
sensors

Article

FPGA-Based Hybrid-Type Implementation of
Quantized Neural Networks for Remote
Sensing Applications

Xin Wei 1, Wenchao Liu 1,* , Lei Chen 1, Long Ma 2 , He Chen 1 and Yin Zhuang 3,*
1 Beijing Key Laboratory of Embedded Real-time Information Processing Technology,

Beijing Institute of Technology, Beijing 100081, China; weixin@bit.edu.cn (X.W.);
2220170351@bit.edu.cn (L.C.); chenhe@bit.edu.cn (H.C.)

2 School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China; ielongma@zzu.edu.cn
3 School of Electronics Engineering and Computer Science, Peking University, Beijing 100087, China
* Correspondence: 3120150359@bit.edu.cn (W.L.); zhuangyin640829@163.com (Y.Z.);

Tel.: +86-152-105-14721 (W.L.); +86-156-249-04344 (Y.Z.)

Received: 23 January 2019; Accepted: 19 February 2019; Published: 22 February 2019
����������
�������

Abstract: Recently, extensive convolutional neural network (CNN)-based methods have been used
in remote sensing applications, such as object detection and classification, and have achieved
significant improvements in performance. Furthermore, there are a lot of hardware implementation
demands for remote sensing real-time processing applications. However, the operation and storage
processes in floating-point models hinder the deployment of networks in hardware implements
with limited resource and power budgets, such as field-programmable gate arrays (FPGAs) and
application-specific integrated circuits (ASICs). To solve this problem, this paper focuses on
optimizing the hardware design of CNN with low bit-width integers by quantization. First, a
symmetric quantization scheme-based hybrid-type inference method was proposed, which uses
the low bit-width integer to replace floating-point precision. Then, a training approach for the
quantized network is introduced to reduce accuracy degradation. Finally, a processing engine
(PE) with a low bit-width is proposed to optimize the hardware design of FPGA for remote
sensing image classification. Besides, a fused-layer PE is also presented for state-of-the-art CNNs
equipped with Batch-Normalization and LeakyRelu. The experiments performed on the Moving
and Stationary Target Acquisition and Recognition (MSTAR) dataset using a graphics processing
unit (GPU) demonstrate that the accuracy of 8-bit quantized model drops by about 1%, which is an
acceptable accuracy loss. The accuracy result tested on FPGA is consistent with that of GPU. As for
the resource consumptions of FPGA, the Look Up Table (LUT), Flip-flop (FF), Digital Signal Processor
(DSP), and Block Random Access Memory (BRAM) are reduced by 46.21%, 43.84%, 45%, and 51%,
respectively, compared with that of floating-point implementation.

Keywords: remote sensing; convolutional neural network; hybrid-type inference; symmetric
quantization; FPGA

1. Introduction

Object detection and classification in remote sensing images are hot research topics in earth
observation applications. With the development of object detection and classification techniques, a
lot of convolutional neural network (CNN)-based methods [1–7] are adopted in real-time processing
systems, such as spaceborne and airborne systems. However, considering the huge volume of remote
sensing images and the high requirements for storage and computing resources, deploying these
successful CNN models in real-time processing systems is a challenging task [8,9]. To accomplish this

Sensors 2019, 19, 924; doi:10.3390/s19040924 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7747-523X
https://orcid.org/0000-0002-5011-2161
https://orcid.org/0000-0002-0443-1081
http://www.mdpi.com/1424-8220/19/4/924?type=check_update&version=1
http://dx.doi.org/10.3390/s19040924
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 924 2 of 21

task, many researchers adopt a high-performance device as the implementation platform for CNNs.
Despite the amazing performance of CNN’s implementation, graphics processing units (GPUs) and
central processing units (CPUs) are not very suitable for being loaded in remote sensing systems, as the
high power consumption far exceeds the constraints. The field-programmable gate arrays (FPGAs) or
application-specific integrated circuits (ASICs) spend less power and provide better performance per
watt consumption than GPUs. While the on-chip resources of these platforms are limited, designers still
prefer to adopt these platforms in remote sensing applications. However, most state-of-the-art CNN
models have the characteristics of intensive complexities and dense calculations, which hinder their
deployments in these low-power devices. Therefore, facing the constrains of remote sensing real-time
processing platforms, we must provide optimization strategies and corresponding hardware designs
to make it possible for CNN-based methods to be implemented in real-time processing platforms.

Recently, there have been a lot of studies on reducing the model complexities of CNNs,
and several previous works [10–12] proved that convolutional and fully connected operations
have a high consumption of computing and storage resources. To reduce these requirements,
state-of-the-art methods can be roughly divided into two categories: (1) network structure compression;
(2) quantization of CNNs. Both category methods are friendly to hardware implementation.

Extensive studies in the first category are dedicated to the exploration of compact network
architectures, which exploit efficient computations. Iandola et al. [13] proposed an efficient
macro-architecture, called Fire Module, which used 1×1 size to replace most 3×3 size of convolution
kernels to reduce the parameters of CNNs. This strategies have been evaluated on AlexNet [14],
and the results showed that the parameters are reduced by 50 times. Howard et al. [15] exploited a
similar method to simplify the model using Depth-wise Separable Convolution, which had nearly the
same accuracy as VGG-16 [16], with a 32× smaller model size and 27× less computing consumption.
Zhang et al. [17] proposed Channel Shuffle for Group Convolutions, which generalized the group
convolution and depth-wise separable convolution in a novel form. Maintaining a comparable accuracy,
ShuffleNet provided 13× speeds up over AlexNet on an ARM-based mobile device. Some other
researchers attempted to eliminate weight redundancies within CNNs. Liu et al. [18] proposed Sparse
Convolutional Neural Networks (SCNN) to reduce the inherent redundancy. The evaluation result
on the PASCAL VOC2007 [19] dataset showed that although SCNN had approximately 2% accuracy
degradation, it gained a faster server speed. Denil et al. [20] found that it is feasible to accurately
predict up to 95% of weights, with a few determined values for each feature map in several deep
learning models. In a similar vein, Wang et al. [21] proposed an improved oriented response network
(IORN) using average active rotating filters (A-ARFs). While gaining great performance in oriented
prediction, the weights are also compressed 4 to 8 times.

In the second category, researchers are exploring another way, which is to quantize the models,
converting the floating-point precision into lower bit-width fixed-point numerical representation.
This type of methods aims at increasing the computation efficiency via approximate multiplications
and additions. Gupta et al. [22] proved that it was feasible to train models with 16-bit fixed-point
representation, while the degradation of classification accuracy was negligible. Gysel et al. [23]
proposed an approximation framework in Caffe [24] using dynamic fixed-point (DFP) quantization
and argued that DFP had a more stable accuracy than static fixed-point (SFP). Courbariaux et al. [25]
applied a similar approach for classification in three distinct formats: floating-point, fixed-point,
and DFP. The results showed that DFP seemed well suited to training deep neural networks.
Miyashita et al. [26] proposed logarithmic data representation, which enables CNNs to be encoded
to 3 bits with negligible loss in classification performance. Zhou et al. [27] presented an efficient
method to convert any pre-trained full-precision CNNs models into a hardware-friendly format,
constrained to be either a power of two or zero. Using this method [24], floating-point multiplications
can be performed using low-precision multiplications or simple shift operations. Some extreme
trends are to represent CNNs with one or two bits. Courbariaux et al. [28] proposed Binary Neural
Networks (BNN), where the weights are constrained to only two possible values (e.g., −1 or 1).

Sensors 2019, 19, 924 3 of 21

Li et al. [29] proposed Ternary Weight Networks (TWN) on the basis of BNN, where the weights have
one more alternative value 0. BNN and TWN had great benefits to power-hungry components of
the digital implementation, converting multiply-accumulate operations into simple accumulations.
Moreover, BNN and TWN require 32× or 16× less memory storage than the floating-point models,
respectively. Rastegari et al. [30] proposed XNOR-Net, in which activations, as well as weights of
BNN were binarized. Experiments showed that while the network provided a 58× speed up and
enabled complex models to be deployed on CPU in real time, it still had a significant degradation of
classification accuracy on ImageNet.

Consequently, the prior category of approaches is more focused on designing compact network
architectures to achieve a high computational efficiency, which has great improvements in some
baseline architectures. With the inherent redundancy, it is easy to obtain a high compression ratio of
over-parameterized architectures. Notably, these approaches are owned by CNN model designers
rather than hardware engineers and have the non-essential contributions to hardware optimization.
Instead, a more meaningful challenge for hardware design is to quantize the CNNs that have already
gained a trade-off between model complexity and accuracy degradation. While many quantization
approaches obtain efficiency improvements to custom hardware, there are still some shortcomings.
The approaches that only consider weights quantization [31] mainly focus on memory consumption
and less on computational efficiency. Lower bit-depth approximation in BNN, TWN, and XNOR-Net is
indeed a hardware-friendly quantization scheme. While converting the floating-point multiplications
and additions into shift and count operations is efficient, the substantial accuracy degradation is
unacceptable for massive models. With a distinct scaling factor for each layer, DFP successfully
optimizes the word length into 6-bit; however, it requires strict dynamic ranges to ensure the correctness
of the results. Besides, Jacob et al. [32] proposed a generic quantization method, which is evaluated
on several benchmarks and achieves a satisfying performance. However, applying this method in
hardware design has a high computing resources requirement.

In this paper, a hybrid-type inference method for CNN implementation in FPGA was proposed,
which enables a CNN-based remote sensing image classification network to be successfully deployed
in FPGA with limited power and resource budgets. This paper’s contributions can be summarized
as follows.

• A symmetric quantization scheme-based hybrid-type inference method is proposed for CNNs.
In this method, both feature maps and parameters are quantized into a low bit-depth signed
integer. Meanwhile, integer/floating mixed calculations are adopted to efficiently obtain
the outputs.

• A training approach for quantized layers is proposed, which reproduces the same hybrid-type
algorithm to simulate the behavior of inference. Using this approach, the degradation of model
accuracy is reduced when applying the proposed inference method.

• Based on our previous work [33], a hardware architecture is designed to apply the hybrid-type
inference in FPGA. In this architecture, a processing engine (PE) for quantized convolutional
and fully connected layers is presented. Besides, a fused-layer PE is proposed for state-of-the-art
CNNs equipped with Batch-Normalization and LeakyRelu.

• The hybrid-type inference method and training approach are evaluated in five distinct bit-widths
on GPU. The results on MSTAR [34] show that the 8-bit hybrid-type obtains a trade-off between
optimized bit-width and accuracy degradation. The 8-bit quantized model is implemented in
FPGA. The results show that this hardware implementation achieves significant improvements in
memory and logical resource consumption.

2. Hybrid-Type Inference

The hybrid-type inference method for CNNs was inspired by research work [32]. Unlike [32],
we adopt the symmetric quantization scheme [35] to reduce the requirement of computing resources.

Sensors 2019, 19, 924 4 of 21

In addition, some layers of CNN, such as Batch-Normalization (BN) [36] and LeakyRelu [37], are
computationally insignificant. However, low bit-width presentation for these layers can have a large
impact on performance. Thus, we propose an integer/floating-point hybrid-type CNN inference
method. In this section, the details of the proposed method will be described.

2.1. Symmetric Quantization Scheme

In the proposed inference method, the symmetric quantization scheme is used to convert
floating-point matrices into integer matrices for low-precision calculations. This quantification scheme
can be regarded as an affine transform between floating-point matrices and integer matrices, which
can be defined as:

r = S× q, (1)

where r represents a floating-point matrix, q represents the corresponding quantized matrix, and
S is the quantization parameter scaling factor. For N-bit quantization, the elements of q are N-bit
signed integers. The Scaling factor S in Equation (1) is a floating-point constant and is calculated by
the following:

S =
max(|max(r)|, |min(r)|)

2N−1 − 1
, (2)

where max(·) and min(·) are used to find the maximum and minimum element from the given matrix,
respectively. Using Equation (2), the quantized matrix is calculated by the following:

q = clamp
(

round
(r

S

)
,−2N−1 + 1, 2N−1 − 1

)
, (3)

where round(·) means rounding to the nearest integer number. To avoid incorrect representation
caused by rounding, the clamp(·) function is used to limit the quantized elements to a range of[
−2N−1 + 1, 2N−1 − 1

]
.

2.2. Quantized Convolutional Layer and Fully Connected Layer

In this section, we discuss the way to convert the dense floating-point multiply-accumulate
convolutional operations into efficient integer operations under the symmetry quantization scheme.
Considering the similarities between the fully connected layer and convolutional layer, we only derive
the quantized calculation method for the convolutional layer here. The final conclusion for the fully
connected layer is given directly. The convolution is defined as Equation (4) [38], where x and w
indicate the input feature maps with a size of H × W and kernel matrices with a size of K × K, y
indicates the output feature maps of the convolutional layer, and I indicates the number of input
channels in x.

yj
h,w =

I

∑
i

K−1

∑
kh=0

K−1

∑
kw=0

xi
h+kh,w+kw ×wij

kh,kw, (4)

The symmetry quantization scheme is applied to weights and input feature maps. After obtaining
the maximum and minimum values of all weights, the scaling factor Sw of the weight matrices can
be calculated by Equation (2). For the input feature maps, it is ineffective to find the maximum
and minimum values during the inference phase. Therefore, the maximum and minimum values are
estimated during the training phase. The details will be discussed in Section 3.1. With these estimations,
the scaling factor Sx of the input feature maps can be calculated by Equation (2). According to the
above description and Equation (1), Equation (4) can be rewritten as:

yj
h,w =

I

∑
i

K−1

∑
kh=0

K−1

∑
kw=0

Sxqxi
h+kh,w+kw

× Swq
wij

kh,kw
, (5)

Sensors 2019, 19, 924 5 of 21

where qx and qw denote quantized input feature maps and quantized weights, respectively. The scaling
factors Sx and Sw are the same constants for all elements of the summation; therefore Equation (5) can
be rewritten as:

yj
h,w = SxSw

I

∑
i

K−1

∑
kh=0

K−1

∑
kw=0

qxi
h+kh,w+kw

× q
wij

kh,kw
, (6)

In the N-bit quantization, the elements of qx and qw are N-bit signed integers. Considering
N-bit multiplication, the bit-width of these multiplication products is expanded into 2N-bit.
To prevent the accumulation results from overflowing, a 32-bit accumulator is used to collect the
multiplication products.

Bias-addition is a general operation in the convolutional layer, and Equation (6) can be added
with the quantized bias array to merge it into layer computation directly. This operation, fused in the
layer computation, can have benefits in hardware optimization. The bias array is quantized into N-bit
signed integers using Equation (3), where the scaling factor Sb is defined as:

Sb = SxSw, (7)

Then, the fused layer is defined as:

yj
h,w = Sb

(
I

∑
i

K−1

∑
kh=0

K−1

∑
kw=0

qxi
h+kh,w+kw

× q
wij

kh,kw
+ qbj

)
, (8)

The products of the accumulator are the quantized output feature maps and Equation (8) shows the
de-quantization operation to obtain the floating-point output feature maps.

As for the fully connected layer, the responses are defined as Equation (9) [38], where xi is the ith
input neuron, yj is the jth output neuron and I represent the collection of input neurons. Besides, wij

denotes the weight from the ith input neuron to the jth output neuron and bj denotes the bias for the
jth output neuron

yj =
I

∑
i

xi ×wij + bj, (9)

Analogy to the convolutional layer, the quantized calculation method for the fully connected layer is
defined as:

yj = Sb

(
I

∑
i

qxi × qwij + qbj

)
, (10)

With the proposed quantization scheme, all the parameters of the convolutional layer and fully
connected layer, involved in the inference are converted to N-bit signed values, which is of great
benefit for implementation in FPGA. Compared to the floating-point type, the requirement of parameter
storage is reduced to 32/N, while the bandwidth requirement of parameters in calculation also becomes
32/N of the original.

2.3. Integer/Floating-Point Hybrid-Type Inference

Most of the current state-of-the-art convolutional neural networks adopt BN to accelerate
training and LeakyRelu Activation to solve the problem of the vanishing gradient. However,
the symmetric quantization scheme is unsuitable for approximate calculation of these functions.
BN requires high computational precision and the outputs of LeakyRelu need to be rescaled using
quantization. Therefore, in this paper, the integer/floating-point hybrid-type inference method is
adopted. In this method, the convolutional and fully connected layers are calculated by using signed
integer data type, while the floating-point normalizations and activations are maintained. Figure 1a
shows the hybrid-type inference. When applying this method in hardware implements, adjacent
identical operations are merged to optimize the hardware design. To be specific, the floating-point

Sensors 2019, 19, 924 6 of 21

multiplications of BN and de-quantization are fused into one operation and perform the same
optimization for activation and quantization. This optimization is helpful to reduce the use of the
floating-point multiplier. The hardware details will be discussed in Section 4.2.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

Figure 1a shows the hybrid-type inference. When applying this method in hardware implements,
adjacent identical operations are merged to optimize the hardware design. To be specific, the
floating-point multiplications of BN and de-quantization are fused into one operation and perform
the same optimization for activation and quantization. This optimization is helpful to reduce the
use of the floating-point multiplier. The hardware details will be discussed in Section 4.2.

(a) (b)

Figure 1. (a) Integer/floating-point hybrid-type inference in FPGA. (b) The architecture of the
quantized convolutional layer during training.

3. Training Approach for Quantized Layers

The most convenient approach to the implementation of the hybrid-type inference in FPGA is
to directly quantize the trained floating-point parameters. However, this approach is not
recommended, as we found that it leads to serious accuracy drops for some network outputs. Since
it is necessary to select the largest boundary values in the same layer for quantization, the relative
error will be higher for smaller weights. Moreover, if there is a value that is particularly large or
small compared to other weights, the quantization resolution and accuracy of all quantization
results will seriously decrease. To solve this problem, a training approach for quantized layers is
proposed, which reproduces the same quantization algorithm used in the inference and simulates
the behavior of the quantized layers. In this section, we discuss the forward-propagation and
backward-propagation algorithms.

3.1. Forward-Propagation

In this paper, the symmetric quantization scheme is applied to quantize the convolutional
layer and the fully connected layer. Their forward-propagation algorithm is similar. For simplicity,
we only discuss the forward-propagation algorithm of the quantized convolutional layer. In the
proposed training approach, the convolutional layer is replaced by a custom quantized
convolutional layer. As shown in Figure 1b, the custom layer is composed of three sub-layers,
where the quantization and de-quantization sub-layer are fused into a generic convolutional layer.
The forward-propagation of the quantization sub-layer can be divided into two parts: calculating
the scaling factor and obtaining the quantized value. As the weights are uniquely determined in
each training step, the scaling factor of weights can be calculated by the boundary values of the
parameters using Equation (2). To prevent the product of the infinity, the scaling factor is compared
with an epsilon and the result is determined by the maximum value. With the scaling factor, the
quantized weights can be calculated using Equation (3). While the quantization of the input
features is consistent in principle with the weights, the acquired boundary values are slightly

Figure 1. (a) Integer/floating-point hybrid-type inference in FPGA. (b) The architecture of the quantized
convolutional layer during training.

3. Training Approach for Quantized Layers

The most convenient approach to the implementation of the hybrid-type inference in FPGA is to
directly quantize the trained floating-point parameters. However, this approach is not recommended,
as we found that it leads to serious accuracy drops for some network outputs. Since it is necessary to
select the largest boundary values in the same layer for quantization, the relative error will be higher
for smaller weights. Moreover, if there is a value that is particularly large or small compared to other
weights, the quantization resolution and accuracy of all quantization results will seriously decrease.
To solve this problem, a training approach for quantized layers is proposed, which reproduces the
same quantization algorithm used in the inference and simulates the behavior of the quantized layers.
In this section, we discuss the forward-propagation and backward-propagation algorithms.

3.1. Forward-Propagation

In this paper, the symmetric quantization scheme is applied to quantize the convolutional layer
and the fully connected layer. Their forward-propagation algorithm is similar. For simplicity, we only
discuss the forward-propagation algorithm of the quantized convolutional layer. In the proposed
training approach, the convolutional layer is replaced by a custom quantized convolutional layer.
As shown in Figure 1b, the custom layer is composed of three sub-layers, where the quantization and
de-quantization sub-layer are fused into a generic convolutional layer. The forward-propagation of the
quantization sub-layer can be divided into two parts: calculating the scaling factor and obtaining the
quantized value. As the weights are uniquely determined in each training step, the scaling factor of
weights can be calculated by the boundary values of the parameters using Equation (2). To prevent the
product of the infinity, the scaling factor is compared with an epsilon and the result is determined by
the maximum value. With the scaling factor, the quantized weights can be calculated using Equation (3).
While the quantization of the input features is consistent in principle with the weights, the acquired
boundary values are slightly different. If the boundary values are determined for each input image
separately, additional image traversal operations are required. While the operation has little influence
on training, considering the correspondence between inference and training, the same operation

Sensors 2019, 19, 924 7 of 21

must be employed during the inference. This means that the boundary values of the features are
calculated online, which introduces a large amount of calculations. To reduce the calculations during
the inference, the boundary values of the input features for each quantized convolutional layer are
estimated to obtain the scaling factor of the input features off-line for the inference. Since the estimated
boundary values are hardly going to be acquired from the whole training set directly, the mini-batch
training strategy and exponential moving averages (EMA) are adopted. To get the estimation of
boundary values, the mean of the boundary values in each mini-batch are collected and aggregated
via EMA across thousands of training steps. The mean boundary values of the mini-batch are used
as the quantization parameters for training, while the estimated values are used for the inference.
The forward-propagation algorithm of the quantization sub-layer for input features is described in
Algorithm 1, where ε is the epsilon, and λ indicates the momentum of EMA. As for the biases, the
scaling factor is calculated according to Equation (7), and the quantization process is the same as the
weights. It is necessary to record the scaling factor of the input features and weights, which is applied
in the de-quantization sub-layer. Since the convolution sub-layer is a generic convolutional layer with
no modification, we do not discuss its forward-propagation stage here. The only calculation of the
de-quantization sub-layer is that of multiplying the results of the convolution sub-layer by the scaling
factor of the biases.

Algorithm 1 The forward-propagation algorithm of quantization sub-layer for input features

Input:
Values of input features over a mini-batch:
B = {x1, x2, . . . , xm};
Boundary values to be estimated:
max_moving,min_moving

Output: {qidx = Quantization(xidx)}

Step1.
max_x = 1

b

idx=b−1
∑

idx=0
max(xidx),min_x =

1
b

idx=b−1
∑

idx=0
min(xidx) //Real Boundary values

Step2. max_moving = (1−λ) ·max_x + λ ·max_moving,
max_moving = (1−λ) ·max_x + λ ·max_moving
//Moving Boundary values

Step3. Sx =
max(|max_x|,|min_x|)

2N−1−1 //Scaling factor

Step4. qidx = xidx
max(Sx ,ε) //Quantization

3.2. Backward-Propagation

The trainable parameters of the convolutional layer are updated as follows [38]:
wij

l+ = wij
l − λ ∂loss

∂wij
l

bij
l+ = bij

l − λ ∂loss
∂bij

l

, (11)

The common approach to calculating the derivatives of the loss function with respect to the parameters
is to use the delta rule [39]. In the rule, the derivatives are acquired using the sensitivity matrices
δ of each layer, which are back-propagated from the following layers. Therefore, the sensitivity
transmission rules for the quantized layer need to be defined first. The following Equation (12) shows
the recurrence relation of the sensitivity matrices for the generic convolutional layer.

δi
l−1 = ∑

j∈Mj

wij
l × δ

j
l , (12)

Sensors 2019, 19, 924 8 of 21

where δ
j
l denotes the jth sensitivity matrix of the lth layer, while δi

l−1 denotes the ith sensitivity matrix
of the previous layer. The delta rule for updating weights assigned to a given output feature map is
equal to a copy of the inputs, convoluted by the corresponding sensitivity matrix. That is to say,

∂E

∂wij
l

= xi
l−1 × δ

j
l , (13)

where E is the total loss. The bias is added to the corresponding output channel. Thus, its contribution
to the error is reflected by all of neurons within the same channel. Using the same rule, the bias
gradient can be immediately computed by simply summing over the items in δ

j
l .

∂E

∂bj
l

= ∑ δ
j
l , (14)

With Equations (11)–(14), we begin to discuss the behavior of the backward stage for the quantized
convolutional layers. In essence, quantization operation only converts the data type into the integer,
without changing the computation within layers. Deriving the backward-propagation algorithm, only
minor changes need to be applied to the original. To write it more easily, QT(·) and DQT(·) are used
to denote the quantization and de-quantization function, respectively. The responses of the quantized
convolutional layer can be simplified as

xj
l = DQT(∑ QT(xi

l−1)×QT(wij
l) + QT(bj

l)), (15)

To use the delta rule, the recurrence relation of sensitivity needs to be defined for the quantization
and de-quantization sub-layers first. For QT, the outputs are calculated by the copy of inputs, scaled
by the scaling factor with rounding and clamping in the forward stage. Regardless of the effects of
rounding and clamping, the gradient-direct-pass strategy is used for these functions. Thus, the output
sensitivity matrices of the quantization sub-layer are simply the input sensitivity matrices, scaled by
the same input scaling factor.

δi
s−1 =

1
Sx
· δi

s, (16)

where δi
s and δi

s−1 denote the input and output sensitivity matrices of the quantization sub-layer,
respectively. Similarly, the output sensitivity matrices of de-quantization sub-layer are defined as:

δi
s−1 = SxSw · δi

s, (17)

Since the quantization-convolution-de-quantization structure is adopted in the forward stage, the
sensitivity matrices are iterated from finish to start. For the middle convolution sub-layer, the only
thing to modify is that the weights are replaced by quantized values. The recurrence relation of
sensitivity for the whole quantized convolutional layer can be calculated by the following:

δi
l−1 = SxSw · ∑

j∈Mj

QT(wij
l)× δ

j
l ·

1
Sx

= Sw · ∑
j∈Mj

QT(wij
l) ∗ δ

j
l , (18)

where M represent the collection of input feature maps. The above Equation (18) indicates that the
sensitivity matrices for the previous layer are the convolution products of the quantized weights with
the input sensitivities, scaled by the scaling factor of weights. The gradients of the weights and biases
can be calculated by the following:

∂E
∂wij

l

= ∂E
∂DQT(u) ·

∂DQT(u)
∂u · ∂u

∂QT(wij
l)
· ∂QT(wij

l)

∂wij
l

∂E
∂bj

l

= ∂E
∂DQT(u) ·

∂DQT(u)
∂u · ∂u

∂QT(bj
l)
· ∂QT(bj

l)

∂bj
l

, (19)

Sensors 2019, 19, 924 9 of 21

where
u = ∑ QT(xi

l−1)×QT(wij
l) + QT(bj

l), (20)

With the gradient-direct-pass strategy, derivatives of the QT and DQT, with respect to their inputs,
are equal to their scale factors. Therefore, the derivatives for updating the parameters equal:

∂E
∂wij

l

= SxSw ·
(
δ

j
l ×QT

(
xi

l
))
· 1

Sw
= Sx ·

(
δ

j
l ∗QT

(
xi

l
))

∂E
∂bj

l

= SxSw ·∑ δ
j
l ·

1
SxSw

= ∑ δ
j
l

, (21)

The recurrence relation of sensitivity for the quantized fully connected layer can be calculated by
the following:

δl−1 = Sw · (QT(wl))
T · δl , (22)

The analogous expressions of the derivatives are:{
∂E

∂wl
= Sx · (QT(xl−1))

T · δl
∂E
∂bl

= δl
, (23)

4. Implementation of Hybrid-Type Inference

4.1. Implement Architecture in FPGA

A modified LeNet-5 [38] network framework is adopted in our previous work [33], which
performs well for remote sensing images classification. The implementation architecture in [33] has
successfully deployed the modified network on FPGA. In this paper, the above-mentioned network
framework and implementation architecture is adopted as our benchmarks. The benchmark framework
supports ten classifications for input images of a size of 126× 126. The classification accuracy tested on
the MSTAR [34] dataset reaches 98.18%. In this paper, slight modifications are made to the fundamental
network. The average pooling is replaced by the max pooling. Meanwhile, the convolutional layer and
fully connected layer are quantized. These modifications are helpful to optimize the hardware design.
Figure 2 shows architectures of the fundamental network, modified network, and quantized network.

The fundamental hardware implementation architecture is shown in Figure 3. The off-chip
memory is a Double Data Rate (DDR) SDRAM, which is used to store parameters. Except for the
first fully connected layer, the volume of the parameters is tiny. Thus, the weights of the first fully
connected layer are put into off-chip storage after power-on, while other parameters are stored in the
on-chip Read-Only Memory (ROM). Pipeline processing is adopted in this architecture. Four PEs are
used to achieve the calculation, each with a local memory to accumulate the intermediate results. When
images are fed into the buffer, the finite state machine (FSM) controls the system to enter working
mode. The processing engines get features though router1 and read weights from the weight memory.
The output data flow process engines are determined by router2. If the current calculation results are
layer responses, these results will be sent into the activation module; otherwise, they will be stored in
the local memory for overlap-addition. An output buffer is used to receive the feature maps from the
pool module during the inference phase and transmit the final classification prediction at the output
stage. While the above architecture performs well in the deployment of the benchmark framework, it
employed floating-point operations for implementation, which results in high logical resource and
memory consumption.

Sensors 2019, 19, 924 10 of 21

Sensors 2019, 19, x FOR PEER REVIEW 10 of 21

deployment of the benchmark framework, it employed floating-point operations for
implementation, which results in high logical resource and memory consumption.

(a) (b) (c)

Figure 2. Frameworks of the fundamental network (a) modified network (b) and quantized network
(c).

Figure 3. Hardware implementation architecture on the FPGA platform.

4.2. Hybrid-Type Processing Engine

In this section, we focus on designing the PEs for the hybrid-type inference to reduce the
logical resource consumption and memory footprint. An efficient calculation method for the
convolutional layers and the fully connected layers is introduced in our previous work [33], which
is composed of vector inner products and overlap-additions. As shown in Figure 4, the patches of
input features and filters are converted to vectors first. Then, the vector inner products, between
input vectors and the corresponding filter vectors, are performed to get the intermediate results.
Finally, these results are accumulated using the overlap-add method to obtain the output pixel. In
this paper, the design of hybrid-type PEs uses the same method. Moreover, as the quantized
framework adopts Relu activation and Max pooling without BN, the quantization, and
de-quantization operations can be merged to optimize the design of PE. Since the symmetric

Figure 2. Frameworks of the fundamental network (a) modified network (b) and quantized network (c).

Sensors 2019, 19, x FOR PEER REVIEW 10 of 21

deployment of the benchmark framework, it employed floating-point operations for
implementation, which results in high logical resource and memory consumption.

(a) (b) (c)

Figure 2. Frameworks of the fundamental network (a) modified network (b) and quantized network
(c).

Figure 3. Hardware implementation architecture on the FPGA platform.

4.2. Hybrid-Type Processing Engine

In this section, we focus on designing the PEs for the hybrid-type inference to reduce the
logical resource consumption and memory footprint. An efficient calculation method for the
convolutional layers and the fully connected layers is introduced in our previous work [33], which
is composed of vector inner products and overlap-additions. As shown in Figure 4, the patches of
input features and filters are converted to vectors first. Then, the vector inner products, between
input vectors and the corresponding filter vectors, are performed to get the intermediate results.
Finally, these results are accumulated using the overlap-add method to obtain the output pixel. In
this paper, the design of hybrid-type PEs uses the same method. Moreover, as the quantized
framework adopts Relu activation and Max pooling without BN, the quantization, and
de-quantization operations can be merged to optimize the design of PE. Since the symmetric

Figure 3. Hardware implementation architecture on the FPGA platform.

4.2. Hybrid-Type Processing Engine

In this section, we focus on designing the PEs for the hybrid-type inference to reduce the logical
resource consumption and memory footprint. An efficient calculation method for the convolutional
layers and the fully connected layers is introduced in our previous work [33], which is composed of
vector inner products and overlap-additions. As shown in Figure 4, the patches of input features and
filters are converted to vectors first. Then, the vector inner products, between input vectors and the
corresponding filter vectors, are performed to get the intermediate results. Finally, these results are
accumulated using the overlap-add method to obtain the output pixel. In this paper, the design of
hybrid-type PEs uses the same method. Moreover, as the quantized framework adopts Relu activation
and Max pooling without BN, the quantization, and de-quantization operations can be merged to
optimize the design of PE. Since the symmetric quantization is used, the sign bit of quantized values
is consistent with the corresponding real values and the magnitude relation between pixels has not
been modified. Therefore, the latter quantization sub-layer can be put before the activation function
and the pooling layer. Considering that both quantization and de-quantization involve floating-point

Sensors 2019, 19, 924 11 of 21

multiplication, the hardware design can be optimized by fusing the same operations. To be specific, the
adjacent scaling factors are converted into a new value and calculate the floating-point input feature
by only one multiplication, which is shown in Figure 5.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 21

quantization is used, the sign bit of quantized values is consistent with the corresponding real
values and the magnitude relation between pixels has not been modified. Therefore, the latter
quantization sub-layer can be put before the activation function and the pooling layer. Considering
that both quantization and de-quantization involve floating-point multiplication, the hardware
design can be optimized by fusing the same operations. To be specific, the adjacent scaling factors
are converted into a new value and calculate the floating-point input feature by only one
multiplication, which is shown in Figure 5.

Figure 4. Efficient calculation method for the convolutional and fully connected layers.

The structures of floating-point-type and hybrid-type PE are depicted in Figure 6. The
floating-point addition and multiplication units are replaced by the corresponding fixed-point units
without changing the interconnections inside the module. Considering the overflow of the
fixed-point addition in the extreme situation, the resulting width of each stage is increased by 1 bit.
A notable exception is the output stage. The overlap-add method is used to accumulate convolution
calculations from different input channels, and the resulting width of the addition at the output
stage is defined as 32-bits to avoid overflow. A fixed-to-float module is used to convert the 32-bit
integers into 32-bit floating-point values for the following floating-point multiplication. Meanwhile,
a float-to-fixed module is adopted to get the N-bit output feature maps for the following layer. The
proposed floating-point-type PE and five distinct bit-width hybrid-type PEs are synthesized, using
Xilinx Vivado Design Suite 2017.2, respectively. The results of the logical resource consumptions
are listed in Table 1. Compared with the floating-point type, hybrid-type PE has a huge advantage
in resource occupation of Look Up Table (LUT), Flip-flop (FF) and Digital Signal Processor (DSP).

1

1
l

xS +×

l l
x wS S×

lth Quantized Calculation

lth De-Quantization

ReLu

MaxPooling

(l+1)th Quantization

1

l l
x w

l
x

S S
S +×

Figure 4. Efficient calculation method for the convolutional and fully connected layers.

The structures of floating-point-type and hybrid-type PE are depicted in Figure 6.
The floating-point addition and multiplication units are replaced by the corresponding fixed-point
units without changing the interconnections inside the module. Considering the overflow of the
fixed-point addition in the extreme situation, the resulting width of each stage is increased by 1 bit.
A notable exception is the output stage. The overlap-add method is used to accumulate convolution
calculations from different input channels, and the resulting width of the addition at the output stage is
defined as 32-bits to avoid overflow. A fixed-to-float module is used to convert the 32-bit integers into
32-bit floating-point values for the following floating-point multiplication. Meanwhile, a float-to-fixed
module is adopted to get the N-bit output feature maps for the following layer. The proposed
floating-point-type PE and five distinct bit-width hybrid-type PEs are synthesized, using Xilinx Vivado
Design Suite 2017.2, respectively. The results of the logical resource consumptions are listed in Table 1.
Compared with the floating-point type, hybrid-type PE has a huge advantage in resource occupation
of Look Up Table (LUT), Flip-flop (FF) and Digital Signal Processor (DSP).

Sensors 2019, 19, x FOR PEER REVIEW 11 of 21

quantization is used, the sign bit of quantized values is consistent with the corresponding real
values and the magnitude relation between pixels has not been modified. Therefore, the latter
quantization sub-layer can be put before the activation function and the pooling layer. Considering
that both quantization and de-quantization involve floating-point multiplication, the hardware
design can be optimized by fusing the same operations. To be specific, the adjacent scaling factors
are converted into a new value and calculate the floating-point input feature by only one
multiplication, which is shown in Figure 5.

Figure 4. Efficient calculation method for the convolutional and fully connected layers.

The structures of floating-point-type and hybrid-type PE are depicted in Figure 6. The
floating-point addition and multiplication units are replaced by the corresponding fixed-point units
without changing the interconnections inside the module. Considering the overflow of the
fixed-point addition in the extreme situation, the resulting width of each stage is increased by 1 bit.
A notable exception is the output stage. The overlap-add method is used to accumulate convolution
calculations from different input channels, and the resulting width of the addition at the output
stage is defined as 32-bits to avoid overflow. A fixed-to-float module is used to convert the 32-bit
integers into 32-bit floating-point values for the following floating-point multiplication. Meanwhile,
a float-to-fixed module is adopted to get the N-bit output feature maps for the following layer. The
proposed floating-point-type PE and five distinct bit-width hybrid-type PEs are synthesized, using
Xilinx Vivado Design Suite 2017.2, respectively. The results of the logical resource consumptions
are listed in Table 1. Compared with the floating-point type, hybrid-type PE has a huge advantage
in resource occupation of Look Up Table (LUT), Flip-flop (FF) and Digital Signal Processor (DSP).

1

1
l

xS +×

l l
x wS S×

lth Quantized Calculation

lth De-Quantization

ReLu

MaxPooling

(l+1)th Quantization

1

l l
x w

l
x

S S
S +×

Figure 5. Fusing floating-point multiplication for the optimization to hardware design.

Sensors 2019, 19, 924 12 of 21

Sensors 2019, 19, x FOR PEER REVIEW 12 of 21

Figure 5. Fusing floating-point multiplication for the optimization to hardware design.

(a) (b)

Figure 6. (a) Structure of the floating-point-type PE. (b) Structure of the hybrid-type PE.

Table 1. Logical resource consumptions of PEs in six formats.

Logical Resource Float 4-bit 6-bit 8-bit 10-bit 12-bit
LUT 2936 396 404 410 417 424
FF 2267 767 824 867 916 961

DSP 38 20 20 20 20 20

State-of-the-art neural networks are usually equipped with BN and LeakyRelu. BN is used to
normalize the responses of the convolutional layer, and LeakyRelu is used to activate the output of
the BN. In this case, the convolutional layer, BN, and LeakyRelu activation can be taken into
consideration together. A fused-layer PE is designed to apply the proposed method to these
state-of-the-art neural networks, which is shown in Figure 7. The outputs of BN are defined as:

μγ β
σ
−= +xy , (24)

where μ and σ denote the mean and standard deviation estimation of the input features. γ
and β are the parameters of BN. Both BN and the de-quantization involve multiplications. These
multiplications can be merged into one operation to reduce the use of the floating-point multiplier.
Using Equation (8), the output of BN can be calculated by the following:

, with andb
x

S
a b a b

γ γβ μ
σ σ
⋅  = + = = − 

 
y q , (25)

For a trained model, a and b can calculated off-line. Therefore, only one multiplier, one adder,
and a fixed-to-float module are required to achieve the fused operation. Since the multiplication
coefficient of LeakyRelu is determined by the outputs of BN, the above-mentioned optimization is
unsuitable for combining the calculation of BN and LeakyRelu. However, the quantization of the
following layer can be fused into LeakyRelu in the current layer. LeakyRelu activation is defined as:

Figure 6. (a) Structure of the floating-point-type PE. (b) Structure of the hybrid-type PE.

Table 1. Logical resource consumptions of PEs in six formats.

Logical Resource Float 4-bit 6-bit 8-bit 10-bit 12-bit

LUT 2936 396 404 410 417 424
FF 2267 767 824 867 916 961

DSP 38 20 20 20 20 20

State-of-the-art neural networks are usually equipped with BN and LeakyRelu. BN is used to
normalize the responses of the convolutional layer, and LeakyRelu is used to activate the output of the
BN. In this case, the convolutional layer, BN, and LeakyRelu activation can be taken into consideration
together. A fused-layer PE is designed to apply the proposed method to these state-of-the-art neural
networks, which is shown in Figure 7. The outputs of BN are defined as:

y = γ
x− µ

σ
+ β, (24)

where µ and σ denote the mean and standard deviation estimation of the input features. γ and β are
the parameters of BN. Both BN and the de-quantization involve multiplications. These multiplications
can be merged into one operation to reduce the use of the floating-point multiplier. Using Equation (8),
the output of BN can be calculated by the following:

y = aqx + b, witha =
γ · Sb

σ
andb =

(
β− γ

σ
µ
)

, (25)

For a trained model, a and b can calculated off-line. Therefore, only one multiplier, one adder, and a
fixed-to-float module are required to achieve the fused operation. Since the multiplication coefficient
of LeakyRelu is determined by the outputs of BN, the above-mentioned optimization is unsuitable for

Sensors 2019, 19, 924 13 of 21

combining the calculation of BN and LeakyRelu. However, the quantization of the following layer can
be fused into LeakyRelu in the current layer. LeakyRelu activation is defined as:

LeakyRelu(x) =

{
x, x ≥ 0
αx, x < 0

, (26)

Using Equation (3), the fused operation is written as:

ql+1
x =

{
1

Sx
yl , y ≥ 0

α
Sx

yl , y < 0
, (27)

Sensors 2019, 19, x FOR PEER REVIEW 13 of 21

(a) (b)

Figure 7. (a) Structure of the fused-layer floating-point-type PE. (b) Structure of fused-layer
hybrid-type PE.

, 0
LeakyRelu()

, 0
x x

x
x xα

 ≥
=  <

, (26)

Using Equation (3), the fused operation is written as:

1

1 , 0

, 0

l

l x
x

l

x

y
S

y
S
α

+

 ≥
= 
 <


y
q

y
, (27)

The products of 1 xS and xSα are calculated off-line and stored in the on-chip memory.
When performing this optimization, an additional multiplexer is used to select the corresponding
multiplication coefficient. A set of experiments on the fused-layer PEs is conducted, and Table 2
shows the logical resource consumption of fused-layer PEs. Compared with the floating-point PEs,
the hybrid-type fused-layer PEs achieve a significant reduction in the logical resource consumption
of FF, LUT, and DSP.

Table 2. Logical resource consumptions of fused-layer PEs in six formats.

Logical Resource Float 4-bit 6-bit 8-bit 10-bit 12-bit
LUT 3319 828 836 842 849 856
FF 5517 1512 1569 1612 1661 1706

DSP 42 24 24 24 24 24

5. Experiments and Results

Figure 7. (a) Structure of the fused-layer floating-point-type PE. (b) Structure of fused-layer
hybrid-type PE.

The products of 1/Sx and α/Sx are calculated off-line and stored in the on-chip memory.
When performing this optimization, an additional multiplexer is used to select the corresponding
multiplication coefficient. A set of experiments on the fused-layer PEs is conducted, and Table 2
shows the logical resource consumption of fused-layer PEs. Compared with the floating-point PEs, the
hybrid-type fused-layer PEs achieve a significant reduction in the logical resource consumption of FF,
LUT, and DSP.

Sensors 2019, 19, 924 14 of 21

Table 2. Logical resource consumptions of fused-layer PEs in six formats.

Logical Resource Float 4-bit 6-bit 8-bit 10-bit 12-bit

LUT 3319 828 836 842 849 856
FF 5517 1512 1569 1612 1661 1706

DSP 42 24 24 24 24 24

5. Experiments and Results

We conduct experimentation in two parts. In the first part, five different bit-width quantized
networks are trained on the GPU to obtain the optimal bit-width that is most suitable for hardware
implementation. Another part of the experimentations aims to implement the quantized network in
FPGA and compare it with the fundamental network described in Section 4 in terms of the on-chip
logical and memory resources. The latter indicated that it is easier to deploy the hybrid-type inference
in FPGA.

5.1. Dataset Description and Data Preprocessing

The proposed inference method is evaluated on the MSTAR dataset [34], which was jointly
provided by Defense Advanced Research Projects Agency (DARPA) and Air Force Research Laboratory
(AFRL). The MSTAR dataset was composed of massive ground military vehicle chips of ten types and
collected by an X-band Synthetic Aperture Radar (SAR) in one-foot resolution spotlight mode, with
full aspect coverage. All the chips were extracted from the original SAR image and had a fixed size
of 128×128. The sample vehicle chip of each type, with the corresponding optical image is depicted
in Figure 8. The MSTAR dataset is divided into two parts: 2747 training samples and 2425 testing
samples. The statistical result of each part is listed in Table 3. In the fundamental architecture, the
image has a fixed size of 126×126, which is determined by the network. Therefore, central cropping
is adopted on the images to meet the requirement. As the target is in the center of the images in the
MSTAR dataset, the clipping method would not cause a serious loss of information.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 21

We conduct experimentation in two parts. In the first part, five different bit-width quantized
networks are trained on the GPU to obtain the optimal bit-width that is most suitable for hardware
implementation. Another part of the experimentations aims to implement the quantized network in
FPGA and compare it with the fundamental network described in section 4 in terms of the on-chip
logical and memory resources. The latter indicated that it is easier to deploy the hybrid-type
inference in FPGA.

5.1. Dataset Description and Data Preprocessing

The proposed inference method is evaluated on the MSTAR dataset [34], which was jointly
provided by Defense Advanced Research Projects Agency (DARPA) and Air Force Research
Laboratory (AFRL). The MSTAR dataset was composed of massive ground military vehicle chips of
ten types and collected by an X-band Synthetic Aperture Radar (SAR) in one-foot resolution
spotlight mode, with full aspect coverage. All the chips were extracted from the original SAR image
and had a fixed size of 128×128. The sample vehicle chip of each type, with the corresponding
optical image is depicted in Figure 8. The MSTAR dataset is divided into two parts: 2747 training
samples and 2425 testing samples. The statistical result of each part is listed in Table 3. In the
fundamental architecture, the image has a fixed size of 126×126, which is determined by the
network. Therefore, central cropping is adopted on the images to meet the requirement. As the
target is in the center of the images in the MSTAR dataset, the clipping method would not cause a
serious loss of information.

Figure 8. Samples of each type of vehicle in MSTAR with corresponding optical images.

Table 3. The quantity of training and testing images.

Class BMP-2 BRDM-2 BTR-60 BTR-70 D7 T-62 T-72 ZIL-131 ZSU-234 2S1
Training 233 298 256 233 299 299 232 299 299 299
Testing 195 274 195 196 274 273 196 274 274 274

5.2. Quantized Training with Different Bit-width

The floating-point-type modified network is trained as a baseline. Meanwhile, the bit-widths N
of quantized networks are set to 4, 6, 8, 10, and 12 for experimentation. All experiments are
implemented in the Pytorch 0.4.0 framework with Torchvision 0.2.1. As for the training and testing
platform, a work-station with two Intel Xeon E5-2697 v2 CPUs and one NVIDIA TITAN X GPU is

Figure 8. Samples of each type of vehicle in MSTAR with corresponding optical images.

Sensors 2019, 19, 924 15 of 21

Table 3. The quantity of training and testing images.

Class BMP-2 BRDM-2 BTR-60 BTR-70 D7 T-62 T-72 ZIL-131 ZSU-234 2S1

Training 233 298 256 233 299 299 232 299 299 299
Testing 195 274 195 196 274 273 196 274 274 274

5.2. Quantized Training with Different Bit-width

The floating-point-type modified network is trained as a baseline. Meanwhile, the bit-widths
N of quantized networks are set to 4, 6, 8, 10, and 12 for experimentation. All experiments are
implemented in the Pytorch 0.4.0 framework with Torchvision 0.2.1. As for the training and testing
platform, a work-station with two Intel Xeon E5-2697 v2 CPUs and one NVIDIA TITAN X GPU is used.
The optimizer used in this paper is SGD (Stochastic gradient descent) with a learning rate of 0.01 and
weight decay of 5×10−4. To avoid overfitting, dropout is used for the first and second fully connected
layers with a dropout rate of 0.5. For the experiments of quantized networks, the momentum of EMA
is 0.9. All weight parameters of the above networks are initialized by random values and trained for
150 epochs, with a batch size of 64. We repeated each experiment five times and took the mean of the
results as the final conclusions.

Table 4 shows the classification accuracies of the fundamental model and quantized model in
five data formats. The model with the floating-point data type obtains the greatest result of 98.43%.
The classification accuracy of the 4-bit quantized model has the maximum loss of 4.0%. The other
quantized models obtain satisfying performance and the average results are all around 97.2%, with
a 1.2% accuracy degradation, compared to floating-point types. It can be seen that the classification
accuracy degradation is reduced as the bit-width increases, which may be due to the increased
quantization resolution resulting in a computing error reduction. However, the performance can
hardly improve after reaching the maximum as the inherent redundancy within the network is limited.
The standards deviations of 4-bit and 6-bit quantized models are higher than the others. This means
that the stability of training is not good when adopting a low bit-width quantization scheme and
multiple trainings are required to obtain a satisfying performance. The memory requirement for the
weight storage of quantized models is shown in Table 5. These results indicate that the compression
rate of 4, 6, 8, 10, and 12-bit quantization is 8.0×, 5.3×, 4.0×, 3.2× and 2.7×, respectively. Since the
memory requirement of scaling factors is negligible, the compression rate η can be approximately
calculated by the following:

η =
32bit
Nbit

, (28)

The image classification performance will degrade when the network is quantized. However
fortunately, it is within an acceptable range. More importantly, the requirement of on-chip Static
Random-Access Memory (SRAM) and memory bandwidth sharply decreases. The 8-bit quantized
model achieves a trade-off between classification accuracy degradation and this requirement; therefore,
the 8-bit quantization scheme is used for the hardware optimization design in this paper.

Table 4. Classification accuracies of floating-point model and quantized models.

No. Float [33] 4-bit 6-bit 8-bit 10-bit 12-bit

1 98.14% 94.51% 97.07% 97.64% 97.31% 97.15%
2 98.22% 93.97% 96.08% 97.77% 97.15% 97.23%
3 98.55% 95.09% 97.56% 97.19% 97.23% 97.11%
4 98.47% 93.89% 96.82% 97.31% 97.48% 97.03%
5 98.76% 94.68% 97.64% 97.19% 97.36% 97.11%

Mean 98.43% 94.43% 97.03% 97.42% 97.31% 97.13%
Std. dev. 0.22% 0.49% 0.57% 0.24% 0.11% 0.06%

Sensors 2019, 19, 924 16 of 21

Table 5. Weights storage and compression statistics in experiments of quantized models.

Float 4-bit 6-bit 8-bit 10-bit 12-bit

Weights Storage (MB) 6.638 0.830 1.245 1.660 2.074 2.489
Compression Rate - 8.0× 5.3× 4.0× 3.2× 2.7×

Figure 9 shows the test results for each epoch for all the aforementioned models. To clearly reflect
the test results, the formula, described in the figure, is used to smooth the curve, and the smoothing rate
is set to 0.65. As can be seen from the results, floating-point networks achieve nearly best performance
at about 50 epochs, while all the quantized networks require about 130 epochs. This result indicates
that quantized CNN models need to be trained for a longer period to achieve the best performance.Sensors 2019, 19, x FOR PEER REVIEW 16 of 21

Figure 9. Training processes of the fundamental floating-point-type and quantized-type networks.

A set of experiments is conducted to illustrate that the quantized network has a better
performance, using the proposed training approach, than the directly quantized network. Since it is
unachievable to directly apply the symmetric quantization scheme, without the scaling factor for
each quantized layer, non-updating training is adopted to simulate the direct quantization. There is
no change in weights after the non-updating training, as the learning rate is set to zero. Meanwhile,
the scaling factor of the input features can be calculated using the estimation of boundary values
through training steps. The directly quantized networks are trained for 10 epochs, and the
parameters of each model are initialized by the weights of the fundamental floating-point model,
which has the best performance, at 98.55%. Table 6 shows that all the directly quantized networks
have a serious accuracy degradation of more than 50%, compared to the quantized models, using the
proposed training approach. Therefore, deploying the quantized models on hardware platforms has
a high demand on the proposed training approach to obtain the best performance.

We conducted another set of experiments to compare the proposed quantization scheme with
[32]. The quantization scheme with zero-point and co-design training approach proposed in [32] are
reproduced under the Pytorch framework. Five data formats are used to quantize the fundamental
network. The training platform and details of the training parameters are the same as in the first set
of experiments. The experimental results, tested on the evaluation set of all quantized networks, are
listed in Table 7. The scheme in [32] gains better results, which are 1.36%, 1.08%, 0.56%, 0.44% and
1.05% higher than the proposed scheme, at 4, 6, 8, 10, and 12-bit, respectively. This can be
interpreted as higher quantization resolution caused by smaller quantized range, which is depicted
in Figure 10. Since scheme in [32] has zero-point (8-bit unsigned integer) to represent the real value
of 0, it is unnecessary to expand the dynamic range to distinguish the sign bit for both weights and
features. With the shrinking range, the real values get a refined representation and computational
error is reduced. However, this scheme involves more calculation than ours when performing the
optimization of hardware design. The quantization strategy adopted by [32] can be expressed as
Equation (29), where Z denotes the zero-point.

()S Z= × −r q , (29)

The matrix multiplication applied in the convolution and fully connected operations can be
performed by the following:

Figure 9. Training processes of the fundamental floating-point-type and quantized-type networks.

A set of experiments is conducted to illustrate that the quantized network has a better performance,
using the proposed training approach, than the directly quantized network. Since it is unachievable
to directly apply the symmetric quantization scheme, without the scaling factor for each quantized
layer, non-updating training is adopted to simulate the direct quantization. There is no change in
weights after the non-updating training, as the learning rate is set to zero. Meanwhile, the scaling
factor of the input features can be calculated using the estimation of boundary values through training
steps. The directly quantized networks are trained for 10 epochs, and the parameters of each model are
initialized by the weights of the fundamental floating-point model, which has the best performance, at
98.55%. Table 6 shows that all the directly quantized networks have a serious accuracy degradation of
more than 50%, compared to the quantized models, using the proposed training approach. Therefore,
deploying the quantized models on hardware platforms has a high demand on the proposed training
approach to obtain the best performance.

We conducted another set of experiments to compare the proposed quantization scheme with [32].
The quantization scheme with zero-point and co-design training approach proposed in [32] are
reproduced under the Pytorch framework. Five data formats are used to quantize the fundamental
network. The training platform and details of the training parameters are the same as in the first set
of experiments. The experimental results, tested on the evaluation set of all quantized networks, are
listed in Table 7. The scheme in [32] gains better results, which are 1.36%, 1.08%, 0.56%, 0.44% and
1.05% higher than the proposed scheme, at 4, 6, 8, 10, and 12-bit, respectively. This can be interpreted

Sensors 2019, 19, 924 17 of 21

as higher quantization resolution caused by smaller quantized range, which is depicted in Figure 10.
Since scheme in [32] has zero-point (8-bit unsigned integer) to represent the real value of 0, it is
unnecessary to expand the dynamic range to distinguish the sign bit for both weights and features.
With the shrinking range, the real values get a refined representation and computational error is
reduced. However, this scheme involves more calculation than ours when performing the optimization
of hardware design. The quantization strategy adopted by [32] can be expressed as Equation (29),
where Z denotes the zero-point.

r = S× (q− Z), (29)

The matrix multiplication applied in the convolution and fully connected operations can be performed
by the following:

qik
3 = Z3 +

S1S2

S3

N

∑
j=1

(
qij

1 − Z1

)(
qik

2 − Zk

)
, (30)

The proposed scheme and the scheme in [32] are applied to the fundamental network and compared
the number of multiplications and additions in each layer. Table 8 shows that the proposed scheme the
same volume of multiplications as scheme in [32] while the number of additions is reduced by 2.87×.
This means that adopting the proposed scheme for hardware design would use fewer adders.

Table 6. Accuracies of directly quantized models and quantized models with training.

4-bit 6-bit 8-bit 10-bit 12-bit

Quantized with
training 94.43% 97.03% 97.42% 97.31% 97.13%

Quantized
directly 29.27% 20.70% 42.22% 43.34% 41.17%

Difference 65.16% 76.33% 55.20% 53.97% 55.96%

Table 7. Classification accuracies under the proposed scheme and the scheme in [32].

4-bit 6-bit 8-bit 10-bit 12-bit

[32] 95.79% 98.11% 97.98% 97.75% 98.18%
Ours 94.43% 97.03% 97.42% 97.31% 97.13%

Sensors 2019, 19, x FOR PEER REVIEW 17 of 21

()()1 2
3 3 1 1 2

13

N
ijik ik

k
j

S S
q Z q Z q Z

S =

= + − − , (30)

The proposed scheme and the scheme in [32] are applied to the fundamental network and
compared the number of multiplications and additions in each layer. Table 8 shows that the
proposed scheme the same volume of multiplications as scheme in [32] while the number of
additions is reduced by 2.87×. This means that adopting the proposed scheme for hardware design
would use fewer adders.

Table 6. Accuracies of directly quantized models and quantized models with training.

 4-bit 6-bit 8-bit 10-bit 12-bit
Quantized with training 94.43% 97.03% 97.42% 97.31% 97.13%

Quantized directly 29.27% 20.70% 42.22% 43.34% 41.17%
Difference 65.16% 76.33% 55.20% 53.97% 55.96%

Table 7. Classification accuracies under the proposed scheme and the scheme in [32].

 4-bit 6-bit 8-bit 10-bit 12-bit
[32] 95.79% 98.11% 97.98% 97.75% 98.18%

Ours 94.43% 97.03% 97.42% 97.31% 97.13%

(a) (b)

Figure 10. (a) Real dynamic range and quantized range in [32].(b) Real dynamic range and
quantized range in ours.

5.3. Performing Symmetry Quantization in FPGA

In this paper, the 8-bit quantized model and the modified floating-point model with the best
performance are deployed for experiments in FPGA. The Xilinx KC705 Evaluation Kit with Xilinx
xc7k325tffg900-2 FPGA is used as the implementation platform. The on-board memory is a DDR3
SDRAM with a 64-bit data width and working frequency of 1600MHz. For the quantized model, all
the parameters are pre-quantized off-line using the scaling factor calculated through the training
phase. Some modification are made to the hardware architecture in [33] when deploying the
floating-point model. The pooling module is replaced by a max pooling module, and the
full-connected module is reused to reduce the resource consumption. Regarding the quantized
model, the floating-point-type PEs are converted into the quantized PEs.

Table 9 shows the results of the above models in relation to the FPGA platform. The
modification of network gives an increment of 0.58% on performance and the hardware resource
consumptions of LUT, FF and Block Random Access Memory (BRAM) are reduced to 36725, 37,283
and 150, respectively. The classification accuracy of the quantized model tested in FPGA is
consistent with the results of tested on GPU, which reflects that our training approach can
effectively simulate the behavior of the hardware without any additional accuracy loss. While the
8-bit quantized model has an accuracy degradation of 0.99%, compared with the floating-point

Figure 10. (a) Real dynamic range and quantized range in [32].(b) Real dynamic range and quantized
range in ours.

5.3. Performing Symmetry Quantization in FPGA

In this paper, the 8-bit quantized model and the modified floating-point model with the best
performance are deployed for experiments in FPGA. The Xilinx KC705 Evaluation Kit with Xilinx
xc7k325tffg900-2 FPGA is used as the implementation platform. The on-board memory is a DDR3

Sensors 2019, 19, 924 18 of 21

SDRAM with a 64-bit data width and working frequency of 1600MHz. For the quantized model, all the
parameters are pre-quantized off-line using the scaling factor calculated through the training phase.
Some modification are made to the hardware architecture in [33] when deploying the floating-point
model. The pooling module is replaced by a max pooling module, and the full-connected module is
reused to reduce the resource consumption. Regarding the quantized model, the floating-point-type
PEs are converted into the quantized PEs.

Table 9 shows the results of the above models in relation to the FPGA platform. The modification
of network gives an increment of 0.58% on performance and the hardware resource consumptions of
LUT, FF and Block Random Access Memory (BRAM) are reduced to 36725, 37,283 and 150, respectively.
The classification accuracy of the quantized model tested in FPGA is consistent with the results of
tested on GPU, which reflects that our training approach can effectively simulate the behavior of the
hardware without any additional accuracy loss. While the 8-bit quantized model has an accuracy
degradation of 0.99%, compared with the floating-point network, the hardware resource consumptions
of LUT, FF, DSP, BRAM are reduced by 46.21%, 43.84%, 45.00% and 51%, respectively. Simultaneously,
the proposed quantization scheme gives a decrement of 74.99% on the requirement of the DDR
bandwidth. Two implements in this paper have the same processing time of 2.29 ms as that in [33],
which means that the hardware design meets the requirements of on-board real-time processing for
object classification in remote sensing images. Therefore, implementing CNNs using our method in
FPGA helps to get rid of the constraints of limited logical resources and memory bandwidth.

Table 8. Number of multiplications and additions in the proposed scheme and the scheme in [32].

Layer
[32] Ours

Multiplication Addition Multiplication Addition

Conv1 922560 2583168 922560 830304
Conv2 921600 1900800 921600 806400

FC1 1728120 5184120 1728120 1728000
FC2 10164 30324 10164 10080
FC3 850 2530 850 840

Total 3583294 9700942 3583294 3375624

Table 9. Experimental results of the floating-point model and the 8-bit quantized model in FPGA.

Available [33] Ours Ours

Format - 32-bit float 32-bit float 8-bit fixed
Frequency - 100 MHz 100 MHz 100 MHz

LUT 203800 55745(27.35%) 36725(18.02%) 19753 (9.69%)
FF 407600 45561(11.18%) 37283(9.19%) 20938 (5.14%)

DSP 840 - 220(26.19%) 121 (14.40%)
BRAM (36 Kb) 445 150.5(33.82%) 150(33.71%) 73.5 (16.52%)

DDR
Bandwidth 100 Gbps - 47.62 Gbps 11.91 Gbps

Processing
Time - 2.29 ms 2.29 ms 2.29 ms

Classification
Accuracy - 98.18% 98.76% 97.77%

6. Conclusions

In this paper, a hybrid-type inference method based on the symmetric quantization scheme
is proposed for CNN-based remote sensing image classification. Both feature maps and weight
parameters are quantized into low bit-width signed integers in this method. With the signed integer
format, CNNs can be efficiently implemented on low-power remote sensing hardware platforms, such

Sensors 2019, 19, 924 19 of 21

as FPGA and ASIC, using low-precision calculations. A training approach for quantized layers is
co-designed, which reproduces the same hybrid-type algorithm used during the inference phase to
simulate the behavior of quantized calculations to preserve the model accuracy. Finally, the PEs and
the fused-layer PEs are designed to implement the proposed method in FPGA. The proposed inference
method and training approach are evaluated on Nvidia Titan Xp accelerators. The results tested on the
MSTAR dataset shows that the 8-bit hybrid-type gains a trade-off between the optimized bit-width and
accuracy degradation. The hybrid-type model and floating-point model are implemented on Xilinx
xc7k325tffg900-2 FPGA, and the experimental results show that compared with the floating-point
model, the resource consumptions of LUT, FF, DSP, and BRAM are reduced by 46.21%, 43.84%, 45.00%
and 51% respectively.

Author Contributions: X.W., W.L. and Y.Z. conceived of and proposed the quantization method. W.L. and X.W.
conceived of the training approach, conducted experiments and finally analyzed the results. X.W., L.C. and
H.C. contributed to the hardware implementation. L.C. debugged the hardware system. Y.Z., X.W. and H.C.
analyzed the results. X.W. wrote this paper. W.L., Y.Z. and L.M. provided advice for the preparation and revision
of the paper.

Funding: This research was funded by the National Natural Science Foundation of China under Grant No.
91738302 and Grant No. 91438203.

Acknowledgments: This work was supported by the Chang Jiang Scholars Program under Grant T2012122 and
the Hundred Leading Talent Project of Beijing Science and Technology under Grant Z141101001514005.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bentes, C.; Velotto, D.; Tings, B. Ship Classification in TerraSAR-X Images With Convolutional Neural
Networks. IEEE J. Ocean. Eng. 2018, 43, 258–266. [CrossRef]

2. Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource Remote Sensing Data Classification Based on
Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 937–949. [CrossRef]

3. Li, W.; Dong, R.; Fu, H.; Yu, a.L. Large-Scale Oil Palm Tree Detection from High-Resolution Satellite Images
Using Two-Stage Convolutional Neural Networks. Remote Sens. 2018, 11, 11. [CrossRef]

4. Gong, Z.; Zhong, P.; Hu, W.; Hua, Y. Joint Learning of the Center Points and Deep Metrics for Land-Use
Classification in Remote Sensing. Remote Sens. 2019, 11, 76. [CrossRef]

5. Yang, Y.; Zhuang, Y.; Bi, F.; Shi, H.; Xie, Y. M-FCN: Effective Fully Convolutional Network-Based Airplane
Detection Framework. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1293–1297. [CrossRef]

6. Liu, W.; Long, M.; He, C. Arbitrary-Oriented Ship Detection Framework in Optical Remote-Sensing Images.
IEEE Geosci. Remote Sens. Lett. 2018, 15, 937–941. [CrossRef]

7. Liu, W.; Ma, L.; Wang, J.; Chen, H. Detection of Multiclass Objects in Optical Remote Sensing Images.
IEEE Geosci. Remote Sens. Lett. 2018, 1–5. [CrossRef]

8. Kamel, A.; Maxime, P.; Jocelyn, S.; François, B.; Institut Pascal, Clermont Ferrand, France. Personal
communication. 2018.

9. Sai, M.P.D.; Lin, J.; Zhu, S.; Yin, Y.; Liu, X.; Huang, X.; Song, C.; Zhang, W.; Yan, M.; Yu, Z.; et al. A Scalable
Network-on-Chip Microprocessor With 2.5D Integrated Memory and Accelerator. IEEE Trans. Circuits Syst. I
Regul. Pap. 2017, 64, 1432–1443. [CrossRef]

10. Chen, T.; Du, Z.; Sun, N.; Jia, W.; Wu, C.; Chen, Y.; Temam, O. DianNao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, Salt Lake City, UT, USA, 1–5 March 2014.

11. Chen, Z.; Di, W.; Sun, J.; Sun, G.; Luo, G.; Cong, J. Energy-Efficient CNN Implementation on a Deeply
Pipelined FPGA Cluster. In Proceedings of the International Symposium on Low Power Electronics and
Design, San Francisco, CA, USA, 8–10 August 2016.

12. Qiu, J.; Song, S.; Yu, W.; Yang, H.; Jie, W.; Song, Y.; Guo, K.; Li, B.; Zhou, E.; Yu, J. Going Deeper
with Embedded FPGA Platform for Convolutional Neural Network. In Proceedings of the Acm/sigda
International Symposium on Field-programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016.

http://dx.doi.org/10.1109/JOE.2017.2767106
http://dx.doi.org/10.1109/TGRS.2017.2756851
http://dx.doi.org/10.3390/rs11010011
http://dx.doi.org/10.3390/rs11010076
http://dx.doi.org/10.1109/LGRS.2017.2708722
http://dx.doi.org/10.1109/LGRS.2018.2813094
http://dx.doi.org/10.1109/LGRS.2018.2882778
http://dx.doi.org/10.1109/tcsi.2016.2647322

Sensors 2019, 19, 924 20 of 21

13. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

14. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. In Proceedings of the International Conference on Neural Information Processing Systems,
Harrahs and Harveys, Lake Tahoe, CA, USA, 3–8 December 2012.

15. Howard, A.G.; Zhu, M.; Bo, C.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017,
arXiv:1704.04861.

16. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1566.

17. Zhang, X.; Zhou, X.; Lin, M.; Jian, S. ShuffleNet: An Extremely Efficient Convolutional Neural Network for
Mobile Devices. arXiv 2017, arXiv:1707.01083.

18. Liu, B.; Min, W.; Foroosh, H.; Tappen, M.; Penksy, M. Sparse Convolutional Neural Networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015.

19. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes
(VOC) Challenge. Int. J. Comput. Vis. 2009, 88, 303–338. [CrossRef]

20. Denil, M.; Shakibi, B.; Dinh, L.; Ranzato, M.A.; Freitas, N.D. Predicting parameters in deep learning.
In Proceedings of the International Conference on Neural Information Processing Systems, Harrahs and
Harveys, Lake Tahoe, CA, USA, 5–10 December 2013.

21. Wang, J.; Liu, W.; Ma, L.; Chen, H.; Chen, L. IORN: An Effective Remote Sensing Image Scene Classification
Framework. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1695–1699. [CrossRef]

22. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep Learning with Limited Numerical Precision.
In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015.

23. Gysel, P. Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks. arXiv 2016,
arXiv:1605.06402.

24. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
Convolutional Architecture for Fast Feature Embedding. arXiv 2014, arXiv:1408.5093.

25. Courbariaux, M.; Bengio, Y.; David, J.P. Training deep neural networks with low precision multiplications.
arXiv 2014, arXiv:1412.7024.

26. Miyashita, D.; Lee, E.H.; Murmann, B. Convolutional Neural Networks using Logarithmic Data
Representation. arXiv 2016, arXiv:1603.01025.

27. Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental Network Quantization: Towards Lossless CNNs
with Low-precision Weights. In Proceedings of the International Conference on Learning Representations,
New Orleans, LA, USA, 6–9 May 2017.

28. Courbariaux, M.; Bengio, Y.; David, J.P. BinaryConnect: Training Deep Neural Networks with binary weights
during propagations. In Proceedings of the International Conference on Neural Information Processing
Systems, Montréal, QC, Canada, 7–12 December 2015.

29. Li, F.; Liu, B. Ternary Weight Networks. arXiv 2016, arXiv:1605.04711.
30. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: ImageNet Classification Using Binary

Convolutional Neural Networks. In Proceedings of the European Conference on Computer Vision,
Amsterdam, The Netherlands, 8–16 October 2016.

31. Song, H.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding. Fiber 2015, 56, 3–7.

32. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.G.; Adam, H.; Kalenichenko, D. Quantization
and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 19–21 June 2018;
pp. 2704–2713.

33. Lei, C.; Xin, W.; Wenchao, L.; He, C.; Liang, C. Hardware Implementation of Convolutional Neural Network
Based Remote Sensing Image Classification Method. In Proceedings of the 7th International Conference on
Communications, Signal Processing, and Systems (CSPS), Dalian, China, 14–16 July 2018.

34. Keydel, E.R.; Lee, S.W.; Moore, J.T. MSTAR extended operating conditions: a tutorial. Proc. SPIE 1996, 2757,
228–242.

http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1109/LGRS.2018.2859024

Sensors 2019, 19, 924 21 of 21

35. Walden, R.H. Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 1999, 17, 539–550.
[CrossRef]

36. Ioffe, S.; Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate
shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015.

37. Andrew, L.M.; Awni, Y.H.; Andrew, Y.N. Rectifier nonlinearities improve neural network acoustic models.
In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 July 2013.

38. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

39. Jake, B.; Massachusetts Institute of Technology, Cambridge, MA, USA. Personal communication. 2006.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/49.761034
http://dx.doi.org/10.1109/5.726791
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Hybrid-Type Inference
	Symmetric Quantization Scheme
	Quantized Convolutional Layer and Fully Connected Layer
	Integer/Floating-Point Hybrid-Type Inference

	Training Approach for Quantized Layers
	Forward-Propagation
	Backward-Propagation

	Implementation of Hybrid-Type Inference
	Implement Architecture in FPGA
	Hybrid-Type Processing Engine

	Experiments and Results
	Dataset Description and Data Preprocessing
	Quantized Training with Different Bit-width
	Performing Symmetry Quantization in FPGA

	Conclusions
	References

