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Abstract: Background: Ambiguities and anomalies in the Activity of Daily Living (ADL) patterns
indicate deviations from Wellness. The monitoring of lifestyles could facilitate remote physicians or
caregivers to give insight into symptoms of the disease and provide health improvement advice to
residents; Objective: This research work aims to apply lifestyle monitoring in an ambient assisted
living (AAL) system by diagnosing conduct and distinguishing variation from the norm with the
slightest conceivable fake alert. In pursuing this aim, the main objective is to fill the knowledge
gap of two contextual observations (i.e., day and time) in the frequent behavior modeling for an
individual in AAL. Each sensing category has its advantages and restrictions. Only a single type
of sensing unit may not manage composite states in practice and lose the activity of daily living.
To boost the efficiency of the system, we offer an exceptional sensor data fusion technique through
different sensing modalities; Methods: As behaviors may also change according to other contextual
observations, including seasonal, weather (or temperature), and social interaction, we propose the
design of a novel activity learning model by adding behavioral observations, which we name as
the Wellness indices analysis model; Results: The ground-truth data are collected from four elderly
houses, including daily activities, with a sample size of three hundred days plus sensor activation.
The investigation results validate the success of our method. The new feature set from sensor data
fusion enhances the system accuracy to (98.17% =+ 0.95) from (80.81% = 0.68). The performance
evaluation parameters of the proposed model for ADL recognition are recorded for the 14 selected
activities. These parameters are Sensitivity (0.9852), Specificity (0.9988), Accuracy (0.9974), F1 score
(0.9851), False Negative Rate (0.0130).

Keywords: wellness; elderly; smart home; ambient assisted living; activity of daily living; wellness
indices; anomaly detection
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1. Introduction

It is the era of the internet of things (IoT) and ambient intelligence. These technologies have
enabled the swift rise of AAL based on smart homes. One of the motivations of smart aging research is
the rise of the elderly population. In numerous nations around the world, populations are maturing at
an increasing rate, as fertility decays and lifespan rises. As the global population ages, the proportion
of people in this cluster is growing. As indicated by a report produced by the United Nations, the
extent of people aged 60 years and more, contrasted with the rest of the populace, is projected to
double between 2007 and 2050, and achieve 2 billion by 2050 [1].

Deployment of an elderly person into a community care home, particularly when it happens
against a person’s desires, has been related with antagonistic impacts, for example, despondency,
social detachment, and more prominent reliance on self-care activities. Hence, more elderly people
want to remain in their homes instead of entering a medical service or care home when they require
specific care services. For those individuals who need exceptional medical attention and monitoring,
they may need to be taken out of their comfort zone (i.e., home premises) to meet their requirements.
Hospitals, as well as rehabilitation centers, are expensive and unsatisfying. Burden and expenses of
care ascend in the medical services framework, as well as for casual parental figures (i.e., relatives,
companions, neighbors). The huge expenses related to the arrangement of care for an elderly person,
along with deficiencies in the wellbeing workforce, have forced both the caregiving industry (e.g., Elite
Care, Intel, Tunstall) and the scholarly world to attempt to explore the adequacy and achievability of
wellbeing monitoring and help given in the home [2,3].

In the last decade, various smart home systems have been developed by various researchers.
GatorTech was one of the early projects of smart home research at the University of Florida. This
was based on ambient sensing units and camera-based monitoring. The CASAS, of Washington State
University, started with motion sensing units only in 2007. Recently they have introduced diverse
kinds of sensors and actuators. One of the French projects, SWEET-HOME, used audio-input-based
monitoring and recognition. This research project revolved more around automation giving control of
the home environment to the user through audio-based interaction. In a similar fashion in USEFIL
decision support system, they used microphones and cameras for ADL monitoring [2,4,5].

There is a number of ADL-based AAL systems that have been developed to deal with the
challenge of elderly wellbeing monitoring. Pulkkinen et al. [6] developed a framework for ADL
monitoring for elderly subjects affected by diabetes and from ADL analysis, recognizing the Wellness
level. Lara et al. [7] offered a Centinela system, which monitors activity related to gait movements
with the application of mobile and other wearable devices. Suryadevara et al. [8] investigated and
designed an exceptional system based on heterogeneous wireless sensors networks to detect the
behavioral pattern and forecast the anomaly in behavior. Han et al. [9] developed a multi-layered
healthcare platform to monitor the activities associated with depression and diabetes, named the long
term monitoring research system. There are various context-based models that target the display of
context awareness scenarios of AAL. Kim et al. [10] designed an ontology-based context algorithm to
offer a healthcare informatics solution. The wellbeing information related to location data, medical
information, and activity data in their work was extracted from the wireless sensing system and
RFID technology. Lee et al. [11] presented a multiple context-based model that considers subject
domain, ambient domain, social context, and function management. This model facilitate personalized
healthcare service in the home environment. These systems above lack the feature of knowledge
sharing and interoperability between different AAL environment applications.

The appropriateness of activity monitoring for wellbeing status in the smart aging environment
has additionally been investigated from the point of view of function with the group of various data
sources. McAvoy et al. [12] developed a higher level context framework for indoor monitoring, which
covered more or less all significant context-based aspects, such as subject, household object, localization,
sub-activity, and time-based features, in a rational and steady style. Zhang et al. [13] offered a method,
which considered distributed context conceptions and innovative time-based cognitive aptitudes
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equally to generate ADL patterns in the AAL. Okeyo et al. [14] proposed an ontological method, which
recognized relations between activities and their associated units, and time-based ADL modeling,
which introduced relationships among the principal activities of a compound sub-activity.

Steady and precise sensor information is critical for ADLs recognition and classification objectives.
Sensor viability, to a large extent, relies upon the action type being perceived. In existing research on
activity classification, different kinds of sensors were examined in trials prompting diverse models and
formation of the general framework [4,7]. Two principle classifications of sensors can be recognized:
Obtrusive (wearable) sensors, and Unobtrusive (non-wearable) sensors. Obtrusive sensors are typically
connected to an individual over the body area network (e.g., wristband sensors or cardio sensors) or to
their garments (e.g., an accelerometer or a stage counter) to gauge area, beat rate, body temperature,
circulatory strain, and other essential measurements or movement attributes. Unobtrusive sensors are
typically conveyed in stationary areas of a house or a room and can identify an individual and one’s
development and exercises. Unobtrusive sensors can indicate the operational status of household
objects as well as subjects, measure water stream, room temperature, or entryway openings and
closings. While obtrusive sensors measure precise localization and can recognize body developments
and crucial wellbeing characteristics [5,11], unobtrusive sensors are viewed as less intrusive and
don’t require any collaboration from the client’s side. Obtrusive sensors may have harsher power
utilization requirements. In some of cases these days, the obtrusive sensors may make use of gadgets
the client knows about and work with them, for example, a wristwatch or a mobile phone. It is
hard to convince someone to wear sensors over the body area network who is healthy. Therefore,
the current research work reported in this article is based on hydrogenous unobtrusive wireless sensors
networks. These are video-based methodologies in which a camera is introduced in a particular place
of a house to identify individual developments, as well as other general exercises. While performing
admirably under research facility conditions, this kind of sensor can’t give a similar execution in normal
conditions in light of noise interference and background brightness [3,4]. Besides, a camcorder based
methodology is viewed as abusive. To address security concerns, a low-resolution thermal imaging
sensor was proposed to be utilized rather than a customary camcorder [2-5]. This sensor can give
nearly indistinguishable movement data from a camcorder, while safeguarding the client’s protection.

An assistive living solution is becoming inevitable for lone-living elderly. Many people with
incapacities can continue lives in their existing home with the application of assistive informatics and
healthcare monitoring. Elderly people’s ability to perform daily activities contribute to the elderly
persons Wellness level. Investigation of human activities for extracting health and well-being statistics
is one of the present challenges with Smart Aging [15].

The world proportion of the aging population is increasing, and healthcare cost is economically
affecting both the general population and governments. When an elderly or disabled individual live
with their caretakers, the change in their well-being can be easily detected by caretaker through the
change in ADLs, such as behavioral changes related to sleeping duration and use of the toilet [16].
Elderly or disabled persons would even be fine to live with caretakers, but the overloaded of aging
population makes it next to impossible to assign caretakers to everyone. To address the elderly’s
demand, smart home based AAL systems are the best solution. In 1995, Celler et al. exhibited the
first tele-monitoring framework that could decide remotely the functional wellbeing status of older
individuals, by consistently and inactively observing connections between old individuals and their
living condition over a significant timespan. To achieve this, ADL observation utilized magnetic
switches inside the indoor environment that record movement between rooms, infrared sensors on
the dividers that distinguish movement in explicit territories of the room, and sound sensors that
decide the kind of action. With this improvement, it ended up being conceivable to react prior to
behavioral changes, and therefore changes in functional wellbeing status; observed actions would be
contrasted with the “typical” behavioral pattern of the individual, and behavioral changes would be
noted. The utilization of healthcare monitoring may, thus, provide near real-time analysis that can
capture potential emergencies [17].



Sensors 2019, 19, 766 4 of 32

Smart Home Technology-based AAL offers the monitoring of an inhabitant in a noninvasive
manner. The objective of an ambient assistance scenario incorporates smart home technology to
enable elderly persons to live independently. Sensor activation-based smart home monitoring keeps
caregivers updated about the inhabitant [18,19]. A usual concern for the caregiver is the ability to be
immediately alerted and be available in case of any life threating conditions occur to the elderly. For this
issue, the smart home system performs monitoring, analysis, and ultimately forecasting to predict
serious events for a participant. To forecast the aspects of an individual’s day, designing of intelligent
computational approaches is required. Current research work achieves this goal by measuring the
ADLs demonstrated by usage of the different household objects, electrical and electronic appliances,
and movement inside the home, based on sensor activation.

2. Research Challenges and Novelty

Observing the exercises of ADLs and recognition of deviations from past examples is necessary to
evaluate the capacity of an older individual to live autonomously in their locale, and in early discovery
of unforeseen circumstances. “Smart Ageing” for an older individual is one key component in AAL
approach. Daily behavior is a function of the health condition of an inhabitant, and this behavior
can be extracted through evaluating the ADLs in terms of different sensory data characteristics,
such as timestamp, occurrence, and duration. Once the deviation in the behaviour is identified, the
factors causing change can be further analyzed and possibly addressed. Behavioral changes could be
classified into three regions: short-term behavioural change, long-term behaviour change, and seasonal
behavioural change. Short-term behavioural changes range from a few days to a month, related to
activities such as usage of the latrine, which may indicate stomach upset. The long-term behavioural
changes are a few months to years, such as an increase in the use of microwave and shower, which
may indicate the memory loss that disrupts daily life or more serious forms of Alzheimer’s.

Long-term behavioural changes are the most difficult and complex to detect because it is
time-consuming analysis. It is well known that when the human body gets old, its performance
degrades physically and mentally; it is even hard for the caretaker to identify the long-term behavioural
changes which lead to disease [16]. The caretaker can only request for a routine checkup for further
examination. Cooking in a kitchen slowly, and taking a long time for a shower may be dementia or
orthopedic weakness (age-related). For long-term behavioural changes, more complex sub-activity
needs to be monitored, such as detection of regular fluctuations in the interval of medication or
supplements, or missing or repeating medication or supplement dose, may give more accuracy in
detecting Alzheimer’s. The short-term behavioural anomaly detection is as easy as comparing with
seasonal behavioural change, because the computerized assistive living platform follows time stamp,
period, and occurrence [13]. Seasonal behavioural changes occur during the weekend, or during public
holidays; these are random days, so it makes it complex to detect the anomaly in behaviour and the
causes of an anomaly. Some existing research work based on smart aging either uses a controlled
environment (laboratory setup) or uses the manual annotation-feedback. Nonetheless, this performs
poorly and fails in the realistic uncontrolled home condition [13,14].

Good health comes from a balanced and disciplined lifestyle. Achieving good health is inevitable
for all but ambiguous for many lone-living elderly people. The association between health and daily
routine has been investigated and analyzed before, up to a certain extent. With the application of
pervasive computing innovations and artificial intelligence, it is possible to enumerate the quality
of ADLs and relate daily routine to Wellness. An Assistive Living Home offers elderly Wellness
monitoring in the uncontrolled environment. The current proposal monitors every single sensor
activation, to extract activities and sub-activities for behavioral pattern detection and recognition to
avoid any upcoming unfortunate health risk.

One imperative idea in AAL is the recognition of ADLs. The idea of ADLs is generally utilized
in healthcare, abridging exercises and day by day schedules, on which the wellbeing status of an
individual is based, and, at last, on which the capacity of an individual to live freely in a network
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is evaluated. To live independently, an inhabitant is supposed to perform daily activity sets, which
include sleeping, bathing, cleaning, eating, entertainment, cooking, dressing, drinking, walking,
and taking medication (if one needs). To monitor the set of activities for a lone-living individual,
different methodologies have been developed to generate ADL patterns by smart home scientists. ADL
modeling is a complex task in the endeavor of smart aging research due to the unique characteristics
of activities in the indoor environment. On one side, an assortment of variables ought to be mulled
over to portray a sub-activity or activity, for example, localization, the physical article associated with
the location, and timestamp [12,16]. These characteristics may change after some time, which makes
the ADL recognition increasingly troublesome.

The most common approach is to formulate and detect predefined standard-ADLs that are
frequently applied to evaluate the wellbeing of an individual at an abstract level [4,5]. This approach
has some assumptions and limitations. On the other hand, every inhabitant is different from one to the
other, assuming that they all are going to perform a consistently similar set of predefined ADLs, and
in the same manner makes this approach vulnerable (this can be noted as the subject’s interests and
preference to conducting an activity). For instance, an occupant who is under monitoring may cook
and eat at home daily, defining their routine [19,20]. That same occupant may not cook in the kitchen
and start using readymade canned food or eat at friend’s place; this would make monitoring ADLs
complex for an AAL. The definitions and declarations of predefined ADL sets are not ideal and fail in
the uncontrolled smart home scenario because of interweaved and non-interweaved activities [15].
Recording only preselected activities filters out the other activities, which could provide more details
to Wellness evaluation. It is significant to monitor and detect every single activity that an individual
performs in their daily routine in the assistive living environment [16,17]. Therefore, an activity might
be displayed in different structures that rely upon people’s inclinations and preferences, prompting
different ADL variations. The models ought to satisfactorily catch this ADL diversity. As an answer
for this, context-aware scenarios are a significant point in our proposed ADL modeling.

Context is characterized as “any data that can be utilized to portray the circumstance of an element.
An element is an individual, place, or item that is viewed as important to the connection between
a client and an application, including the client and applications themselves” [21]. Zimmermann et
al. [22] broaden this definition with five classes of context data: distinctiveness context, timestamp
context, localization context, activity context, and associations” context. This advances the data
portrayal of context. In light of this, the context-aware framework utilizes context to give pertinent
data and services defined to the client’s assignment. So as to manage the assorted attributes of
ADLs, the context-aware framework can be utilized freely with the hardware, operating system, and
programming dialect to provide a more prominent scope of gadgets and applications. One complexity
of the context-aware scenarios is to deal with and explore the varying ambient environment with
another class of uses that know about the context in which they run, and afterward respond to changes
in the ambient environment [23].

Since manual evaluation of the ADLs of an individual isn’t plausible in a genuine circumstance,
autonomous methodology and monitoring of ADLs utilizing sensors arranged in the indoor home
environment is an essential innovation for AAL. ADL monitoring can facilitate the early identification
of ailments, for example Alzheimer’s and dementia, and uncover a decline in the capacity of an
individual living freely. ADL monitoring produces a few specialized and nontechnical issues that
should be tended to. On the specialized technological side, the decision and setup of sensors arranged
in home premises, as well as the flag handling and machine-learning calculations to be considered for
activity recognition and classification, are imperative. On the other hand, for the nontechnical part,
convenience and protection are significant. The most significant and effective framework for ADL
monitoring is, therefore, one that requires minimal training datasets or setup exertion and integrates
flawlessly into a house. These contemplations represent a few difficulties on the innovation side,
including: (a) Sensors must be reasonable, security safeguarding, and simple to introduce and arrange,
precluding muddled sensors and receivers—this impacts the feasible ADL classification precision; and
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(b) information and ground truth procurement for every individual house is exorbitant and arduous.
ADL classifiers ought to give sensible execution on an assortment of indoor home environment designs,
with extra training datasets as a discretionary contribution to support precision.

Another issue is that the annotation and collection of this much larger data-set is a complex task
and introduces latency in smart home monitoring. One of the possible methods is asking inhabitants
to give input for their own activity annotation, but this is obstructive, lengthy, and may cause an error
during self-tracking [18,19]. The assistive home condition requests event recognition of ADLs from
raw sensor information. The sensory activation datasets are mind-boggling and sporadic to encode
into predetermined situations. Indeed, even in the wake of encoding this crude information, it is very
hard to guarantee the degenerate conduct in light of the fact that these informational indices are on
diverse testing rates and sensing modalities [3,5]. These distinctive time and sensor modalities cause
inconvenience amid condition definition.

Moreover, within ADL modeling, recognition of ADL change (anomaly detection) is one more
decisive and puzzling objective. Anomaly detection is the procedure of identifying behavioural
“deviations” of individuals typical routine pattern, and the rare data is exhibited as anomalous
behaviour for sorting. This has influenced the concept of the 1-class classification issue, not the
old-style 2-class (binary) classification challenge [13,19]. The spotting of fluctuations possibly will
comprise the fluctuations in diverse contextual phases, such as location, temporal, time stamp, activity
sequence, Wellness level, and more. In principle, behavior (ADLs) uncovering is the concept of
displaying an individual’s behavior from sensor activation, whereas anomaly recognition is the concept
of differentiating fluctuations in traditional ADLs that also influenced the concept of ADL modeling
methods that can successfully identify typical lifestyle traits for variation (anomaly) recognition.

The anomaly detection could be done in two ways: Outlining, and Discerning. Outlining is
demonstrating regular behavior and assuming any arriving current input that is dissimilar to the
model is an abnormality. Discerning is understanding abnormality data from past data and detecting
for a comparable pattern from inward current input data to contemplate an anomaly. Outlining
approach is more accurate, as abnormality data is seldom perceived in reality, to offer learning datasets
for the classifier [20,22]. Anomaly recognition is in the early stages in smart aging and is more
established in other fields, for example, theft uncovering, scam finding, medicinal, manufacturing
flaw recognition, image processing, and more. The scope of machine learning methodologies have
been utilized for anomaly identification, for example, classification (support vector machine SVM,
rule-based, Bayesian,), clustering, statistical (parametric: kernel function, Gaussian; non-parametric:
histogram,), nearest neighbor (density based), information theory, and more.

The majority of investigators reported that individual’s events tell more or less “systematic
patterns” that can be well-understood from the probabilistic algorithm. Cardinaux et al. [24] suggested
a distinct outlining approach with Gaussian Mixture Model (GMM) to form typical data. This method
is superior to earlier histogram methods [25-27] because GMM might calculate a trait’s reliance.
For example, while obtaining both traits of timestamp and period, an action of viewing TV at 3 am
(timestamp) for 4 h (period) might be an abnormality. ADLs were mined by the researchers from the
sensing data via Rule-Based algorithm, e.g., <Start time, End time, Period>. Some investigators
noted that Hidden Markov Model (HMM) is the finest match for the indoor noisy field. As a
substitute for applying GMM, Monekosso et al. [28] implemented Hidden Markov Model as a common
outlining approach by entering groups of ADLs into the activity framework. They documented that
their technique of unsupervised event mining was superior to the traditional supervised technique.
Mori et al. [29] selected exploration of the distinct outlining approach by outlining every activities rate
of occurrence via probabilistic density technique. However, their methodologies were reported by a
number of research fellows for the ineffectiveness of precisely recognizing an anomaly. The reason for
the ineffectiveness was two activities could have the same sequence of sub-activities, such as a group
of sequential well-ordered sensor activations: “door”, “fridge”, “sink”, “fridge”, “bench”, “fridge”,
“microwave”, “door” might denote the action of preparing cereal. Though the similar incident group
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might signify the action of making coffee or tea, this could be differentiated by the time period of
the activities.

Kang et al. [30] explained that Hierarchical HMM is more appropriate than any typical HMM
when utilizing the feature of measuring the activity’s period. The researchers considered that the
time period of sub-activities in the lower hierarchical level should be lower than the main activity
time period, as this main activity is modeled by the two more corresponding sub-activities. However,
Chung et al. [31] modified the above by introducing the contextual characteristic of hierarchical
configuration through Hierarchical Context-HMM, and applied three HMMs (ASC, ABR, ATR ) in
diverse contexts to recognize activities. Duong et al. [32] designed a period model with distinct
Coxian distribution and reported that their method is superior in computational cost as compared
to any classical technique by unambiguously modeling the period. Their method needed a huge
number of parameters for training and testing. Forkan et al. [33] identified two main issues with
typical anomaly detection techniques. First, the inability of forecasting upcoming trends that stopped
early detection of activities causing disease, and then another, the inclusion of solo context scenarios
triggered false alarms for decision making. Subject sickness, e.g., diabetes, is not only because of
their mature age, so there is a need to include another context apart from sugar level. Therefore, they
integrated HMM with Fuzzy Logic to recognize activities with more than one contextual domain and
generate forecasting trends by combining all the information. Wong et al. [34] developed that the finest
method to extract profile data is to outline the most frequently visited place of a subject. Novaik et
al. [35] applied a Self-Organizing Map to the group and formed activities from sub-activities. Once
training is done, any activity that diverges from this group is considered as irregular. However, Wong
et al. [34] detected that the system generates an incorrect alarm for abnormality recognition because
resident’s ADLs are asymmetrical, such as watching TV until midnight and sleeping long hours in the
day time.

This paper proposes a unique anomaly detection method based on a heterogeneous sensing
system for elderly people’s ADL and ADL routine monitoring by sensor data fusion. The paper has
the following main contributions below. First, proposing an effective sensor data fusion technique
based on a wireless heterogeneous sensor network system. The push button indicator is used for
recognition of specific daily activities, not as a primary input. The placement information bagged by
the room-mounted sensors is utilized for the implication of a user’s room-level ADL. Conferring to the
commonly occurring ADLs, the system dexterously split the whole task of identifying all the distinct
activities into definite room-based sub-activities. Since each sub-activity categorization model for
each sub-event takes recognition of a few activities, the system can improve proficiency and precision.
In wireless sensor data fusion, the locality information is necessary to activate the sub-activity models
that are pre-trained by the other heterogeneous sensors. Second, in our exploration, we offer a
novel attitude to attain significant efficiency from the smart home care framework. To give a reliable
arrangement, we proposed and actualized an AAL based on an incorporated system to investigate
the person’s conduct on the basis of historical data, real-time freshly received data, and feedback
received data. Third, to address the research challenges, we apply behavioral pattern generation
through pipeline processing with pre-processing, activity recognition, and smoothing. We focus on
isolation of the typical routine information from surprising information, which may cause a risk
to Wellness.

We continue the research work by offering the AAL system methodology in Unit III, with the
sub-section headings (a) Design and deployment of intelligent wireless sensor and networks (IWSN)
(b) Preprocessed Sensor Data Acquisition (PSDA), (c) Activity Annotation, and (d) Wellness Indices
Modeling. The investigational results and performance concerns in Unit IV have been represented.
The extensions of present research for future work and conclusions with probable solutions towards
matter resolution are drawn in Unit V.
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3. Methodology: AAL Environment Approach and Setup

The framework was planned and actualized in two levels; hardware prototype development,
followed by deployment and programming logic. At the prototype development and deployment,
the diverse sensing units were developed and positioned to acquire multi-movement and multi-event
sensory activation. The present intelligent remote sensing units were designed with Mesh topology,
and the crude sensor activation was received by coordinator receiver module and gathered into a
server that may be a local home gateway, as well as being cloud-based. In the present research, we have
implemented a local home gateway approach for the server. The programming unit was sectioned into
various stages, for example, information recording, information mining, and information stockpiling;
these modules were responsible for correlating the change in lifestyle with the well-being of an
individual in progressive or close time. The present system used a novel Wellness Protocol developed
by us. The sensing nodes were intelligent enough to process and transmit the data according to the
event and priority of sub-activity [18,19].

Figure 1 depicts the system approach from tiny sensor development to data transmission based
on ISM band 2.4 GHz. The diagram shows the flow from data storage into the server to sensor data
fusion and decision making information generation. All the node-processed sensory activation data
was recorded to represent the events. The present research study offers an innovative sensory data
preprocessing and segmentation methodology that combines the sensor physical characteristics based
on events, location, and time correlation.

Caregiver Telehealthcare Other Assistive Services
HTTP Command Process Module | [ ASP.Net | | JavaScript (AJAX) |
[ HTML |

MYSQL Data storage server

equest/ response

Instruction read/write S

i

’ Wireless Sensor Radio Node

. . Sensor with conditioning Intelligent signal processing uses smart sampling
Signal from Subject » circuit logic » algorithm based on event and priority scenarios

Figure 1. The bottom-up diagram to represent the Smart Home-based AAL system.
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3.1. Smart Home Setup Based on INSN

The present research system named a Wellness system was designed and executed in four different
houses. Those houses were the residences of lone-living elderly persons. Figure 2 represents one of the
houses where the Wellness-based smart home system was implemented. The Wellness smart home
system offers a user-friendly and low maintenance AAL environment, without significant change in
interior or exterior of the house. Moreover, it allows an elderly inhabitant to live in an uncontrolled
homely condition.

Figure 2. A more than seven-decade-old house where the Smart Aging system was installed without

any significant changes in the house.

The sensing units are prone to physical damage; apart from that, the system is free from the
complexity related to power supply and local home gateway data backup-storage. The algorithm for
intelligent pre-processing of sensor activation at the node was developed and implemented on an Intel
Galileo Generation-2 baseboard. On the basis of Wellness Protocol approach, sensory activations are
transmitted to the local server via radio transceiver [18].

The crude sensor activations from sensors (not the sensing unit) are communicated to the
baseboard Microcomputer for competent sampling and transmission controller algorithm. The present
algorithm analyzes the sensor activations in advance, followed by being applied to Wellness packet
encapsulation algorithm. The sampling-transmission control algorithm and packet encapsulation
algorithm perform excess data reduction. These algorithms do it through categorization and detection
of unavoidable sensor activation from indispensable sensor activation at the sensing unit level before
it is communicated to the server. The outline of the AAL environment with sensor positioning
is displayed in Figure 3. The sensors are positioned in such a style so that the system gets each
indispensable sensor activation commencing in the household, which is valid to the well-being
investigation of an elderly inhabitant.
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0 Force sensor unit * Electronic and electrical
appliance usage

Outside temperature monitoring unit
sensing unit based on Temperature sensing unit
solar power

Mannual push button
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¢ Smoke detector

Figure 3. The layout of heterogeneous sensing units’ deployment in the AAL.

The movement sensors were installed near to doors, windows, corner of rooms, corner of
kitchenette, and corner of restroom. Figure 4c represents the Passive Infrared Movement sensing
unit deployed at the door and Figure 3. Figure 4d depicts the arrangement of the sensing unit in
the kitchen for washing activities. An Electronics and Electrical (E & E) object sensor was plugged
into all the electrical and electronic appliances to monitor the time duration of usage. Figure 4e-h
represent the E & E unit connected to water cattle, rice cooker, microwave oven, and television,
respectively. Figure 5b shows the deployment of the force sensor to measure the frequency of
toilet usage and duration. To monitor housing stuff based on the close and open of closet, such
as an almirah, office desk, and self-grooming table, wireless contact sensing units were designed.
Figure 5b shows the flexiforce A301 used as a contact sensor at the shower door. The frequency of
this object usage was monitored by connecting the contact sensing unit at the closet. It is a digital
output on/off sensor. Figure 4a shows the outdoor temperature module based on a solar panel
deployed at the window.

A push switch key module was a supplementary sensing unit for assessment; the data from it
was not considered as primary because of errors during self-input by an elderly person. A manual
push button sensor was designed to evaluate and cross-check the performance of activity recognition
by the Wellness activity learning model.
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Figure 4. (a) Outdoor temperature sensing unit. (b) Activity-based manual indication unit.
(c) Movement sensor deployed at the entry. (d) Movement sensor deployed at the corner of the
washbasin in kitchen. (e) Water cattle plugged into E & E Sensor. (f) Rice cooker plugged into E & E
Sensor. (g) Microwave oven plugged into E & E Sensor. (h) Television plugged into E & E Sensor.

Figure 5. (a) Contact sensing to know about the usage of the shower. (b) Force sensor deployed over

the toilet seat. (c) Local Home Gateway Server.

3.2. Sensor Data Acquisition Module

Present research focuses on indoor ADL recognition for an elderly individual to identify their
routine activities and separate the anomaly events. The present system does not directly monitor the
toilet usage, hygiene, or bathing, though the system captures how often and how long the inhabitant
uses the bathroom from the ambient sensors, contact sensors, and force sensors.

The data collection-related measures are accepted by Massey University Research Ethics
Committee and Fudan University Ethics Committee. The sensor data acquisition is done in the
elderly subject’s homes based on a heterogeneous wireless sensors and networks. Considering
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older subjects’ behavior in the function of an uncontrolled realistic environment, the existing elderly
houses are converted into smart aging houses. The elderly subjects are encouraged and motivated to
self-sufficiently execute each action in their individual way. They are free to go out and take a break
from their daily routine. However, for the system, taking a break is also an activity. In the case of data
interruption or error/loss, the valid data from the same activity are replaced.

The data collection process considers ninety days as one season of data. The present research
work uses 43 weeks data. The present system does not use a defined fixed sampling rate, it uses
dynamic sampling. The total average sample size for data is therefore about 16 GB for 2,675,655 sensor
activations and 4 subjects. Though the system uses basic data preprocessing, data may comprise
overlay, interferences, and noise between activities. The sensor data was raw, but sensory activation
was processed before being transmitted from IWSN to Local Server. A Toshiba mobile workstation
laptop was used as a Home gateway server. The mobile workstation was a 15.6-inch display, 1TB
hard drive, 4 GB Ram, I5 processor. The user interface was developed for the data reception through
com-port. Figure 5c shows the Local Server and Intel-board-based coordinator.

3.3. Data Pre-Processing by Advanced Belief Model

An era of IoT is where sensing information is linked to the internet. Wireless sensing units
collect a huge amount of sensory activation data to apply to machine learning models, and decision
or prediction of an event is done on a real-time basis. Nevertheless, the accuracy of ADL monitoring
and forecasting is a function of the reliability of sensor data. Unluckily, received sensor data are
erroneous and misleading. One of the possible reasons for degradation in sensing data reliability is
missing data, repeated data, or erratic data. The missing data, repeated data, and erratic data lead to
ambiguities, such as incompleteness, ignorance, and fuzziness. The resource limitations cause missing
data. Malfunctioning of the sensing unit brings incompleteness to sensor data.

Thus, the error obstructs the suitable functioning of the smart home monitoring systems and
degrades the reliability of data. Consequently, the recognition and detection related to wireless sensing
data bring inevitable scrutiny, so it must be processed before being applied to a machine learning
system to offer optimum accurate monitoring and forecasting alerts. Hence, it is indispensable to ensure
the data reliability and accuracy before feeding it in any data mining and machine learning algorithm.

The majority of sensing units get interference caused by noise or errors; this could be calibrated
during system design, though hardware malfunctioning, for example, creating consistent or stationary
conduct, should be distinguished. The data received from sensing units are processed as the format of
digital and analog series. The sensing unit generates two kinds of qualities, the first is an analog series
and the second is a digital series. In the data types due to the atypical (flawed) conduct of sensors, it is
possible that they cause underfitting (less information) or overfitting (overabundance information).
Therefore, a model has been designed to separate this error, separating data from the inevitable useful
data. That model is named as an Advanced Belief Model.

1. Advanced Belief Model for Analog Data Output

The analog data, such as temperature value received from a sensor, should be in the modeled
characterized run. In the event that it goes past the threshold value or offers a consistent stationary
value, at that point there is a high level of belief that shows gadget atypical conduct.

The Wellness threshold for analog-based sensing units is actualized through the linear regression
approach. Let us assume, at time instance t, the Advanced Belief figure (BF;) is termed through the
difference (D;) between the derived value (d;) and the practical actual value (P;) on standard deviation
(0) and o is confidence level (0.95). The derived value function is given by d(t).

1 N
de= 5 Y- d() )

n=0
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BF; = when D¢ > o 2)

5
|Dy|
Otherwise

BF; =0.99 when D; < o 3)

2. Advanced Belief Model for Digital Data Output

Digital or discrete valued sensory activations are derived through the Poisson distribution. The
Advanced Belief value by Poisson distribution characterizes the probability of occurrence of an occasion
in the defined time span. Assume that an independent event to happen “” times, over a predetermined

"

time interim, at that point the probability of precisely “x” events is equivalent to

Xp—d
BE (x, 5) _A ; @)

The Advanced Belief model-based methodology is used for the detection of deviation from the
derived value. The modeled value is contrasted with practical value and the distance between them is
characterized as residue. The sensory activations are demonstrated by the probability distributions of
parameters; data unit, the location of deployment, and time. For precise recognition of deviation, even
the smallest residue must be resolved. Accordingly, the observation sampling rate must be sufficiently
high for the detection of the lowest residue. By Nyquist Sampling hypothesis, the testing rate should
be no less than double the (crest) rate of variation of sensing outputs.

The sensing units are deployed into the realistic home, the home conditions are uncontrolled,
so different sources will include noise, for example, RF signals from household object usage. The noise
is added to a data signal when the sensor event occurrence time is less than the defined sampling time.

3.4. Segmentation

For smoothing of later data mining and machine learning processes, the received analog and
digital time series data are segmented into the suitable subwindows. To capture the routine circle
of sub-activity, the customized window length according to subject and location of deployment is
measured and recorded. The window length was between 14.5 s to 18.2 s for these four elderly subjects
(the window specification was 128 and 256 samples) [36]. Additionally, to avoid the useful sensory
data loss at the edges of the pair of contiguous sub-windows, the 50% overlap between adjacent
sub-windows has been applied.

The total number of window segmentations )1 for a time series data is given by

_LE-3
=175
where the L. is the data length, $ is the overlap size, and t is the segmentation length. The window is
split into J! sub-windows after the segmentation process.

n @)

3.5. Activity Modeling

The sensory facts from Wellness packet were extracted by local home gateway loaded with the
Wellness sensor data acquisition algorithm. Wellness based activity learning model and activity mining
algorithm are applied for pattern detection and anomaly detection.

The key motives of sensor data fusion and Wellness activity modeling are as below:

e Dynamic sensor data fusion: The majority of research work of activity modeling is based on
pre-defined sensor datasets. However, the proximate real-time ADL discovery founded on
streaming sensory information is left unanswered [4,5,15,16]. Current research work represents
an innovative, vibrant real-time sensory event segmentation methodology to offer the solution.
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e Dataset collection and variety: Most of the research work around the world does not use
heterogeneous unobtrusive sensing in an uncontrolled environment. Moreover, they use one or
two home datasets. The present AAL system was deployed in four elderly lone living houses.

In the present research, we had classified the activity detection module containing 3-stages to
mine the evidence from sensory activations; the stages were as below:

1. Event Occurrence Stage (1): The present stage comprised all types of sensory stimulation caused
by activity accomplished by the elderly inhabitant. The sensory stimulation data was unitless.
Thus, it would not generate the behavioral measurements in the current form. The sensor
activation records were referred to the higher stage of circumstantial discovery.

2. Circumstantial Factor Mining Stage (2): The circumstantial stage distinguished the elementary
activities on the foundation of locality, period, and situation. The elementary activities were
directed toward superior stage detection. This stage belongs to the sub-activity data.

3. ADL Recognition Stage (3): The elementary ADLs were categorized and interrelated, dependent
on circumstantial figures for pattern discovery.

The present sensor data fusion approach is the heart of the smart aging system, which uses the very
first sensory activation information (either 0 or 1) to trigger the subclassification module. The sub-modules
are pre-trained by the corresponding heterogeneous sensing data assigned to a specific localization.

For instance, when room “R1” is distinguished as triggered and occupied, then over the next time
instance, only the sub module “R1” is initiated and functions as the learning activity. Subsequently,
each sub-module is accountable for perceiving fewer ADL compared with the situations of perceiving
all the characterized ADL, without applying the entire model of sensor data fusion. By doing this,
the activity recognition precision can be enhanced without extra learning. The framework changes
to “the entire model” mode to manage the circumstance when there is more than one inhabitant is
distinguished, and are caught in the meantime. “The entire model” perceives all the characterized
activities together by utilizing the heterogeneous sensing information.

Figure 6 shows a subject’s day by day routine construed from the room-level sensory data of object
usage and movements, which can disclose to us when, to what extent, and how regularly the subject
remains in particular rooms. Figure 6 similarly gives the points of interest that the individual under
monitoring gets up in the room at around the same time in the morning and starts the typical routine,
went to bed at the night, and interacts with various household stuff, and so on. Moreover, the room-level
everyday routine over quite a while can uncover whether the subject could effectively sort out a day by
day life, or whether the subject is driving an irregular routine contrasted with the usual ADL schedule.

To data mine the information from the heterogeneous sensors, we propose a straightforward,
however viable, information combination technique, shown in Figures 6 and 7 and Table 1. The strategy
depends on the accompanying presumption: a few activities can be restricted in a particular localization
in the view of places of occurrence, e.g., cooking is exceptionally incomprehensible as occurring in a
washroom, and teeth brushing may not occur in a room. Here, the subject’s localization information can
be utilized to trigger the room-based sub-models. Subsequently, after fusing the first sensor activation
of a particular activity to the other most relevant sensory information, the entire classification classifier
transforms into parallel-functioning sub-classifiers.

The ADL is extraordinarily unrelated and composite. Thus, merging the diversity of practices,
lifestyle, and proficiencies in the course of generating ADLs is problematic. Therefore, the outline of
executing the regular routine can be different from one elderly inhabitant to another. In the data-driven
attitude of assisted technology-based smart aging feature mining is the unescapable stepladders for
behavioral and activity discovery, which mines the evidence from server-stored sensory activations. Such
statistics cover the position, period, spell of sensory stimulation, ambient circumstance, the interaction
of an individual with a household object, and movement. The activity modeling diagram is shown in
Figure 6. An activity is a sequence of sub-activities, for an example, preparing the toast includes taking
toast from the refrigerator and placing toast in the toaster, followed by plugging it into the power supply,
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and washing the dishes in the wash basin. A quadratic sketch of modeling events is shown in Figure 7.
The activity labeling and marking for different activities for 24 h is shown in Table 1.

Figure 6. Activities of daily living.

Ambient Parameters (temp, light,
humidity, pressure,,,,,,,, )

Figure 7. Modeling sub-activity for Activities of Daily Living.

Table 1. Activity Annotation for 24 h.

Unique Node Household Stuff Sensor Timestam Usage Activity
ID Connected Applied P 8 Annotation
21:07:33 2016-09-10 Start SL . .
00FR1 Bedstead Force 07:48:10 2016-09-11 End SL 10 h 40 min 37 s Sleeping
. 07:58:34 2016-09-11 Start TL . .
00FR2 Toilet seat Force 08:07-12 2016-09-11 End TL 8 min 38 s Toilet
00A1, 00A2, Electric stove, Grill, moiiizo]rain 08:17:23 2016-09-11 Start BF 15min1s Breakfast
and 00A3 and Rice Cooker unit & 08:32:242016-09-11 End BF Cooking
09:22:44 12 min
00CN1 Shower Door Contact 2016-09-11 Start SW s Shower
09:35:21 2016-09-11 End SW
00A1, 00A4, E;S:Eg;‘f;i Srf;ll' moii‘fofin 10:24:17 2016-09-11 Start LN 53 min Lunch
00A5, and 00A6 . 4 g 11:17:40 2016-09-11 End LN 23s Cooking

Refrigerator unit
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Sensor data fusion has been performed to recognize the sub-activity and ADL by Wellness activity
modeling. Table 2 shows the sensor activation collected in the server laptop for four different elderly
houses, and the number of ADL recognized successfully from it.

Table 2. Number of sensor activation and activity detection for four different houses equipped with
hydrogenous sensing units.

Label Household 1 Household 2 Household 3 Household 4
Sensing units (Nodes) 37 32 37 29
Weeks monitored 43 43 43 43
Sensory triggering 693,705 605,758 725,671 650,521
ADLs uncovering 14,067 11,987 15,004 11,541

3.6. Novel Wellness Indices Modelling and Detection Methodology

Healthcare professionals and caregivers diagnose and support only if the given information is
in a user-friendly format, such as a number or well-being index. It is hard for a care provider to
understand anything precisely through the position of deployment or node ID of sensory activation.

To offer the best possible solution, we designed Wellness grades, ®; and ®,. The formulation of ®;
was based on non-usage as well as the inactive interval of household stuff or events, whereas the ),
was designed through the usage as well as the active interval of household stuff or events. The ®;

and ®, were probabilistic functions. Therefore, when ®; and ®, were equivalent to 1, the elderly
inhabitant was well.

The functions ®W; and @, were the BASIC indices, those were later upgraded through the inclusion
of multiple observations of seasonal deviations and random days. The upgrading remarkably reduced
the false positive alert massages [6]. In the upgraded Wellness function, the seasonal deviation
observations had been familiarized by the time series modeling. The below offered method in equations
was introduced by dynamic sensor data fusion and time series principle.

—t

(’)1 = em (6)

where 0 well-being function was formulated over the inactive spell duration of household use by the
elderly inhabitant; t was the definite spell duration of idleness (inactive) of all or specific household;
Ty was ultimate- idleness interval and outside this may grounds abnormality situation that duration

was calculated from past observations. For the regular life of an individual ®; should be 1.

(In—Ta)

(1)2 =e Tn (7)

where (), Wellness function was formulated over the active spell duration of household use by the
elderly inhabitant; T4 was the definite spell duration of activity of all or specific household; T was
an ultimate-active interval and outside this may be the grounds for an abnormality situation. That

duration was calculated from past observations. For the regular life of an individual, ®, should
be 1. The abnormality is only calculated when T4 > Ty. The regular duration of household use of
an individual specifies how effectively one performs everyday indoor work. Conferring to cyclical
variations, the elderly individual’s behavior and the spell duration of object use vary but are not
considered an abnormality situation. It should not be designated as a cautionary alert. For instance,
the elderly individual’s daily activities would not be similar from rainy to winter season; there will be a
substantial transformation in the activities. Therefore, a behavioral adjustment must be recognized and
detached from the abnormality symptom. For the precise evaluation of routine change and anomaly
discovery, Ty and Ty, time of household idleness and use, respectively, were framed according to the
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calendar and cyclical variations. Time series machine learning practices were applied to develop the
statistical approach for Tjy and T.
Characterization of the pictogram utilized in formulations starting from Equations (8)—(20):

L = numeral of the interval in a single sequence or cyclical span;
o = Statistics smoothing element 0 to 1;

v = Cyclical variation smoothing element 0 to 1;

x = Note of object at the present spell;

S = Smoothed observation;

Ti = Tendency factor;

C = Cyclical Drift;

F = The prediction at “m” episodes in the future;

t = Key to display the spell duration;

m = numeral of stages in advance of prediction;

® = Trend smoothing factor 0 to 1.

The smoothed observation for ultimate idle household use was assessed by the recent times
recorded sensory episodes {a (x; —C;_r)+ (1 —a)(S;—1 — Tint—1)}, and the episodes happened
throughout the matching term in preceding year r {a/(x; — C{_; ) + (1 — ') (S}_; + T{y ;1) }-

St=g[fa (i =Cr)+ (1=a)(Sra = Tive-)} + {&/ (xf = Cp) + (1= ) (S 1+ Tiy 1)} (8)

The ultimate inactive household practice was assessed by the recent times recorded sensory
episode factors {B (St — S;—1) + (1 — B)(Tin t—1)}, and the episode arose throughout the matching
term in preceding the year {'(S; — S|_;) + (1 — ') (T/n ¢-1) }-

{B(St =Si—1) + (1 =B)(Tine-1)} + {B' (St = Si-1) + (1= B') (Tin +-1) }] ©)

N =

TN =

The cyclical trend for ultimate inactive household practice was assessed by the recent times
recorded sensory episode factors {7 (x; — S;) + (1 — 7)(C¢—L) }, and the episode arose throughout the
matching term in the preceding year {/(x; — S;) + (1 — ') (C/_,) }-

Ci= 5 [{r (v =)+ (1= (C0)} + {7/ (=S + (1 - 4) (C_0))] (19

The smoothed observation for ultimate active household use was assessed by the recent times
recorded sensory episodes {a (x; — Cn¢—r) + (1 —a)(Snt—1 — Tn ¢—1) }, and the episodes happened
throughout the matching term in preceding the year {a’(x; — Cy;_;) + (1 —a’) (Sh;_1 + T 1-1) }-

Sne = 3 [{a (xr = Cne1) + (1= a)(Sne1 — T e-1)} + {&/ (% = Chyy ) + (1= o) (Shy 1 + T ,1) 3] (1)

The ultimate active household practice was assessed by the recent times recorded sensory episode
factors {B (Snt — Snt—1) + (1 — B)(Tn ¢—1)}, and the episodes happened throughout the matching
term in preceding the year {8’ (Sy; — Sk;_1) + (1= B) (T 1—1) -

Tn =5 [{B (Snt = Sne-1) + (1= B) (T e-1)} + {B'(Sht — Se—1) + (1= B') (Ty ¢-1) }] (12)

N —
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The cyclical trend for ultimate active household practice was assessed by the recent times recorded
sensory episode factors {7y (x; — Sn¢) + (1 — ) (Cnt—L) }, and the episodes happened throughout the
matching term in preceding the year {7/ (x; — Sy;) + (1 —7')(Chi_L) }-

1

Cnt = 2 {7y (e = Sne) + (1= 1) (Cne-1)} + {9 (%t = She) + (1 =) (Che—1) }] (13)
Frim =St + mT N + Cop 41+ (m=1) mod L) (14)
Fnt+m = Snt + MTN + CNeL 41+ (m—1) mod L) (15)

1
St = I (x1 + Xo+ X3+ Xg4...... XL) (16)

1
Syt = T (x1 + Xo+ X3+ Xg4...... XL) (17)
Ci=x1—5,C=x— 5 (18)
CNy =x1 — Snt, CN2 = x2 — St (19)

ol X —x X[ 42 — X2 XL+3 — X3 XoL — XL

Tt—[(L){( 7 )+ ( T )+ ( T YA+ +(7L )} (20)

The conduct of the elderly inhabitant was characterized as regular or anomaly, depending on the
equations derived. For the forecasting, the present activity duration was correlated with the forecasted
duration. The confidence level of 95% was presumed for the prediction analysis. The acceptable limit
of the period for any routine action was defined by Equation (21) below. If the actual duration was
beyond the limit according to Equation (21), then an anomaly flag was triggered.

Period of routine action = Prediction period £ 2*standard deviation (21)

3.7. Classification and Performance Assessment

For classification issues, the methodology measures the implementation of a model as far as its
error rate—level of erroneously classified occasions in the dataset. The present system manufactures a
model since it needs to be utilized to arrange the new information. Henceforth, we are predominantly
intrigued by model accuracy on new (concealed) information. We utilized two informational
collections: the training set (seen information) to construct the model (decide its parameters), and the
test set (concealed information) to measure its execution and performance (holding the parameters
consistent). Usually, the system needs the validation set to tune the model. The validation set should
not be utilized for testing (as it’s not inconspicuous or hidden). Every one of the three informational
datasets must be illustrative examples of the information that the model will be connected to.

The accessible informational dataset from all subjects are divided into 10 approximately equal
size folds, and each fold generally has the same number of samples from every ADL of each subject.
Seven folds are utilized as training information, one fold serves for cross-validation, and two-folds are
for testing the model. Every one of the 10 folds is utilized precisely once as test information, and the
test information is inconspicuous for the classifier. The outcomes revealed in the remainder of the
paper are based on 10 test measures.

To validate the proposed algorithm, there are four possible results

For ADL.:

1. True positive (TP): The “A” activity happens and the algorithm detects it correctly the “A” activity.

N

False positive (FP): The “A” activity does not occur and the algorithm reveals the “A” activity.

®

True negative (TN): a daily event is performed and the algorithm does not detect it in the
“A” activity.
4.  False negative (FN): The “A” activity happens but the algorithm does not detect it.
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For anomaly:

1. True positive (TP): an anomaly happens and the algorithm detects it.

2. False positive (FP): an anomaly does not occur and the algorithm reveals an anomaly.

3.  True negative (TN): a daily event is performed, no anomaly occurs, and the algorithm does not
detect it.

4.  False negative (FN): an anomaly occurs but the algorithm does not detect it.

The performance of the system can be evaluated considering the following metrics based on
confusion matrix:

Sensitivity (Recall) = TP/(TP+FN) (22)
Specificity = TN/(TN+FP) (23)

Precision = TP /(TP + FP) (24)

Negative Predictive Value (NPV)=TN/(TN + FN) (25)
False Positive Rate (FPR) = FP/(FP + TN) (26)
False Discovery Rate (FDR) = FP/(FP + TP) (27)
False Negative Rate (FNR) = FN/(EN + TP) (28)
Accuracy (ACC)=(TP+TN)/(P +N) (29)

F1 Score (F1)=2TP/(2TP + FP + FN) (30)

Correlation Coefficient= TP*TN — FP*FN/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) (31)

4. Experimental Analysis, Observations, and Comparative Arguments

Based on the experiments performed in four different elderly lone-living houses over the three
hundred and one days, the ultimate inactive period and ultimate usage period of household objects
could be calculated, through the provisional implementation duration of the Wellness platform.
The trial duration is the function of an individual’s well-being to perform ADL. Once the Wellness
Time Series Model acquires the behavior of the day-to-day activities, at that point the provisional
execution stage would be upgraded to the testing stage to evaluate the Wellness indices.

Figures 8a and 8b represent Wellness level of four subject houses on a particular test day. Figure 8a

shows the ®W; went below 0.5 in subject house two; that day the elderly occupant opened the main

entry door and forgot to close it. From Figure 8b, the 0, went below in subject house three; that day
the elderly person slept more than usual because last night the elderly person had a visitor in the night,
which disturbed their sleep. These explanations give an overview of dynamic Wellness determination

and anomaly detection as a function of ®; and ®,. Hence, depending on the level of Wellness value,
the intensity of the alert can be determined. During an anomaly, the alert message would be generated.
In the course of attentive memo production, primarily the audio alarm is actuated in the household.
This kind of alert message is sent to notify that the elderly person needs to improve certain routines or
conduct in order to stay well. In case the elderly person does not turn-off the audio alarm, the alert
would be triggered by the care provider or a corresponding authority. Moreover, a care provider and
healthcare service provider have access to ADL and well-being monitoring through the website.
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Figure 8. (a) The (Basic) ®; for four different houses up to one week. (b) The (Basic) ), for sleeping
activity for four different houses up to one week.

The performance characteristics of upgraded Wellness parameters examined through the sensory
activations of 43 weeks from four households. Household-two recorded forty-four cautionary messages
(highest among all four households) via an upgraded Wellness time series model. The cautionary
messages comprise ultimate inactive use of a double-bed (7), ultimate inactive use of a dining armchair
(10), ultimate inactive use of the sofa (10), and ultimate inactive application of the E & E household
stuff or machinery (17).

The cause of several alarms was an ultimate inactive interval represented by Wellness function

parameter (Basic) ®;. The inhabitant was out of the home to visit relatives in the town and forgot to

update the Wellness System. On the other hand, for the same situations, Upgraded ®; initiated less
alert messages.

The Wellness index (Basic ®,) from dining armchair, sofa, and double-bed caused twenty-seven

alert messages. However, Wellness function (Upgraded ®,) generated significantly less cautionary
memos to double bed (3), dining armchair (5), and sofa (5). With the dynamic observation consideration
of Wellness, the machine learning model attained a decrease in the alerts. Additionally, this
advancement in Wellness time-series pushed the threshold limit to minimize the false positives
(fake alerts). False positives reduced by 53.70%.

The investigation of upgraded Wellness function and assessment of Basic Wellness parameters
have been shown in Table 3. The improvement in performance of anomaly detection is also a function
of the sensor data fusion approach. For household 1 and 3, the Basic Wellness time series model shows
an ultimate active period of taking food crossed the boundary and into inconsistency. Nevertheless,

conferring to (Upgraded ®,), the elderly had a friend for dinner. They were chatting during the meal
and took extra time for the eating activity. In household 2, the was inconsistency detected by both Basic
and upgraded Wellness time series; the elderly occupant was unhealthy and sleeping longer. Moreover,
in another activity from elderly household 2, the Basic Wellness time-series failed to recognize that the
over-usage of the toilet was caused by the guest, and Upgraded Wellness time-series discovered the
presence of a guest. Whereas for household 4 from the Table 3, it shows the irregularity and over-usage
of the toilet from both Basic and Upgraded Wellness time-series, since the sensing system did not
record any guest or visitor. The following new annotations have been used: regular (RL), Anomaly

(AL), subject house (Sub). 0, Basic* and ®, Upgraded* were evaluated exclusively when the Definite
period was more than the ultimate period.
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Table 3. Upgraded Wellness Function vs. Basic Wellness Function for recognizing ADLs.
Ultimate:  LowestActive  Up 1 Detection Detection via
Sub Sensor and Location Activity Active Interval Interval (1)1" ()2, Basic * ia Basic w1, W2, . raded
Interval (Se) ~ (Seo) Basic viaBasic  ypgraded  upgraded upgra
(Sec) Functions Functions
Force-Bed, .

Movement-Bedroom Sleeping 32,128 25,712 27,491 RL RL RL RL
Force-Dinning Armchair, Taking
Movement -Dining Area Food 5532 3829 2143 0.53 AL 0.77 RL

Force -Toilet Seat, Toilet/Latrine 1835 1321 1521 RL RL
#1 Movement-Toilet Door 0.85 0.89
Force-Sofa .
Movement-Living Room Calming 2012 1092 1238 RL RL RL RL
Contact/Force Shower/Personal
Sensor-Shower Door i 1627 1170 1532 RL RL
Movement-Bathroom ygiene
E & E Sensor-TV TV 3852 2438 2842 RL RL
Force-Bed, .

Movement-Bedroom Sleeping 30,200 22,245 33,212 0.54 AL 0.66 AL
Force-Dinning Armchair, Taking Food 4321 3213 3015 RL RL NA RL
Movement -Dining Area

Force -Toilet Seat, Toilet/Latrine 1732 1245 2223 0.52 AL 0.69 RL

#2 Movement-Toilet Door 0.77 0.83

Force-Sofa .

Movement-Living Room Calming 1823 1138 1426 RL RL

Contact/Force Sh /P 1
Sensor-Shower Door OVL“ . ‘;rs"“a 1578 1262 1492 RL RL RL RL
Movement-Bathroom ygiene

E & E Sensor-TV TV 3647 2745 2984 RL RL
Force-Bed, .

Movement-Bedroom Sleeping 28,431 20,245 27,212 RL RL
Force-Dinning Armchair, Taking Food 3981 2834 4413 0.57 AL 0.79 RL
Movement -Dining Area

Force -Toilet Seat, . .
i Movement-Toilet Door Toilet/Latrine 1838 1341 1530 0.80 RL 0.89 RL
Force-Sofa .
Movement-Living Room Calming 1749 1369 1393 RL RL RL RL
Contact/Force Shower /Personal
Sensor-Shower Door Hveien 1405 1136 1303 RL RL
Movement-Bathroom yeiene
E & E Sensor-TV vV 3729 3021 3213 RL RL
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Ultimate:  Lowest-Active Vg 1 Detection Detection vi
Sub Sensor and Location Activity Active Interval Interval (1)1.1 )2, Basic * via Basic w1, @2, . uperaded
Interval (Sec) (Sec) Basic 4 upgraded  upgraded pgra
(Sec) Functions Functions
Force-Bed, Sleeping 30,261 27,492 26,492 RL RL
Movement-Bedroom RL
Force-Dinning Armchair, Taking Food 3620 2785 3329 RL RL
Movement -Dining Area
Force Toilet Seat, Toilet/Latrine 1839 1384 2318 0.48 AL 0.65 AL
#4 Movement-Toilet Door 0.83 091
Force-Sofa .
Movement-Living Room Calming 1640 1243 1620 RL RL
Contact/Force RL RL
Sensor-Shower Door ShOWHer/ i‘;f"“al 1537 1138 1430 RL RL
Movement-Bathroom V&
E & E Sensor-TV vV 3124 2481 2647 RL RL
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Table 4 shows the values of TIN and TN; the values were measured via derived equations. TIN
and TN values lead to Wellness grades and remarks. A one thumb rule had been adopted in the
present Smart Aging system—whenever an anomaly detected a sub-activity or activity that did not
trigger an alarm, please check that event with multi-sensor data fusion to avoid a false positive. From
the observation of the above table records, it is detected that only subject house 4 was free from an
anomaly; on the other hand, the rest of the subject houses had anomaly forecasting tags. From subject
1 and 2, they had over-usage of toilet activities, but both had different causes of an anomaly. In the
case of subject 1, it was upset stomach, whereas subject 2 had a visitor at home. Additionally, due to
the visitor, subject 2 was sitting for more time in a dining armchair while eating, and that caused the
anomaly of the armchair over-usage. Subject 3 was in the unhealthy condition that caused him to sleep
a lot and eat less.

Table 4. Well-being detection and anomaly forecasting on the basis of Wellness parameters.

Forecasting for an Upcoming Week

ADL SID @, ®, Max-  Min- Actual-Duration Status
Time  Time o 8 T (Sec)
(Sec) (Sec)
Force-Bed, .
Sleeping 0.842 27,483 24003 0.200 0.120 0.421 25470 RL
Movement-Bedroom
Force-Dinning
Armchair, Movement Taking Food 0.932 4743 3216  0.140 0.058 0.490 3324 RL
-Dining Area
Force-Toilet Seat,
#l Movement-Toilet  Toilet/Latrine 083 0482 1975 1347  0.030 0.0580 0.700 2564 AL
Door
Force-Sofa,
Movement-Living Calming 0.883 1487 1256 0.030 0.300 0.500 1409 RL
Room
Contact/Force Shower,/Personal
Sensor-Shower Door > Opyor/ = €rS0 0965 1765 1437 0200 0.320 0.700 1432 RL
Hygiene
Movement-Bathroom
E & E Sensor-TV vV 0.863 3689 2864  0.059 0.200 0.300 3257 RL
Force-Bed, .
Movement-Bedroom Sleeping 0.810 27,492 21,394 0.030 0.120 0.600 26,408 RL
Force-Dinning
Armchair, Movement Taking Food 0.507 4923 3028 0.200 0.050 0.400 6322 AL
-Dining Area
#2 Force -Toilet Seat, . . 0.795
R Toilet/Latrine . 0.423 1829 1449 0.048 0.370 0.540 2302 AL
Movement-Toilet Door
Force-Sofa
Movement-Living Calming 0.785 1420 1124  0.020 0.400 0.350 1294 RL
Room
Contact/Force Shower /Personal
Sensor-Shower Door . 0.842 1530 1204  0.100 0.540 0.530 1420 RL
Hygiene
Movement-Bathroom
E & E Sensor-TV vV 0.40 4502 3954 0.100 0.070 0.400 1020 AL
Force-Bed, .
Movement-Bedroom Sleeping 0.500 31,289 25491 0.030 0.560 0.605 36,506 AL
Force-Dinning
Armchair, Movement Taking Food 0.490 4839 3429 0.300 0.460 0.170 1002 AL
-Dining Area
#3 Force -Toilet Seat, . . 0.846
. Toilet/Latrine : 0.820 1509 1145 0.350 0.330 0.700 1329 RL
Movement-Toilet Door
Force-Sofa
Movement-Living Calming 0.889 1530 1239 0.120 0.300 0.500 1430 RL
Room
Contact/Force Shower/Personal
Sensor-Shower Door . 0.943 1620 1307  0.100 0.459 0.300 1540 RL
Hygiene
Movement-Bathroom
E & E Sensor-TV vV 0.920 3309 2845  0.400 0.340 0.600 2984 RL
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Table 4. Cont.

Forecasting for an Upcoming Week

ADL SID @, W, Max-  Min- Actual-Duration Status
Time  Time o ) T (Sec)
(Sec)  (Sed)

Force-Bed,
Movement-Bedroom
Force-Dinning
Armchair, Movement Taking Food 0.922 3942 2948  0.300 0.530 0.350 3720 RL

-Dining Area

Sleeping 0.863 29,042 25302 0.150 0.300 0.400 27,404 RL

Force -Toilet Seat,

#4 Movement-Toilet Door Toilet/Latrine  0.864 0.824 2450 1750  0.250 0.300 0.740 1730 RL
Force-Sofa
Movement-Living Calming 0.842 1730 1284  0.300 0.350 0.600 1630 RL
Room
Contact/Force Shower/Personal
Sensor-Shower Door Hvei 0.945 1430 1039  0.200 0.300 0.400 1240 RL
Movement-Bathroom ygiene
E & E Sensor-TV v 0.864 3102 2503  0.400 0.300 0.600 2830 RL

The performance evaluation of the modeled novel Wellness classifier is recorded through the
confusion matrix. Table 5 gives the annotation of ADL’s. For the performance evaluation of the
implemented system, a total of fourteen activities have been chosen and tested.

Table 5. Annotation used.

S.No. Type of Activity
Bl Bedtime
B2 Entry
B3 Exit
B4 Water cattle
B5 Television
B6 Food preparation-cooking
B7 Dining table-Eating chair
B8 Microwave Oven
B9 Fridge usage (by the door)
B10 Wash basin/kitchen hygiene/dishwashing
B11 Shower
B12 Toilet usage
B13 Computer use
B14 Sofa-relax

B1 is the bedtime activity and the its parameters are as follows: Sensitivity (0.9911), Specificity
(0.9985) Precision (0.9813), Negative Predictive Value (0.9993) False Positive Rate (0.0015), False
Discovery Rate (0.0187) False Negative Rate (0.0089), Accuracy (0.9980), F1 Score (0.9862), Correlation
Coefficient (0.9851).

B2 is the entry into the home and the evaluation parameters for it are as follows: Sensitivity
(0.9789), Specificity (0.9984) Precision (0.9804), Negative Predictive Value (0.9983), False Positive Rate
(0.0016), False Discovery Rate (0.0196), False Negative Rate (0.0211), Accuracy (0.9970), F1 Score
(0.9797), Correlation Coefficient (0.9780).

B3 is the exit activity and the performance evaluation parameters for it are as follows: Sensitivity
(0.9891), Specificity (0.9991), Precision (0.9891), Negative Predictive Value (0.9991), False Positive
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Rate (0.0009), False Discovery Rate (0.0109), False Negative Rate (0.0109), Accuracy (0.9984), F1 Score
(0.9891), Correlation Coefficient (0.9882).

B4 is the usage of water cattle and the evaluation parameters for it are as follows: Sensitivity
(1.0000), Specificity (0.9992), Precision (0.9896), Negative Predictive Value (1.0000), False Positive
Rate (0.0008), False Discovery Rate (0.0104), False Negative Rate (0.0000), Accuracy (0.9992), F1 Score
(0.9948), Correlation Coefficient (0.9944).

B5 is the entertainment activity, which is measured through TV usage. The testing parameters
are given as follows: Sensitivity (1.0000), Specificity (1.0000), Precision (1.0000), Negative Predictive
Value (1.0000), False Positive Rate (0.0000), False Discovery Rate (0.0000), False Negative Rate (0.0000),
Accuracy (1.0000), F1 Score (1.0000) Correlation Coefficient (1.0000).

B6 is the food preparation activity, which is measured by the sensory activation E & E appliance
usage. The measurement parameters for it are as follows: Sensitivity (0.9652), Specificity (0.9980),
Precision (0.9748), Negative Predictive Value (0.9972), False Positive Rate (0.0020), False Discovery
Rate (0.0252), False Negative Rate (0.0348), Accuracy (0.9956), F1 Score (0.9700), Correlation Coefficient
(0.9676).

B7 is the activity of eating, and the sensory data belongs to the dining table and dining chair
usage. The parameters for it are as follows: Sensitivity (1.0000), Specificity (0.9964), Precision (0.9508),
Negative Predictive Value (1.0000), False Positive Rate (0.0036), False Discovery Rate (0.0492), False
Negative Rate (0.0000), Accuracy (0.9966), F1 Score (0.9748), Correlation Coefficient (0.9733).

B8 is the use of microwave oven, and the parameters are as follows: Sensitivity (1.0000), Specificity
(1.0000), Precision (1.0000), Negative Predictive Value (1.0000), False Positive Rate (0.0000), False
Discovery Rate (0.0000), False Negative Rate (0.0000), Accuracy (1.0000), F1 Score (1.0000), Correlation
Coefficient (1.0000).

B9 is the usage of the refrigerator, measured by the sensory data of door opening and closing.
The parameters are as follows: Sensitivity (1.0000), Specificity (1.0000), Precision (1.0000) Negative
Predictive Value (1.0000), False Positive Rate (0.0000), False Discovery Rate (0.0000), False Negative
Rate (0.0000), Accuracy (1.0000), F1 Score (1.0000), Correlation Coefficient (1.0000).

B10 is cleaning kitchen, dishes, usage of wash basin activities. The parameter are as follows:
Sensitivity (0.9746), Specificity (0.9981), Precision (0.9751), Negative Predictive Value (0.9980), False
Positive Rate (0.0019), False Discovery Rate (0.0249), False Negative Rate (0.0254), Accuracy (0.9963) F1
Score (0.9748), Correlation Coefficient (0.9728).

B11 is the usage of shower and it is recognized by the opening and closing of the shower door.
The parameters are as follows: Sensitivity (0.9791), Specificity (0.9978), Precision (0.9728) Negative
Predictive Value (0.9984), False Positive Rate (0.0022), False Discovery Rate (0.0272), False Negative
Rate (0.0209), Accuracy (0.9965), F1 Score (0.9759), Correlation Coefficient (0.9740).

B12 is the toilet usage and it is detected with the sensory data of force sensor deployed over the
toilet seat and movement sensors. The parameters for it are as follows: Sensitivity (0.9725), Specificity
(0.9983), Precision (0.9788), Negative Predictive Value (0.9978), False Positive Rate (0.0017), False
Discovery Rate (0.0212), False Negative Rate (0.0275), Accuracy (0.9965), F1 Score (0.9756), Correlation
Coefficient (0.9737).

B13 is the usage of computer desktop and the parameters are as follows: Sensitivity (1.0000),
Specificity (1.0000), Precision (1.0000), Negative Predictive Value (1.0000) False Positive Rate (0.0000),
False Discovery Rate (0.0000), False Negative Rate (0.0000), Accuracy (1.0000), F1 Score (1.0000),
Correlation Coefficient (1.0000).

B14 is the relaxing activity monitored by the occupancy over the sofa set. The parameters for it
are as follows: Sensitivity (0.9430), Specificity (1.0000), Precision (1.0000), Negative Predictive Value
(0.9957), False Positive Rate (0.0000), False Discovery Rate (0.0000), False Negative Rate (0.0570),
Accuracy (0.9960), F1 Score (0.9706), Correlation Coefficient (0.9690).

The activity recognition done with the sensory input of the E & E appliance monitoring
sensory unit has a significantly better score as compared to non-E & E sensory units, as the E&E
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sensory-unit-based activities do not require the sensor data fusion and other sub-module for the
activity recognition. On the other hand, the relaxing and eating activities have recorded the poorest
score in those 14 activities, because these two activities use the sensory input of force sensors. Force
sensors sometimes went in saturation when deployed over the Dining chair, Table, and Sofa set.

The overall scores for the selected 14 activities are as follows: Sensitivity (0.9852), Specificity
(0.9988), Precision (0.9887), Accuracy (0.9974), F1 score (0.9851), Correlation Coefficient (0.9144), False
Negative Rate (0.0130)

A web-based Intelligent Aging framework had been produced. The data was gathered and treated
through sensor data fusion calculations for the decision making. At last, data was transferred to the
web link; the data over the internet was opened to a validated client by means of enlisted email id
and secret word. The initial ADL recognition was completed by the heterogeneous sensor network;
the push button indicator data did not apply. Nonetheless, there are a couple of exercises that the
framework does not recognize effectively, for example, taking supper or pharmaceuticals on time.
For this sort of exercises, either of the frameworks utilize prominent checking routes, for example,
camera, wearable sensors, or go with a parental figure every minute of every day, which isn’t attainable
and economical [4,5]. Moreover, in the current investigation, the push button indicator information
was applied to crosscheck the ADLs produced via the information secured from diverse sensing units.
Figure 9a,b indicate previews in the Wellness framework website. This site comprises the information
of recent ADLs. In order to check the observing historical ADLs from a specific date, the subject
needs to choose a date and time. Figure 9a demonstrates the data on the non-electrical machine use.
It demonstrates resting, eating, and latrine exercises: for instance, on August 30, a tenant went to
the toilet in the morning for 00:10:43 (hours:minute:seconds). Figure 9b displays the observing of
nourishment and medication of a tenant. It shows that the inhabitant was taking a drug soon after the
food and daily three events of medication were recorded.

21:50:30t0 Bed 03:10:12
7:00:42

07:15:38t0 0X10:43
07.26:2

07:50:20t0 02:19:09
08:0929

08:23:32¢t0 01:30:49
02:54:21

111521t 03:37:41
11:5G:52

12:10:27 to 01:23:27
133354

13:55:44t0
14:04:51

15:21:31to
153342

17:11:43to
17:34:22

18:10:24t0
12:40:55

15:10:42t0

(@) (b)

Figure 9. (a) The activities during the course of the day. (b) The activities of taking medication and
food during the course of the day.
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Table 6 presented the comparative overview of the Wellness model with other most significant,
recent, and peer-reviewed research works. The performance of the existing system is either average or
very limited as compared to our offered research work. There are the following vital considerations
and methodologies with support from the optimum Wellness system performance:

1. The Wellness Model is an innovative methodology that classifies events inside definite
temporal thresholds of activity initiation. The Wellness system recommended an accumulative
overlapped-defined sized sliding window procedure, which sections the flooding sensor
sub-activities into adaptable interval distances to assist the discovery of activities in an
appropriate approach. Events are categorized as either prompt or periodical; an event based
attitude can then be implemented for recognition of discrete events. The Wellness system was
cross verified and examined by the subject’s inputs.

2. Current research work accumulates sensing data, modeled ADLs, mines appropriate
arithmetical features, and employs supervised machine learning to forecast well-being scores for
healthcare applications.

3. We offered dynamic frequent feature extraction and a forecast model based on Wellness indices
time series modeling. Preliminary trials presented that one-day timespan was best for data
mining, however, we constructed the framework to function on any dramatic time. Test outcomes
have confirmed the usability of the research methodology to appropriately distinguish various
household object, appliance usage, and offer long or short term trends accordingly.

Table 6. Comparative overview of present work with existing ADLs monitoring and forecasting system.

TITLE CATEGORY OF TYPE OF RELIABILITY AND
AAL DATA SET OF ACTIVITIES MACHINE PERFORMANCE
APPLICATION COLLECTION LEARNING PARAMETERS, MERITS
ALGORITHM OF ANNOTATION,
PROJECT ACTIVITY DETECTION,
AND FORECASTING
COBRA BEHAVIORAL USES CASAS SLEEPING, MEAL SLIDING RECOGNITION
(CUMULATIVELY | RECOGNITION | DATASET. MORE PREPARATION, WINDOW ACCURACY (0.821) AND
OVERLAPPING THAN 6500 RELAX, TECHNIQUE RECALL (0.89)
WINDOWING ACTIVITIES HOUSEKEEPING,
APPROACH FOR RECOGNIZED EATING, LEAVE
AMBIENT FROM IT. HOME, ENTER
RECOGNITION HOME, WORK
OF ACTIVITIES)
[37]
AUTOMATED ACTIVITY OPEN SOURCE WALKING, SVM, NB, AND ACTIVITY DETECTION
FEATURE DETECTION DATASETS OF STANDING, KNN PRECISION (0.83)
ENGINEERING DIFFERENT SITTING, RECALL (0.80)
[38] RESEARCH VACUUMING,
GROUPS WITH SWEEPING
THE
APPLICATION OF
WEARABLE
SENSORS
MINING HUMAN ACTIVITY 400 MILLION WATCHING TV, BAYESIAN PREDICTION
ACTIVITY DETECTION AND SENSORS COOKING, USING NETWORKS ACCURACY (0.80)
PATTERNS FROM | FORECASTING ACTIVATIONS COMPUTER,
SMART HOME PREPARING FOOD
BIG DATA [39] AND CLEANING
DISHES OR
CLOTHES
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LAPLACE [40] ACTIVITY OPEN SOURCE WAKE UP, SHOWER, FREQUENT DID NOT mention THE
DETECTION AND DATASETS OF EAT, GOING OUT, SEQUENTIAL PARAMETER VALUE,
FORECASTING DIFFERENT RELAX, COOK PATTERN THE PERFORMANCE
RESEARCH MINING WAS AVERAGE
GROUPS
AGACY ACTIVITY SENSING SYSTEM | PREPARING FOOD, ONTOLOGICAL ACTIVITY DETECTION
MONITORING DETECTION DEVELOPED EAT, REST, MODELING, PRECISION (0.91) F1
[41] DISHWASHING, SEMANTIC SCORE (0.87) AND
WAKEUP REASONING, RECALL (0.83)
AND DEMPSTER
SHAFER THEORY
CONTEXTUALIZED BEHAVIORAL CASAS DATASETS MEAL CONTEXTUALIZED DID NOT claim
BEHAVIOR RECOGNITION OF 193 DAYS PREPARATION, PREFIX-TREE ANNOTATION AND
PATTERNS [42] AND USED SLEEPING, WASH ADL RECOGNITION
FORECASTING DISHES, WORK, MERIT VALUES. THE
ENTER HOME, FORECASTING
LEAVE HOME, PRECISION VALUES
TOILET, (0.392) AND RECALL
HOUSEKEEPING, VALUE (0.41)
RELAX, EATING
AGING IN PLACE BEHAVIORAL DATA WAS PERSONAL SVM, HMM AND THE ADL DETECTION
BY CHRITIAN RECOGNITION COLLECTED HYGIENE, SLEEP FISHER KERNEL CLASS AVERAGE
DEBES [43] FROM TWO WORK, MEAL LEARNING (FKL) ACCURACY FOR FKL
HOUSEHOLDS PREPARATION, (0.71), HMM (0.69) AND
WITH MORE WATCH TV, SLEEP, SVM (0.68)
THAN 1000 SHOWERING
ACTIVITY
INSTANCES
ONLINE DAILY BEHAVIORAL OBTRUSIVE AND MOVEMENT, ONLINE ANOMALY PRECISION
HABIT AND ANOMALY UNOBTRUSIVE OPEN-CLOSE ACTIVITY (0.78), FALSE ALARM
MODELING AND DETECTION SENSING SYSTEM STATES OF RECOGNITION RATE (0.21) AND MISS
ANOMALY DOOR/WINDOW, (OAR) DETECTION RATE (0.11)
DETECTION FLUSH TOILET, USE
(ODHMAD) OF ELECTRICAL
MODEL [44] DEVICES, TAKE
SHOWER, WASH
HAND, FALLS,
EATING
WELLNESS Behavioral UN-OBTRUSIVE SLEEPING Novel Wellness Sensitivity (0.9852),
INDEX MODEL PATTERN HETEROGENEOUS TAKING FOOD Indices Modelling Specificity (0.9988),
GENERATION WIRELESS TOILET/LATRINE and Detection Precision (0.9887),
AND ANOMALY SENSORS CALMING ALGORITHM Accuracy (0.9974), F1 score
DETECTION NETWORK SHOWER/PERSONAL (0.9851), Correlation
HYGIENE Coefficient (0.9144), False
USE OF Negative Rate (0.0130)
APPLIANCES

5. Conclusions and Future Work

The well-being recognition performed by producing the ADLs was based on the movement
inside the home and heterogeneous object usage. The smart Aging system applied the sensor data
fusion approach to improve the anomaly detection over the large heterogeneous sensory data. These
ADL recognition and well-being pattern generations distinguished any peculiarity change in the
routine. Through Advanced believe model the mysterious and flawed behavior of sensing data
was recognized, the model addressed the underfitting and overfitting. Wellness sensor data fusion
model used sensor data from multiple contexts, and processed it on the basis of priority and event.
The present Novel Wellness Indices Modeling and Detection Methodology processed the behavioral
pattern from multiple sensor modalities with the least fake detection rate. Anomaly detection and
forecasting methodology considered the cyclic variations and random day occasions. The Wellness
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Model processes data sampled at diverse rates and multi-modality sensory data with minimal and
ordinal standards structured in hierarchies, not like numerous machine learning procedures that deal
only with numeric entities.

Concerning pattern inconsistency, the assessment revealed that the Wellness model finds sensible,
manifold, and distinct-length temporal values for every event. The benefit of Wellness based AAL is
that it picks up the period from the timestamp in a solo scan uninterruptedly from the data stream
of annotations without the requirement to reinstruct at what time fresh annotations developed. This
distinctive merit permits it to include context-aware deviations for every trend as they are cultured
and to adjust to variations over interval without reorientation. Wellness smart aging system presented
that without including contextual features, the trends fail to reveal the ADL fluctuations. In such
cases, irregularities can be discovered that don’t relate to genuine deviations of the ordinary everyday
practice. Wellness model defines contextual feature statistics during the analysis and learning stages,
discovering deviations in routine and routine flexibility for every contextual feature. Context-aware
trends and sequences could intimate dissimilarities in ADLs and enhance learning.

The framework was executed in four distinct households; two of them were exceptionally
timeworn households. The framework had been outlined in a way that the elderly person was
free from serious maintenance except for the power supply and physical damage. The smart aging
system offered the average anomaly detection rate for 300 days and four elderly houses at 98.17%.
The performance of evolution parameters for the selected 14 activities were as follows: Sensitivity
(0.9852), Specificity (0.9988), Precision (0.9887), Accuracy (0.9974), F1 score (0.9851), Correlation
Coefficient (0.9144), False Negative Rate (0.0130). Accuracy does not give an overall picture of the
F1 score.

One of the major reasons behind the degradation in the F1 measure is noise and interference
error. There is a need to filter data noises prior to the lifestyle modeling process. Two types of data
noises should be filtered. First, anomaly behavioral patterns that are generated by the visitor. Second,
anomaly sensor activations (data outlier) that are generated by the faulty sensor. To filter the former,
CFM (Collaborative Filtering Model) with spatial states Gaussian Distribution (GD) would be a good
methodology to discover routine behavioral patterns generated by the single resident, apart from
visitors and pets. The assessment of the execution of frameworks on these smart aging datasets and
the variety in their execution obviously underlines the significance of having the highest quality level
which truly accomplishes the best quality, i.e., which are free of mistakes. This is by inferring hidden
latent states that represent the resident’s identity and habit. To filter the latter, the Advanced Belief
Model is employed to filter data outliers from a faulty sensor, but it is not sufficient. We henceforth see
this work as a first venturing stone in a bigger plan relating to enhancing the appraisal of the execution
of a Smart Aging system.

Processed data was uploaded to the website with the help of the internet, and decision making
information was produced. The uploaded data and decision-making information are accessible through
the authentic login ID and password by the caregiver, healthcare professional, police, or any other
official. In a few fields, those specifically related with the components of wellness (including wellbeing,
movement, and emotion), some future examinations among experts (e.g., health specialists, medical
attendants, analysts, and so on.) will profit from further enhancements of this model. Concerning
current innovation and our past tasks, there is solid proof that the bits of knowledge and arrangements
introduced are conceivable. The measurements exhibited have observable commitments to the
prosperity of everybody, and we unequivocally trust those future activities established on this model
will permit enhancement of the personal satisfaction of the elderly. A few perspectives were discussed
with doctors, which presented to us a few viewpoints to represent in future executions. Besides, the
elements of wellbeing and human-information technology communication strategies proposed are
expected for the execution of “progressively characteristic” interfaces, which can adequately improve
the well-being of the older adults.
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For future work, we are intending to upgrade the Wellness indices model and present distributed
learning in large data processing from different houses in near real time. This will help well-being
applications to speedily take activities, for example, sending an alarm to patients or care suppliers.
Besides, we are intending to construct a wellbeing cosmology model to naturally outline machines for
potential ADL. This implies that we can proficiently prepare the framework and precisely distinguish
human ADL.

Summary Points:

(1) Whatis Already Known

e  Wearable and Camera Based ADL monitoring for the individual living alone in the indoor
urban environment.

e  Subject’s input-based data annotation.

e  Little research exists regarding the development of heterogeneous Wireless Sensor Networks
and sensor data fusion in near real-time on behavioral pattern generation, workflow, and
the parameters that lead to the improve the life span.

e Most of the research is limited to the laboratory, and it becomes unfeasible for the
uncontrolled home environment.

(2) What This Study Adds to Our Knowledge

e Addition of Cutting-edge Wireless Sensing and Information Technology for the Wellness
evaluation of an occupant living in an assisted environment.

e  Precise Wellness measurement from streaming data with the novel offering of the Wellness
Indices Model.

e  The incorporated structure of the Wellness Protocol offers the functionality of recording the
occupant’s movement in real time, and the usage of different household objects.

e  Recognition of ADLs for behavioral pattern generation, behavioral forecasting, and anomaly
detection with the least possible fake alert.
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