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Abstract: Tracking problems, including unknown number of targets, target trajectories behaviour
and uncertain motion of targets in the surveillance region, are challenging issues. It is also difficult to
estimate cross-over targets in heavy clutter density environment. In addition, tracking algorithms
including smoothers which use measurements from upcoming scans to estimate the targets are
often unsuccessful in tracking due to low detection probabilities. For efficient and better tracking
performance, the smoother must rely on backward tracking to fetch measurement from future scans
to estimate forward track in the current time. This novel idea is utilized in the joint integrated track
splitting (JITS) filter to develop a new fixed-interval smoothing JITS (FIsJITS) algorithm for tracking
multiple cross-over targets. The FIsJITS initializes tracks employing JITS in two-way directions:
Forward-time moving JITS (fJITS) and backward-time moving JITS (bJITS). The fJITS acquires the
bJITS predictions when they arrive from future scans to the current scan for smoothing. As a result,
the smoothing multi-target data association probabilities are obtained for computing the fJITS and
smoothing output estimates. This significantly improves estimation accuracy for multiple cross-over
targets in heavy clutter. To verify this, numerical assessments of the FIsJITS are tested and compared
with existing algorithms using simulations.
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1. Introduction

In noisy surveillance situation, multiple cross-over targets tracking (MTT) is a difficult task facing
various complexities [1]. Sensors such as radar returns measurements to the tracking system which
may be spurious (clutter) due to the presence of various object’s sources for example, target thermal
noise, clouds and reflections from terrain and so forth. Such clutter measurements result in inaccurate
estimates [1]. Moreover, the target tracker cannot determine the target motions without any prior
information. In addition, it results in the uncertain target motion with a low detection probability Pd.
Thus, MTT is a challenging issue due to the lack of true and fast track management. Therefore, an
effective track management technique is required for practical applications such as military, threat
assessment and awareness systems [2].

The MTT algorithms use an automatic track initialization procedure which results in both false
(clutter) and true tracks (target). For an automatic track maintenance, MTT employed false track
discrimination (FTD) [2] technique which uses track quality measure to identify and confirm, true and
false tracks. There are two ways for MTT and estimation: (1) non-smoothing and (2) smoothing.
The non-smoothing algorithms estimate the target state in a current scan only with current scan
measurement based on a number of methods such as Monte-Carlo data association [3], joint probabilistic
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data association (JPDA) [4–8], probability hypothesis density [9], multi-hypothesis tracking [10,11],
joint integrated PDA (JIPDA) [12,13] and joint integrated track splitting (JITS) [14,15]. However,
only JIPDA and JITS provide track quality measurement for the FTD using probability of target
existence. The ITS [16] splits a track into multiple probability density function (pdf) components
(accompanied with mean and covariance of measurement) and employs the component measurement
histories for association to the track. Hence, ITS is computationally more accurate for estimation than
IPDA [17,18]. The term “joint” used in JIPDA/JITS indicates that measurements are shared between
tracks or similar measurements are assigned to tracks which form the cluster measurements. The joint
measurement has no sign of target detection, however if this measurement is a target detection, it may
changes the possibility of the measurement outcome from other objects (target/clutter). Thus, MTT
or joint data association algorithm generates growing number of possible hypotheses (which termed
as possible joint event (PJE)) which must be allocated to possible tracks jointly or globally. PJE is
an event which enumerates joint measurement-to-track assignments and evaluates their a-posteriori
probabilities. In principle, the number of PJEs grows combinatorically with the number of tracks and
the number of target measurements. Therefore, MTT utilizes the clustering control approach described
in References [2,3] which groups the possible tracks in a cluster to limit the computational complexities.
Unlike to single target tracker, the joint multi-target data association probabilities are obtained by
using a-posteriori probabilities of the measurements and target detection probabilities.

Smoothing utilizes the measurement from future scans to obtain the estimate in current scan
which results in the reduction of estimation errors [2] and [19]. The smoothing algorithms include
fixed-lag smoothing based on JPDA [20], Gaussian sum smoothing [21], fixed-interval smoothing
JIPDA (JIPDAS) [22] and smoothing JITS (sJITS) [23] where only JIPDAS and sJITS provide FTD with
smoothing probability of target existence. In (22), a fixed-lag smoothing data association based on
IPDA [24] algorithm is extended in MTT environment using JIPDA. Another version of ITS family
is known as fixed-interval ITS smoothing (ITS-S) [25,26] but it is developed only for single target
tracking (STT).

sJITS [23] utilize the validation measurements and their joint data association probabilities
obtained from forward JITS tracking (fJITS) for backward JITS (bJITS) track estimation. Thus in sJITS,
each backward track corresponds to each forward track for fusion. However, this paper proposes the
feedback-loop tracking to develop a new smoothing algorithm called the fixed-interval smoothing JITS
(FIsJITS). For brief description of the proposed algorithm, the fixed-interval smoothing is illustrated for
one interval only as shown in Figure 1. This novel feedback-loop technique fetches the measurements
from future scans using bJITS multi-tracks estimations to compute FIsJITS and fJITS estimates in
the past Kth scan. The fixed-interval has a length of n and has N − k + 1 scans. The bJITS block
depicted in Figure 1 utilizes JITS in backward-time direction where measurements Yb are applied
for backward track initialization. The bJITS iterates in a smoothing interval starting from scan N
ending to the Bth scan for backward multi-track component recursive estimations using Yb in each
scan. When the bJITS tracks arrived in the Kth scan (Bth = Kth), fJITS propagation block in Figure 1
initialize forward tracks using measurements Yk to obtain forward components and propagate them
for fusion. In the fusion block, each of the fJITS component prediction creates a validation gate
assuming bJITS multi-track predictions as measurements in the forward-path. The junction block
connected to the fusion block indicates the backward measurement selection [24] in the forward-path
track which subtracts the backward and forward predictions and validates bJITS components for
fusion. This fusion generates multiple validated smoothing component predictions associated to
validated bJITS components and thus, a predicted FIsJITS track component is formed for smoothing in
the N\Kth scan. Scan index N\Kth indicates that the smoothing component prediction is calculated
based on backward measurements and that is not conditioned on Yk. The smoothing component
predictions N\Kth are applied to FIsJITS block to obtain smoothing component estimates in the Kth
scan conditioning on YN as indicated by Kth|N in Figure 1. The clusters and PJEs are formed in
FIsJITS track to evaluate smoothing target existence, joint data association and component existence
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probabilities. This approximates the FIsJITS track by one Gaussian pdf smoothing mean and covariance.
The FIsJITS state estimate mean must be validated through target state in the Kth scan using the true
track test criterion [17] to obtain a FIsJITS confirmed true track (CTT) output. For computational
efficiency, a feedback-loop is created where the smoothing joint data association probabilities Kth|N
are utilized in fJITS for forward-time multi-tracks estimation in the Kth scan. Consequently, each
existing forward track component estimate is propagated to the next scan in fJITS propagation block
and concatenated to the newly initialized forward tracks required for fusion in scan Kth + 1 as depicted
in Figure 1. This efficiently makes the forward track robust for target tracking. Similarly, when the
FIsJITS track arrived at half of an interval n/2 scan, the next interval needs to overlap in the current
interval to develop the subsequent overlapped measurement-intervals for smoothing. Therefore,
both fJITS and FIsJITS run from scan Kth to scan index at n/2 in each subsequent interval except the
last interval, where they run for all scans. The numerical assessment is verified with simulations to
reinforce the FIsJITS algorithm.
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2. Target Model

It is assumed that a target tracking sensor could provide a measurement from each target per
each scan. Nevertheless, it could lose the target or track a wrong target (or clutter) under heavy
clutter environment, since the tracker does not know any priory information on the measurements.
Therefore, the originated measurement may relate to a target or clutter. Denote the target label as well
as track label by ψ. Without loss of generality, suppose that tracker measure velocity and position
in the 2-dimensional (2D) surveillance region with an infinite resolution sensor. The 4D state vector
(composed of 2D position and velocity vectors) of the target xψ

k can be estimated from the predicted
state vector. The state prediction is obtained by propagating xψ

k from scan k− 1 to scan k in Equation (1).

xψ
k = Fk−1xψ

k−1 + vk−1 (1)

where the kinematic model Fk−1 in (2) is employed for propagation and vk−1 is kinematic model
uncertainty with a zero-mean and a covariance Qk−1 of the white Gaussian in Equation (3).

Fk−1 =

[
I2×2 TI2×2

O2×2 I2×2

]
(2)

and

Qk−1 = υ

[
T4 I2×2/3 T3 I2×2/2
T3 I2×2/2 T2 I2×2

]
(3)

where υ represents a variance constant due to target motion uncertainty [24] and T represents the time
scan. Track has a hybrid state composed of target state and target existence event χψ

k . The ψth target
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position measurement zψ
k in the Kth scan is expressed in Equation (4). In tracking gate, if target exist

and detected with detection probability Pd, label the existing track by ψth in each scan.

zψ
k = Hkxψ

k + wk (4)

where Hk collects at-most one position measurement from the ψth target for data association in each
scan and wk is the white Gaussian target measurement noise with a zero-mean and a known covariance
matrix Rk received in the Kth scan.

3. Smoothing Multi-Target Using Joint Integrated Track Splitting (FIsJITS)

The FIsJITS algorithm is the extension of ITS-S [25] in MTT environment which employs JITS with
the smoothing data association for tracking multiple cross-over targets in heavy clutter.

3.1. Backward Joint Integrated Track Splitting (bJITS)

FIsJITS utilizes JITS in the reverse direction of an interval from the Nth scan to the Bth scan to
develop multi-track bJITS estimation. The bJITS tracks are formed and updated in each scan of an
interval Yb = [Yb, Yb+1, . . . , YN−1, YN]. The two-point track initialization [17] procedure is applied
which uses each pair of measurement taken from two consecutive scans to initialize a new backward
track. For example; a pair of measurement from YN and YN−1 initializes a track which provides the
updated track component pdf p

{
χ

ψ
b+1, Xψ

b+1

∣∣∣Yb+1

}
based on Yb+1. Each new track has an initialized

component existence probability ζ
ψ
b+1 = 1 and an initial target existence probability. The component

pdf propagates using Equation (5).[
Xψ

b+1, Pψ
b+1

]
= KFPre

(
X̂ψ

b+1, P̂ψ
b+1, Fb+1, Qb+1

)
(5)

where KFPre denotes the Kalman filter prediction [24], hat accent (ˆ) indicates state estimate and bar
accent (−) indicates state prediction. Fb+1 = F−1

k−1 and Qb+1 = F−1
k−1Qk−1F−T

k−1 (where superscript −T
denotes inverse transpose) are used for state propagation.

The bJITS multi-track component prediction in Equation (5) is applied to the measurement
selection criterion [17] expressed in Equation (6) in order to select the validation component
measurement yb,i from Yb in the Bth scan. This generates a validation gate around a component
prediction and some possible clutter measurements which satisfy Equation (6).

σT
b,iS
−1σb,i ≤ η (6)

where η is the gating limit determined from the gating probability [17] (expressed by Pg = 1 − e−0.5η)
and σb,i and S express the innovation and covariance of the measurement Yb,i in Equations (7) and
(8) respectively.

σb,i = Yb,i −HkXψ
b+1 (7)

and
S = HkPψ

b+1HT
k + Rk (8)

The component prediction calculates component likelihood measurement lψ
b,i of yb,i in Equation (9).

lψ
b,i = N

(
yb,i; HkXψ

b+1, S
)

/Pg (9)

To avoid computational complexity, separate the tracks in the form of clusters. The clusters are
formed: (1) when the track shares measurement yb,i with neighboured tracks and (2) when cluster
track does not share its measurement yb,i with any other neighboured tracks. Each cluster processes
independently and simultaneously. Figure 2 shows formation of two clusters in the Bth scan where
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ellipsoids are indicating validation gates for respective cluster tracks. In cluster one; there are three
tracks from T1 to T3 selecting four validation measurements from M1 to M4 respectively. In this
joint measurement situation, measurement M2 is assigned and shared to both tracks T1 and T2,
in addition, measurement M3 is shared to both tracks T2 and T3. However, the measurements M1 and
M4 assigned to tracks T1 and T3 respectively are possibly resulted from clutter. Track T5 does not
share its measurement M5 with any other neighboured track forms a separate cluster. The allocation of
such validated measurements to tracks is enumerated using Equation (10) for the evaluation of their
a-posteriori probabilities using Equation (11) in (10). Each measurement allocation expresses a possible
joint event (PJE) represented by p(εi|Yb) in Equation (10). A PJE is described in Reference [14] as one
possible mapping of all validation measurements to all tracks in a cluster such that it assigns at-most
one validated measurement to each cluster track. The set of PJEs is exclusive and exhaustive; therefore,
only one PJE is correct.

p(εi|Yb) = G−1 ∏
ψ∈ti

o(εi)

(1− µ)× ∏
ψ∈ti

1(εi)

(
µ

lψ
b

ρb,i

)
(10)

which allocates set of tracks with ti
0 and ti

1 for assigning measurements for i = 0 and i > 0, respectively
and calculates their a-posteriori probabilities using Equation (11) in (10). ρb,i in Equation (10) denotes
the clutter measurement density in the Bth scan.

µ = PdPgαδ
ψ
b+1 (11)

where α denotes the target state transition probability which updates the predicted bJITS target
existence probability δ

ψ
b+1. The bJITS track likelihood measurement lψ

b in Equation (10) is the Gaussian
summed-up of component likelihood measurements expressed in Equation (12).

lψ
b = p

(
yb,i

∣∣∣Yb+1

)
= ∑

i
ζ

ψ
b+1lψ

b,i (12)

and G in Equation (10) is normalization constant which must ensures that

∑
εi

P{εi|Yb} = 1 (13)
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Figure 2. Formation of clusters.

The PJE calculates the a-posteriori probability of the no validated measurement yb,i originating
from target is expressed in Equation (14). This indicates that Equation (14) is a-posteriori probability of
the clutter measurement assigned to a cluster track.

P
{
χ

ψ
b,0

∣∣∣Yb

}
= ∑

ε∈(ψ,i=0)
P{εi|Yb} (14)

Equation (14) is used to compute the bJITS ψth target non-existence probability in Equation (15).
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P
{
χ

ψ
b ,χψ

b,0

∣∣∣Yb

}
=

(
1− PdPg

)
αδ

ψ
b+1

1− µ
P
{
χ

ψ
b,0

∣∣∣Yb

}
(15)

Simultaneously, the PJE calculates the a-posteriori probability of the validated measurement
yb,i originating from target using Equation (10) in Equation (16). This indicates that the shared
measurements M2 (shared to T1 and T2) and M3 (shared to T2 and T3) depicted in Figure 2, have the
a-posteriori probability equal to Equation (16). Table 1 describes the measurements allocation to tracks
and their a-posteriori probabilities.

P
{
χ

ψ
b ,χψ

b,i

∣∣∣Yb

}
= ∑

ε∈(ψ,i>0)
P{εi|Yb} (16)

Table 1. Measurement-to-track assignments and their a-posteriori probabilities in cluster one [2].

PJE (i = 1, 2, . . . ) T1 T2 T3 A-Posteriori Probability

p(ε1|Yb) 0 0 0 Equation (14)
p(ε2|Yb) M1 0 0 Equations (14) and (16)
p(ε3|Yb) M2 0 0 Equations (14) and (16)

...
...

...
...

...
p(ε21|Yb) M2 M3 M4 Equation (16)

Table 1 lists 21 PJEs as described in Reference [2]. In first PJE, there is no measurement assigned
to tracks and thus all measurements are declared as clutter. Therefore, a-posteriori probabilities of
null (zero) measurements (i.e., the measurement not originated from target) in the event p(ε1|Yb) are
calculated using (14). In p(ε2|Yb), measurement M1 and in p(ε2|Yb), measurement M2 is assigned to
track T1, whereas a null measurement is assigned to tracks T2 and T3. Thus, Equation (16) is used to
calculate the a-posteriori probability of M1 and M2, enumerated in p(ε1|Yb) and p(ε2|Yb), respectively.
While, Equation (14) calculates the a-posteriori probability of no measurement selected from targets
allocated to T2 and T3 in p(ε2|Yb) and p(ε2|Yb), respectively. PJE p(ε21|Yb) assigns the measurements
M2, M3 and M4 to track T1, T2 and T3, respectively and M1 is declared as clutter measurement. Thus,
the sum of a-posteriori probabilities of all measurements (i ≥ 0) is the bJITS estimated probability of
the ψth target existence in Bth scan expressed in Equation (17).

δ̂
ψ
b = ∑

ε∈(ψ,i≥0)
P
{
χ

ψ
b ,χψ

b,i

∣∣∣Yb+1

}
(17)

Consequently, the bJITS multi-target component data association probabilities of PJEs associated
to the track is computed using Equation (17) in Equation (18).

β
ψ
b =

P
{
χ

ψ
b ,χψ

b,i

∣∣∣Yb+1

}
δ̂

ψ
b

(18)

which creates a new track component with a PJE measurement i ≥ 0 and calculates its’ probability of
component existence in Equation (19).

ζ
ψ
b = β

ψ
b ζ

ψ
b+1

 1; i = 0
lψ
b,i

lψ
b

; i > 0
(19)

The predicted backward track component obtained from Equation (5) is estimated using Kalman
filter (KF) in Equation (20) based on the Bth scan validated measurement yb,i.
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[
X̂ψ

b , P̂ψ
b

]
= KFEst

(
yb,i, Rk, Xψ

b+1, Pψ
b+1

)
(20)

where subscript on KF indicates estimation. In the next Bth scan, the backward state prediction (state
retrodiction) would be the result of Equation (20) which could be retrieved from scan b + 1 using
Equation (5). Similarly, the procedure iterates from Equation (5) to Equation (20) for recursive bJITS
multi-track estimation in each scan.

3.2. Forward Joint Integrated Track Splitting (fJITS)

In scan Bth ≥ Kth, the two-point track formation [17] is again used such that each pair
of measurement in Yk initializes a new forward track which computes the component state pdf
p
{
χ

ψ
k−1, Xψ

k−1

∣∣∣Yk−1

}
conditioned on Yk−1. The fJITS track component pdf is propagated using KFPre

to obtain the fJITS component prediction conditioned on Yk−1 in Equation (21). Each track has an
initial fJITS target existence probability δ

ψ
k−1 and has an initial fJITS component existence probability

ζ
ψ
k−1 = 1. [

Xψ
k−1, Pψ

k−1

]
= KFPre

(
X̂ψ

k−1, P̂ψ
k−1, Fk−1, Qk−1

)
(21)

FIsJITS utilizes the assumption of ITS-S without using unnecessary data association in the fusion.
Exploiting bJITS multi-track component predictions as a set of measurements in a forward track
validates the bJITS component for fusion using the validation gate selection criterion expressed in
Equation (22). Further assume that each backward track and backward component is a mutually
exclusive measurement.(

Xψ
b+1 −Xψ

k−1

)T(
Pψ

b+1 + Pψ
k−1

)−1(
Xψ

b+1 −Xψ
k−1

)
≤ η (22)

fJITS track forms a validation gate using Equation (22) and selects bJITS validation component
prediction for fusion to obtain the predicted smoothing component Xψ

N\k,j using an information fusion
(IF) filter [25] in Equation (23a). However, if the backward track (labelled by jth) is not validated, the
smoothing component prediction becomes a forward component as expressed in Equation (23b).
Figure 3 illustrates this fusion where “circle” indicates a forward component, “cross” indicates
backward component and “cross-in-circle” indicates smoothing component prediction.[

Xψ

N\k,j, Pψ

N\k,j

]
= IF

(
Xψ

b+1, Xψ
k−1, Pψ

b+1, Pψ
k−1

)
(23a)

[
Xψ

N\k,j, Pψ

N\k,j

]
=
[
Xψ

k−1, Pψ
k−1

]
(23b)
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Each fJITS track computes the hybrid component measurement likelihood associated to jth
validated bJITS track component in Equation (24). Otherwise, lψ

k,(b,j) = 0.
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lψ

k,(b,j) =
1
Pg
N
(

Xψ
b+1, Xψ

k−1, Pψ
b+1 + Pψ

k−1

)
(24)

which is required to calculate the predicted smoothing component existence probability in Equation
(25a) for the jth validated track. However, if the jth track is not validated, then the predicted smoothing
component existence probability becomes Equation (25b).

ζ
ψ

N\k =
∂ζ

ψ
k−1ζ

ψ
b+1

λN\k

 lψ

k,(b,j)

db,j

 (25a)

ζ
ψ

N\k =
(1− ∂)ζ

ψ
k−1

λN\k
(25b)

where a new factor ∂ = Pg − Pg(1 − Pd)N−k + 1 defines that the ψth target existence is detected in
an interval, db,j = fb/A (where fb indicates the number of backward false-tracks and A denotes the
surveillance area) represents the density of the initialized bJITS multi-tracks, λN\k is the modified
hybrid track likelihood ratio expressed in Equation (26).

λN\k = 1− ∂ + ∂∑
j

lψ

k,(b,j)

db,j
δ̂

ψ
b (26)

where δ̂
ψ
b and ∂ are used to update predicted FIsJITS track since the possible ψth target state is already

estimated in Equation (20) at the Bth scan. This modification in the hybrid track likelihood ratio (which
is not addressed in ITS-S) makes an effective way to calculate the predicted smoothing component
existence probability in Equation (25) and the predicted smoothing target existence probability in
Equation (27) at the N\Kth scan.

δ
ψ

N\k =
λN\kαδ

ψ
k−1

1−
(

1− λN\k

)
αδ

ψ
k−1

(27)

3.3. Fixed-Interval Smoothing JITS (FIsJITS) and fJITS Estimations

FIsJITS computes both the smoothing estimates and forward estimates. Both computations
require the smoothing validation measurements ỹk,i ∈ Yk,i selected by using the predicted smoothing
component obtained from Equation (23) in Equation (28).(

Yk,i −HkXψ

N\k,j

)T
S−1

(
Yk,i −HkXψ

N\k,j

)
≤ η (28)

where S = HkPψ

N\k,jH
T
k + Rk. The smoothing component prediction is used to compute the smoothing

component measurement likelihood and smoothing track likelihood measurement based on ỹk,i in
Equation (29) and Equation (30) respectively.

lψ

N\k,i = N
(

ỹk,i; HkXψ

N\k,j, S−1
)

/Pg (29)

and
lψ

N\k = p
(

ỹk,i

∣∣∣YN\k

)
= ∑

i
ζ

ψ

N\klψ

N\k,i (30)

Like bJITS, FIsJITS separates the tracks in the form of clusters and maps all possible validated
smoothing measurement-to-track assignments for multi-target data association evaluation in the cluster.
The smoothing PJE conditioned on YN, p(εi|YN) assigns the measurement ỹk,i ∈ zψ

k and ỹk,i /∈ zψ
k
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to FIsJITS track using Equation (30) replacing lψ
b and µ = PdPgδ

ψ

N\k in Equation (10) to calculate the
a-posteriori probability of the measurement in the event εi. Similarly, all cluster PJEs are enumerated
for ti

0 (i = 0) and ti
1 (i > 0) respectively, in Equation (10) to calculate the ψth smoothing target existence

probability and multi-target data association probability in Equations (31) and (32) respectively.

δ̂
ψ

k|N = ∑
i≥0

P
{
χ

ψ
k ,χψ

k,i

∣∣∣YN

}
(31)

and

β
ψ

k|N =
P
{
χ

ψ
k ,χψ

k,i

∣∣∣YN

}
δ̂

ψ

k|N
(32)

where subscript N on YN indicates that a target existence event is now conditioned on YN. Equation (32)
implies that the data (measurement) association probability is proportional to the a-posteriori
probability of the measurement ỹk,i which is an important metric for calculating the smoothing
and forward estimates in the Kth scan. Note that smoothing components do not propagates, therefore
Equation (10) does not uses α in µ for calculating a-posteriori probability of the measurement ỹk,i.

Each smoothing component and a PJE measurement form a new smoothing component with
smoothing component existence probability calculated using Equation (32) in Equation (33).

ζ
ψ

k|N = β
ψ

k|Nζ
ψ

N\k


1; i = 0
lψ
N\k,i

lψ
N\k

; i > 0
(33)

FIsJITS computes the smoothing track component state estimate based on validated smoothing
measurements ỹk,i using KF estimator in Equation (34).[

X̂ψ

k|N,j, P̂ψ

k|N,j

]
= KFEst

(
ỹk,i, Rk, Xψ

N\k,j, Pψ

N\k,j

)
(34)

Equation (33) approximate the smoothing track components by one Gaussian pdf smoothing
mean and covariance in Equations (35) and (36) respectively.

X̂ψ

k|N = ∑
k|N

ζ
ψ

k|NX̂ψ

k|N,j (35)

P̂ψ

k|N = ∑
k|N

ζ
ψ

k|N

(
P̂ψ

k|N,j + X̂ψ

k|N,jX̂
ψ

k|N,j
T
)
− X̂ψ

k|NX̂ψ

k|N
T (36)

Unlike the existing algorithms (e.g., JIPDAS and sJITS), PJE’s assignments are not necessary in the
forward path and the clusters formed by FIsJITS track are used for assigning smoothing measurements
to the fJITS track. In other words, the smoothing measurements (ỹk,i ∈ zψ

k and/or ỹk,i /∈ zψ
k ) selected

from Equation (28) are used to estimate fJITS components. Therefore, the likelihood of fJITS track
component prediction conditioned on Yk−1 is calculated by using ỹk,i in Equation (37).

lψ
k,i = N

(
ỹk,i; HkXψ

k−1, HkPψ
k−1HT

k + Rk

)
/Pg (37)

To solve multi-target data association in fJITS, the smoothing component data association
probability β

ψ

k|N is utilized as a weight for the likelihood of each forward track in Equation (38).

lψ
k ≡ p

(
ỹk,i, Xψ

k−1

∣∣∣Yk−1

)
= β

ψ

k|N∑
i

ζ
ψ
k−1lψ

k,i (38)
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The fJITS component existence probability ζ
ψ
k in the Kth scan is calculated by Equations (37) and

(38) and ζ
ψ
k−1 in Equation (33) replacing lψ

k|N,i, lψ

k|N and ζ
ψ

N\k respectively. This reinforces the forward
track for tracking targets efficiently and the results are verified in Section 4. The fJITS ψth target
existence probability δ̂

ψ
k is updated in Equation (39) using modified forward track likelihood ratio

expressed in Equation (40).

δ̂
ψ
k =

λkαδ
ψ
k−1

1− (1− λk)αδ
ψ
k−1

(39)

λk = 1− ∂ + ∂∑
i

lψ
k

ρk,i
(40)

Similarly, the predicted fJITS component mean and covariance obtained from Equation (21)
are used based on ỹk,i by replacing Xψ

N\k,j and Pψ

N\k,j in Equation (34) to obtain the fJITS track

component estimate X̂ψ
k and P̂ψ

k . ζ
ψ
k and ζ

ψ
b are used to approximate the forward and backward tracks

by one Gaussian mixture pdf [18] respectively. This approximation reduces complexities in the track
management. With the track management including track component pruning and merging [26–30],
FIsJITS removes majority of unwanted fJITS and bJITS components. FIsJITS employs track management
technique [25] which compares component measurement histories computed in last four scans to
merge the identical fJITS and bJITS components respectively. For example, an identical component
measurement is repeating in the last four scans as depicted by blue-circle in the ellipsoid fJITS track
validation gates from scan Kth to Kth + 3 as shown in Figure 4. Therefore, the fJITS track merges
these identical components in scan Kth + 3. Figure 4 also illustrates the component propagation and
formation of a new component with a feasible selected measurement outcome in each forward-time
scan. FIsJITS applies a same pruning threshold as employed in [25] to remove the fJITS and bJITS
components which have a low component existence probability.
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Figure 5 shows overlapped smoothing intervals where each fixed-measurement-interval has a
length of n and consists of N–Bth + 1 scans. The length of an interval can be chosen depending on
various situations. However, higher the length n, better would be the estimation which reflects in the
RMSE reduction. Let the current measurement-interval includes b = 5, 6, . . . , 12. First smooth the half of
an interval n/2 depicted by dashed-line and compute the fJITS estimates depicted by dotted-arrow-line
in Figure 5. This half of smoothing interval should be discarded so that the next subsequent
measurement-interval can be overlap in the remaining half of an interval. This technique limits
the time-delay and results in the maximum smoothing. For example, the next measurement-interval
includes b = 9, 10, . . . , 16, where bJITS takes a new start from scan b = 16 to b = 9. However, fJITS track
recursion starts from scan Kth = 9 (when Bth = 9) using the predicted forward track components from
Kth − 1 (e.g., Kth = 8). Similarly, smoothing is obtained from k = 9, . . . , 12 conditioning on the last
scan measurements in YN = Y16. In this example, there are eight scans in each interval where four
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eldest scans are discarded after smoothing and four new scans are appended before smoothing the
next subsequent interval.
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Figure 6 illustrates flow-chart of the two-way tracking and smoothing algorithm. The algorithm
starts with backward filtering, giving the measurements Yb to the bJITS. The bJITS use the measurement
set of Yb=N and Yb=N−1 (two-point initialization) to initialize the tracks required for backward
estimation in Bth scan using (7–20). Therefore, there is no track alive in b = N and b = N − 1 and the
track recursion starts from Bth + 1 and continues in reverse direction until it arrive at the first scan
of an interval. If a fJITS track is alive at Kth scan, it generates a predicted FIsJITS track associated to
validated bJITS track. Consequently, a FIsJITS and a fJITS track estimates are obtained using (28) and
(32) in the Kth scan. Repeat (21) to (40) recursively to obtain smoothing and forward estimates in each
scan until n/2 length of an interval is arrived.
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For FTD, FIsJITS uses track quality measure referred to smoothing target existence probability
which confirm the track if it exceeds the predetermined confirmation threshold, otherwise the track
is terminated. Similarly, the updated target existence probability is employed in bJITS and fJITS for
track quality measure in backward and forward tracks, respectively. Each confirmed track remains
confirmed until termination. The estimates of the confirmed FIsJITS track must be validated through
the target states to select only confirmed true track in (41). Otherwise, the confirmed false track not
satisfying Equation (41) is terminated.

σT
k|NP−1

o σk|N ≤ γ (41)

where σk|N = xψ
k − X̂ψ

k|N expresses the difference between the ψth target state expressed in Equation (1)
and the ψth smoothed state estimate obtained in Equation (35), Po represents initial covariance matrix
of the target noise measurement which was used for track (forward and backward) initialization and γ

is determined from the false-alarm probability of chi-square distribution [2] and [19]. Note that in each
scan, new fJITS multi-tracks may be initialized using Yk. These new fJITS track are concatenated with
the existing fJITS tracks and the iteration of this algorithm continues in each scan as illustrated in the
flow-chart in Figure 6.

4. Numerical Analysis Using Simulations

Multiple cross-over targets in the two-dimensional surveillance region are demonstrated for
numerical simulation as shown in Figure 7. The FIsJITS is analysed for three cross-over targets in the
(800 m, 600 m) area and five cross-over targets in the (800 m, 700 m) area. These targets are moving in
the heavy clutter environment which is associated to the clutter measurement density ρk,i = 1× 10−4 m2.
Table 2 lists an average number of fJITS and bJITS tracks, number of sensor measurements and number
of measurements associated to tracks in a validation gate. For example, in five cross-targets scenario,
there are 36 (average) measurements received per scan. Two-point initialization method stated that a
pair of measurements in consecutive scans satisfying the target maximum velocity limit (i.e., 25 m/s)
initializes a track. This generates 16 forward tracks and 27 backward tracks in average, respectively.
However, there is/are zero or 3 measurements (average outcome, i > 0) in each track validation gate
which may be originated from a target (true track) or a clutter (false track). The ψth target position
measurement is detected with Pd = 0.9 and is correlated with its noise measurement having known
covariance Rk = 25I2 m2 where I2 is 2× 2 identity matrix. In this environment, the execution time of the
algorithms depends on various factors including the target detection probabilities, number of targets,
target uncertain motions, non-uniform clutter measurement density and number of initialized tracks
in the surveillance region. The average execution time per run of the algorithms is listed in Table 3.
JIPDAS consumes more computational time, because of increasing number of measurement-to-track
allocations and their a-posteriori probabilities calculation. Compared to this, FIsJITS removes majority
of components (in fJITS/bJITS tracks) which reflects in reduction of computational complexity. Track
component is removed if updated component existence probability dips below the predetermined
pruning threshold. For a fair comparison of the algorithms, similar pruning threshold is applied to
FIsJITS, JITS and ITS-S.

Table 2. FIsJITS parameter’s specification in number (#).

Scenario # of fJITS Tracks # of bJITS Tracks # of Sensor
Measurements

# of Measurements in
a Tracking Gate

Three targets 216,000 (≈12 per scan) 378,000 (≈21 per scan) ≈28 per scan ≈2 per forward track
in each scan

Five targets 288,000 (≈16 per scan) 486,000 (≈27 per scan) ≈36 per scan ≈3 per forward track
in each scan
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Table 3. Algorithm’s execution time per run (sec).

Scenario FIsJITS ITS-S JITS JIPDAS JIPDA

Three targets 3.0 5.5 3.4 6.4 2.5
Five targets 7.6 8.3 6.6 9.5 3.5

The tracking estimation with FIsJITS is compared with that of the existing smoothing/non-
smoothing MTT algorithms based on JIPDAS, JIPDA, JITS and STT algorithm based on ITS-S to verify
FTD performance of FIsJITS. The numerical simulation is tested for 500 runs. There are 36 scans with
sampling interval of T = 1 s per scan in a run. Table 4 shows an initial position measurement of the
targets. Each target appears at a different time and moves with an initial velocity of 15 m/s in such a
way that it cross-over other targets at different times and angles as shown in Figure 7. For example:
targets 1 and 2 in Figure 7a appear at 1 sand target 3 appears at 4 where they cross-over in scans 16, 20
and 24 (with respect to Target 1 appearance). In Figure 7b, another two targets (target 4 appears at
4 s and target 5 appears at 1 s) enter the surveillance region where target 5 cross-over Targets 2 and
3 in scan 13, Target 1 in scan 16 and Target 4 in scan 30. The two surveillance scenarios depicted in
Figure 7a–d verify the effectiveness of the smoothed estimations obtained from the FIsJITS algorithm
for tracking multiple cross-over targets in heavy clutter.

Table 4. Target’s initial position.

Target # Initial Position (m)

1 [100; 300; 15; 0]
2 [100; 450; 15; −10]
3 [150; 100; 15; 10]
4 [150; 520; 15; 0]
5 [387.5; 80; 0; 15]
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The target state transition probability [17] is predefined by α = 0.98 which is used for track
initialization and propagation in the forward and backward paths. For a tangible FTD comparison
using (41), use the same interval length for FIsJITS, JIPDAS and ITS-S algorithms and regulate the
confirmation limit of smoothing/non-smoothing algorithms until a similar number of confirmed
false tracks (≈27) are obtained. Figure 8 shows the number of confirmed true tracks (CTTs) of
three cross-over targets which emphasizes the improved FTD performance of FIsJITS versus existing
algorithms. The result also illustrates that JIPDA, JIPDAS, JITS and ITS-S algorithms confirm the track
quite late as compare to that of FIsJITS in such multiple cross-over targets scenario. When the targets
are cross-over other in scans 16, 20 and 24, CTTs generated by ITS-S and JIPDAS lost almost 30% of
the number of CTTs. Due to joint data association capability in JITS track, JITS is quite effective in the
cross-over scans as compare to ITS-S and JIPDAS as depicted in Figure 8a. Introducing the proposed
novel idea in the JITS algorithm results in optimum tracking performance in FIsJITS as depicted from
scan 10 to end scan in Figure 8a.
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Figure 8b shows the root-mean square position estimation errors (RMSEs) statistics of the Target 1.
The insufficient FTD performance of ITS-S and JIPDAS in Figure 8a results in the higher RMSEs as
depicted at the cross-over scans. In addition, due to incapability of joint data association in ITS-S,
CTTs of ITS-S produce larger estimation errors which risen even over the non-smoothing algorithms
depicted from scans 17 to 30. Generally, without smoothing application the tracking algorithm like
JIPDA and JITS produce higher estimation errors. In the end scan (N = 36), the CTT estimates of all
algorithms are calculated based on YN which tend to taper-off their estimates near the end scan. Thus,
the RMSE of the algorithms converged at end scan. Compared to the existing algorithms, the FTD
performance of FIsJITS depicted in Figure 8a reduces RMSE error for three cross-over targets scenario
as shown in Figure 8b.

Similarly, five cross-over targets in the (800 m, 700 m) surveillance region in Figure 7b are
numerically simulated. All other initial parameters like detection probability (Pd), clutter measurement
density and an initial position of target 1, 2 and 3 are same. Adding more targets in the surveillance
region consume more computational complexities as listed in Tables 2 and 3. Figure 9a compares
tracking performance and FTD capability of five cross-over targets. Compared to the JIPDA and JITS
algorithms, the smoothing algorithms performed better. However, JIPDAS and ITS-S are often slow
in confirming true tracks in the presence of multi-targets joint measurements and hence missing the
targets at regular intervals especially at the cross-over scans. FIsJITS is still provides optimum tracking
performance depicted from scan 10 to end scan which reinforces the application of smoothing data
association (based on FIsJITS) on JITS.
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The RMSE trend of target 5 depicted in Figure 9b is almost same as that of target 1 in Figure 8b
except the RMSE statistics of ITS-S and JIPDAS at the cross-over scans. It is noted that in all RMSE
cases, the large RMSE of the ITS-S algorithm is obvious especially when the measurement of one
target is associated to other targets (at cross-over scans). Moreover, the MTT algorithms produce much
larger number of initialized false tracks than that of generated from the STT algorithms. However,
in these multiple cross-over targets environment, FIsJITS reduces the estimation error of the targets
quite smartly.

5. Conclusions

FIsJITS is the extension of ITS-S in the MTT environment developed for tracking multiple
cross-over targets in clutter. The algorithm provides a formula for calculating bJITS joint data
association probabilities which was not addressed in the sJITS. A novel approach is utilized where
the bJITS ψth target existence probability is used for calculating the predicted smoothing ψth target
existence probability. The likelihood ratio of forward and smoothing tracks generated by ITS-S is
also modified in FIsJITS for an effective smoothing. The smoothing multi-target data association
probabilities are employed for computing both FIsJITS smoothing state and fJITS state estimates.
The numerical assessments are analysed using simulation to show almost 100% tracking with FIsJITS
for tracking multiple cross-over targets.
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Nomenclatures

k = 1, 2, . . . , Kth Scan index in forward-path tracks.
b = 1, 2, . . . , Bth Scan index in backward-path tracks.
N Index of last scan in the smoothing interval which has length of n.

N\k Scan index where k is removed from interval when fusing forward and
backward predictions.

k|N
Scan index in which smoothing estimate is obtained conditioning on
measurements in N.

Yk Sensor measurements in forward-path tracks.
Yb Sensor measurements backward-path tracks.
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Yk,i/Yb,i ith measurement in Yk/Yb respectively.

yb,i
ith backward validation measurement selected from Yb in the validation
gate created by bJITS track.

ỹk,i
ith smoothing validation measurement selected from Yk in the
validation gate created by FIsJITS track.

ρk,i ≡ ρ(Yk,i) Clutter measurement density of the measurement Yk,i.

Yk = {Yk, Yk−1}
Set of two consecutive forward-time scans measurements used for
initializing forward tracks.

Yb = {Yb, Yb+1, ..., YN−1, YN}
Set of consecutive scan measurements starting from last scan index N to
the Bth scan of an interval and used for initializing backward tracks.

δ̂
ψ
k ≡ P

{
χ

ψ
k

∣∣∣Yk−1

} fJITS Estimated target existence probability of the target existence event
χ

ψ
k (where ψ = 1, 2, . . . , ψth denotes target index) in Kth scan

conditioned on Yk−1

δ̂
ψ
b ≡ P

{
χ

ψ
b

∣∣∣Yb+1

} bJITS Estimated target existence probability of the target existence event
χ

ψ
b in Bth scan conditioned on Yb+1.[

X̂ψ
b , P̂ψ

b

] Denote the mean and covariance of the ψth target state estimate for one
of the backward component calculated using Yb in Bth scan.[

Xψ
b+1, Pψ

b+1

] Denote the mean and covariance of the ψth target state prediction for
one of the backward component calculated using Yb+1 in Bth + 1 scan.[

X̂ψ
k , P̂ψ

k

] Denote the mean and covariance of the ψth target state estimate for one
of the forward component calculated using Yk in Kth scan.[

Xψ
k−1, Pψ

k−1

] Denote the mean and covariance of the ψth target state prediction for
one of the forward component calculated using Yk−1 in Kth − 1 scan.
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