 7 7 8 10 11 10 185 157

ESM 63 120 7 5 7 5 - - 12 10 89 140

OS 75 61 7 5 7 5 - - 16 11 105 82

DR 75 61 6 4 6 4 11 10 16 11 114 90

CC—a number of cardiac cycles; tr—record duration.

The sounds were recorded at different sampling frequencies, varying from 8 kHz to 11 kHz.
For standardization purpose and to reduce the computational complexity the records of all databases
were down-sampled to the common frequency of 2000 Hz, without losing the signal quality.
The database sets were divided into two equal sets, one for training and one for testing. The training
and testing sets are composed of randomly selected samples from each sound and each online available
database. Both sets contained the same number of recordings of normal (S1, S2, S3, S3) and pathological
(EC, NS S1, NS S2, LMS, HM, ESM, OS, DR) heart sounds. In training phase, to the training recordings,
the uncorrelated Gaussian white and pink noises were added respectively, each of 5 dBm, 10 dBm,
and 15 dBm levels. The proposed system was evaluated using the test recording set contaminated
by the gradually increasing white and pink noises from 1 dBm to 15 dBm, with a step of 1 dBm.
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The average fit coefficient and the output SNR obtained for each test sound signal were analysed at
each noise level.

5.2. Heuristic Rstimation of the TDNN Parameters

The WPD parameters of 10th level and Coif 5 wavelet basis have already been determined
in [4,19,23]. Therefore, we only needed found TDNN parameters: n—the size of the tapped delay line,
and the number of neurons used in hidden layers of the Artificial Neural Network (ANN).

The Levenberg-Marquardt backpropagation training algorithm [44] (trainlm in Matlab toolbox)
was chosen for the training process, and the evaluation was carried out by means of the Mean Squared
Error (MSE). To find the global minimum of the gradient function for each simulation, 500 epochs
were empirically chosen.

Figure 3 presents the simulation results used to find the optimum n length of tapped delay line for
the five representative values of TDL block (n = 4, 8, 12, 18, and 24). The upper limit of the delay n = 24
should not be exceeded due to the algorithm computational complexity of the training process and
because of the implementation requirements of the TDNN for real time applications, e.g., on mobile
devices. The simulations were performed on a medium size ANN containing 15 neurons in the hidden
layer. From Figure 3, it can be noticed that the best values of both SNR and fit coefficient are obtained
for n = 12 delays, which is especially distinguishable for fit coefficient. However, the values of n = 24
and n = 18 do not differ much especially in respect to SNR.
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The final design step was to find the suitable structure of the NN. In Table 2, six representative
medium size networks used in simulation are defined. ANN1, ANN2, ANN3 and ANN4 were built
with a single hidden layer of 10, 15, 20, and 25 neurons, respectively. ANN5 and ANN6 consisted of
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two hidden layers with 25 neurons in the first layer and 15 neurons and 20 neurons in the second layer,
respectively. Each NN consisted of one output layer.

Table 2. Definition of NNs used.

# Input Layer First Layer Second Layer Output Layer

ANN 1 11 10 - 1

ANN 2 11 15 - 1

ANN 3 11 20 - 1

ANN 4 11 25 - 1

ANN 5 11 25 15 1

ANN 6 11 25 20 1

The simulation results of SNR and fit coefficient presented in Figure 4 show the parameters’ worst
performance for the single layer neural networks (ANN1–ANN4). ANN5 and ANN6 show similar
good performance. However, ANN6 with 25 neurons in first and 20 neurons in the second layer,
performs slightly better at higher noise levels, and, therefore, it can be recommended for our solution.
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Finally, the designed wavelet-based NN filter consists of 25 neurons in in the first and 20 neurons
in second layer and has the delay block of 12 samples (n = 12). The wavelet decomposition parameters,
based on previous studies [4,19] are determined as Coif 5 wavelet basis at the 10th decomposition level.
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6. System Evaluation

In the evaluation process, we compared the performance of the proposed system with the wavelet
denoising filters (WDF) based on a constant threshold value optimized for pink and white noise.
The simulations were performed on:

• WDF optimised for white noise and contaminated by white noise [19] (WD white w),
• WDF optimised for white noise and contaminated by pink noise [19] (WD white p),
• WDF optimised for pink noise and contaminated by white noise [4] (WD pink w),
• WDF optimised for pink noise and contaminated by pink noise [4] (WD pink p),
• Wavelet Transform Time Delay Neural network contaminated by white noise (WT-TDNN w),
• Wavelet Transform Time Delay Neural network contaminated by pink noise (WT-TDNN p).

The power of additive noise was gradually increased from 1 dBm to 15 dBm, with a step of
1 dBm, separately for both white and pink noise contaminations. The results are presented in Figure 5
and show that the wavelet denoising filters based on a constant threshold value [4,19] are highly
susceptible to changes in the noise distribution and optimisation target. In the case of contamination
by the same noise distribution as used in the optimization process, their denoising capabilities are
similar to those of the proposed systems in terms of SNR and fit coefficient. However, in the case of
contamination by a different noise distribution than that used in the optimization process they perform
poorly (SNR <2.5). The best results independent of distribution of noise contaminants were obtained
by using the proposed wavelet-based NN denoising algorithm.
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7. System Validation

Some examples relevant to heart sound signals filtered by the proposed system are presented in
Figure 6 showing one example for each snap, rumble, murmur, split, and a physiological heart sound.
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Supplementary simulations are enclosed in the Appendix A in Figure A1. In order to allow an easy
interpretation of the denoising accuracy of the developed system, the results depicted in Figures 6
and A1 are organized as follows: the left frame contains the desired signal A, the 10 dBm pink noise B
added to the desired signal, the right frame contains the resultant noised signal C, and the signal after
denoising D. It can be observed that after filtration, a residual low amplitude high frequency noise
is still present the denoised signal. Nevertheless, it can also be seen that after the filtration process
the morphology of the denoised and original signals remains mostly unchanged. Although some
components of the original heart signal are removed, mainly murmurs, the original denoised signal is
recognizable and its tones distinguishable.
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Figure 7 presents the case study of the denoising process on a PCG signal of a 27 year old woman,
recorded by a mobile device [4] in a noisy environment. During the measurement, the noise sources
of the TV set and computer of noise levels about 65 dB and 60 dB, respectively, were applied and
measured separately within 1 m from the source by a piezoelectric acoustic pressure sensor. The record
consists of two heart cycles and two physiological heart tones, S1 and S2, respectively.
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To validate the algorithm’s performance, we applied the spectral comparison of both the recorded
and the denoised sounds. The analysis is based on the most commonly used Fourier and short-time
Fourier transforms along with WT. The spectral analysis was performed on S1 heart tone to determine
the particular frequencies in the signal. The short-time transform and wavelet analysis aims to show
the particular frequency contents removed by denoising process. The time-frequency representation of
the signal shows that the main frequency components of the heart tones remain unchanged. The noise
of the lower frequency band (<200 Hz), which overlaps the heart tones spectrum, is removed during the
filtration process. It can be seen that the proposed algorithm properly selects the wavelet coefficients
associated with the noise. The results show that in the time representation of the recorded signal it is
not possible to separate the S1 and S2 components, but after filtration the tones are distinguishable.
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8. System Verification Based on Automated Diagnostics and QoE

The evaluation/verification process is twofold. First one is a simple classifier, which was used to
evaluate the effect of the denoising process on the identification accuracy. It quantitatively evaluates
the influence of the developed denoising algorithm on the morphology of the PCG signal. Second one
is an online questionnaire, which was designed and distributed amongst stakeholders to quantitatively
assess the system’s performance.
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The evaluated denoising system WT-TDNN was trained using recordings contaminated by
uncorrelated Gaussian white and pink noises, for three noise power levels 5 dBm, 10 dBm, and 15 dBm
respectively (see Section 5.1). The classifier used for the evaluation is composed of the Linear Predictive
Coding (LPC) and NN [51,52]. The pure original signals from the extended data bases (see Section 5.1)
were used in training process of LPC-NN. The test data were contaminated by additive pink or white
noises of 5 dBm, 10 dBm, 15 dBm and 20 dBm levels, respectively. After applying the WT-TDNN
denoising method, the LPC-NN algorithm was used on the denoised data to identify the given signals
origin (e.g., S1, S2, holosystolic murmur, etc.). This way, the robustness of denoising system on noises
of different kind and level could be evaluated. The identification correctness is defined as a percentage
of correct predictions of considered tone in respect to the total number of samples. The process is
repeated for each tone separately. The results from Table 3 show that even strongly contaminated
signals after applying the WT-TDNN denoising method could be identified with almost the same
accuracy as pure signal, where the reference of identification correctness is this of pure signals.

Table 3. The impact of the WT-TDNN denoising on the identification accuracy of LPC-NN classifier.

Type of Heart
Dysfunction

Identification Correctness for a Test Signal at Given Noise Power and Colour

Pure Signal
0 dBm

5 dBm 10 dBm 15 dBm 20 dBm

Pink White Pink White Pink White Pink White

S1 98% 97% 96% 89% 87% 85% 86% 71% 69%

S2 96% 95% 94% 88% 89% 85% 81% 65% 60%

S3 99% 96% 98% 90% 91% 88% 89% 76% 80%

S4 98% 97% 96% 91% 90% 90% 88% 71% 70%

EC 95% 94% 93% 91% 91% 79% 81% 60% 55%

NS S1 95% 95% 92% 91% 92% 88% 86% 71% 75%

NS S2 96% 95% 96% 90% 87% 79% 79% 55% 50%

LSM 98% 95% 97% 89% 89% 86% 88% 70% 70%

HM 97% 94% 95% 91% 92% 89% 90% 60% 81%

ESM 98% 97% 96% 91% 90% 90% 89% 76% 79%

OS 98% 97% 96% 90% 89% 79% 86% 69% 71%

DR 99% 96% 95% 94% 89% 66% 69% 45% 45%

Mean 97.3% 95.7% 95.3% 90.4% 89.7% 83.7% 84.3% 65.8% 67.1%

Max - Min 4% 3% 6% 6% 5% 24% 21% 31% 36%

where: EC—Ejection Click, NS—Normal Split, LSM—Late Systolic Murmur, HM—Holosystolic Murmur,
ESM—Early Systolic Murmur, OS—Opening Snap, DR—Diastolic Rumble.

Overall, for white noised signals with noise levels of 5 dBm, 10 dBm and 15 dBm, the average
identification correctness is 95.7%, 90.4%, and 83.7% for an additive pink noise, respectively; 95.3%,
89.7% and 84.3% for an additive white noise, respectively; compared to 97.3% for a pure origin
signal. However, for the pink noise of 15 dBm, the identification correctness varies from 66% for
Diastolic Rumble to 90% for S3 and Early Systolic Murmur. Moreover, for white noise of 15 dBm,
the identification correctness varies from 69% for Diastolic Rumble to 90% for holosystolic murmur
and S4. In these two noise cases, the differences between the best and worst identification correctness
are 24% and 21%, respectively, which are 3–7 times worse than for noise levels of 5 dBm and 10
dBm. Overall, the differences in mean value of identification correctness for pink and white noise
contaminations are less than 3% for all used noise levels.

An additional test at 20 dBm noise level, which was higher than 15 dBm that used for training
was performed. The results show that the average classification correctness for pink and white noise
dropped below 65.8% and 67.1%, respectively. For the pink noise, the identification correctness
varies from 76% for Early Systolic Murmur and S3 to 45% for Diastolic Rumble. Whereas, for the
white noise, the identification correctness changes from 80% for S3 to 45% for Diastolic Rumble.
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The differences between the best and worst identification correctness are 31% and 36%, respectively.
The weak identification capabilities results from the power of the interferences as well as testing
and training sets mismatch. The results show that the system performance decreases when the
system is trained for lower noise level than the test noise level. However, the results show that
the correctness is still at reasonable. Table 4 presents the identification correctness of the LPC-NN
classifier applied to signals denoised by the WD white w, WD white p, WD pink p, WD pink w and
WT-TDNN algorithms. The results were determined for additive white and pink noises of 10 dBm
each. The results of WD white w, WD white p, and proposed WT-TDNN are similarly good but only
for WD algorithms of the same noise distributions as those used in the optimization process. However,
the identification correctness obtained for WD algorithms for different noise distributions than those
used in the optimization process (WD white p and WD pink w) tends to 0%.

Table 4. Comparison of the identification correctness for different algorithms at white and pink noise
of 10 dBm power using following denoising methods: WD white w, WD pink p, and WT-TDNN.

Type of Heart
Dysfunction

Identification Correctness for Different Algorithms at White and Pink Noise of 10 dBm Power

WT-TDNN WT-TDNN WD White w WD Pink p WD White w WD Pink p

Pink White White Pink Pink White

S1 89% 87% 88% 90% 4% 4%

S2 88% 89% 88% 91% 2% 0%

S3 90% 91% 89% 89% 1% 5%

S4 91% 90% 88% 88% 7% 3%

EC 91% 91% 92% 92% 0% 0%

NS S1 91% 92% 90% 92% 1% 2%

NS S2 90% 87% 88% 88% 1% 0%

LSM 89% 89% 87% 87% 0% 0%

HM 91% 92% 87% 87% 0% 0%

ESM 91% 90% 92% 90% 0% 0%

OS 90% 89% 89% 90% 1% 0%

DR 94% 89% 95% 92% 0% 0%

Mean 90.4% 89.7% 89.4% 89.7% 1.4% 1.2%

Max - Min 6% 5% 8% 5% 7% 5%

EC—Ejection Click, NS—Normal Split, LSM—Late Systolic Murmur, HM—Holosystolic Murmur, ESM—Early
Systolic Murmur, OS—Opening Snap, DR—Diastolic Rumble.

Quality of experience (QoE) is a relevant metric for system performance assessment from a user’s
perspective. To get a quantitative measure, an online questionnaire was proposed. It was aimed at
comparing the performance of the developed algorithm (WT-TDNN) with other popular denoising
systems such as the wavelet denoising system optimized for pink noise (WD-pink) [4] and for
white (WD-white) [19]. The questionnaire available online [53] was designed in a way that allowed
subjective assessment of the sound quality by the listener. The denoising results of these three methods
WT-TDNN, WD-white and WD-pink were spread and paired randomly. The played test sounds were
results of denoising methods applied to the PCG signal superimposed by 10 dBm noise. The used
database was limited to five representative sounds: S3, diastolic rumble (DR), pansystolic murmur
(PM), opening snap (OS) and normal split of S2 heard sounds (NS S2).

Table 5 presents the survey averaged results. The detailed results are enclosed in the Appendix B.
Each PCG signal resulting from WT TDNN is evaluated in comparison to WD-white and WD-pink.
Overall, 36 people took part in the survey, among them 22 engineers, 8 medical students, 3 physicians
and 3 people of other specializations.

The results show that 79% of respondents found WT-TDNN as giving a little or much better
performance compared to WD-pink, and 83% of them as a little or much better than WD-white.
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Moreover, 59% of respondents found WT-TDNN as giving much better signal quality than WD-pink
and 50% for WD-white. However, 11% and 7% of participants found WD-pink and WD-white,
respectively, as giving better performance. A few people could not observe any difference between
methods, 3% for WT-pink and 4% for WT-white. The detailed results for each comparison are presented
in Appendix B Tables A1–A3.

Table 5. Summary of questionnaire with averaging results.

Disclosed Question WD-Pink WD-White

The sound treated by WT-TDNN has a little better quality than WD: 20% 33%

The sound treated by WT-TDNN has much better quality than WD: 59% 50%

The sound treated by WT-TDNN has a little bit worse quality than WD: 9% 1%

The sound treated by WT-TDNN has much worse quality than WD: 2% 6%

There is no difference in quality between the signal treated by WT-TDNN and WD: 3% 4%

9. Conclusions and Future Work

The paper objective was to design a denoising algorithm for PCG signals adaptable to changing
surrounding interference without compromising its complexity and usability. The proposed solution
combining two techniques WT and TDNN, aimed to equally denoise the PCG signal from both white
and pink noise, which may affect the heart signal in noisy examination environment.

The proposed use of TDNN for computation of the IWT achieves comparable results to other
wavelet-based denoising systems in terms of SNR and fit coefficient. It can be said that the proposed
system summarizes both the advantages of blind source separation algorithms (simplicity, reduction
of additional sensors) and those of adaptive algorithms (efficiency, accuracy, adaptation to the changes
in surrounding environments), and therefore, enables the system implementation on mobile devices.

The best architecture the TDNN consists of 25 neurons in the first and 20 in a second layer with
the delay block of 12 samples. The WD parameters, based on previous studies [4,19] are determined as
Coif 5 wavelet basis at the 10th decomposition level.

The proposed denoising system was modelled and implemented in Matlab. System evaluation
and validation were performed on several pathological and physiological heart sounds as well as the
signals recorded by mobile devices in a noisy environment and show the usability and diversity of
the developed system. The performance of the developed system with respect to other wavelet-based
denoising approaches were verified by the online questionnaire.

The proposed system may be used during the development of a portable/wearable cardiovascular
monitoring system. Its ability to remove the various PCG noise contaminations may enable the
realization of a smart stethoscope concept with its implementation on mobile devices like smartphones
or tablets. The device miniaturization and portability will allow longer heart examinations without
affecting the patient’s quality of life. The longer examination may help to find pathological changes
occurring sporadically.

However, the system was only tested on some pathological heart sound signals. Therefore,
additional simulations on larger databases including other recordings in various surrounding
environments are needed. A further research on a generally trained network can be interesting
for system generalisation.
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Appendix A. The Final Results of the Filtration Process
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Appendix B. Results of the QoE Poll

Table A1. Comparison of WT-TDNN with WD-pink.

Question S3 DR PM OS NS S2

In sound WT-TDNN the heart sound can be heard
a little bit better than in sound WD-pink 17% 17% 22% 22% 22%

In sound WT-TDNN the heart sound can be heard
much better than in sound WD-pink 72% 56% 39% 67% 61%

In sound WD-pink the heart sound can be heard
a little bit better than in sound WT-TDNN 0% 22% 17% 6% 0%

In sound WD-pink the heart sound can be heard
much better than in sound WT-TDNN 0% 0% 6% 0% 6%

There is no difference in quality between the signals 0% 11% 6% 0% 0%

In sound WT-TDNN, I can hear some murmurs
additive to the heart sound 6% 22% 17% 44% 17%

In sound WD-pink, I can hear some murmurs
additive the heart sound 56% 50% 56% 11% 39%

S3—third heart sound; DR—Diastolic Rumble; PM—Pansystolic Murmur; OS—Opening Snap; NS S2—Normal
Split of S2.

Table A2. Comparison of WT-TDNN with WD-white.

Question S3 DR PM OS NS S2

In sound WT-TDNN the heart sound can be heard
a little bit better than in sound WD-white 28% 50% 28% 22% 39%

In sound WT-TDNN the heart sound can be heard
much better than in sound WD-white 61% 28% 61% 50% 50%

In sound WD-white the heart sound can be heard
a little bit better than in sound WT-TDNN 0% 6% 0% 0% 0%

In sound WD-white the heart sound can be heard
much better than in sound WT-TDNN 0% 0% 0% 17% 11%

There is no difference in quality between the signals 0% 11% 6% 6% 0%

In sound WT-TDNN, I can hear some murmurs
additive to the heart sound 28% 44% 22% 22% 11%

In sound WD-white, I can hear some murmurs
additive the heart sound 56% 28% 44% 44% 39%

S3—third heart sound; DR—Diastolic Rumble; PM—Pansystolic Murmur;OS—Opening Snap; NS S2—Normal Split
of S2.

Table A3. Comparison of WD-pink with WD-white.

Question S3 DR PM OS NS S2

In sound WD-pink the heart sound can be heard
a little bit better than in sound WD-white 17% 33% 39% 50% 44%

In sound WD-pink the heart sound can be heard
much better than in sound WD-white 11% 17% 0% 17% 33%

In sound WD-white the heart sound can be heard
a little bit better than in sound WD-pink 28% 11% 11% 11% 17%

In sound WD-white the heart sound can be heard
much better than in sound WD-pink 11% 0% 6% 0% 11%

There is no difference in quality between the signals 11% 28% 28% 50% 28%

In sound WD-pink, I can hear some murmurs
additive to the heart sound 11% 17% 17% 6% 0%

In sound WD-white, I can hear some murmurs
additive the heart sound 39% 39% 33% 11% 0%

S3—third heart sound; DR—Diastolic Rumble; PM—Pansystolic Murmur; OS—Opening Snap; NS S2—Normal
Split of S2.
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