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Abstract: Real-time tracking of pipeline inspection gauges (PIGs) is an important aspect of ensuring
the safety of oil and gas pipeline inline inspections (ILIs). Transmitting and receiving extremely low
frequency (ELF) magnetic signals is one of the preferred methods of tracking. Due to the increase in
physical parameters of the pipeline including transportation speed, wall thickness and burial depth,
the ELF magnetic signals received are short transient (1-second duration) and very weak (10 pT),
making the existing above-ground-marker (AGM) systems difficult to operate correctly. Based on the
short transient very weak characteristics of ELF signals studied with a 2-D finite-element method
(FEM) simulation, a data fusion model was derived to fuse the envelope decay rates of ELF signals
by a least square (LS) criterion. Then, a fast-decision-tree (FDT) method is proposed to estimate
the fused envelope decay rate to output the maximized orthogonal signal power for the signal
detection through a determined topology and a fast calculation process, which was demonstrated to
have excellent real-time detection performance. We show that simulation and experimental results
validated the effectiveness of the proposed FDT method, and describe the high-sensitivity detection
and real-time implementation of a high-speed PIG tracking system, including a transmitter, a receiver,
and a pair of orthogonal search coil sensors.

Keywords: high-sensitivity detection; above ground marker; pipeline inspection gauge; data fusion
model; search coil sensor; ELF tracking

1. Introduction

Today, over 70 percent of oil and gas transportation relies on a total of over 3,500,000 km of
pipelines in 120 countries, which is the safest, most reliable and efficient method, compared with
highways, railways and marine transport, and so on [1]. To meet the rapidly growing demand for
oil and gas, the construction of trunk pipelines which can operate in high-pressure, high-speed and
high-capacity conditions has been increasing in recent years, giving the pipelines larger diameters,
thicker pipe walls, deeper burial depths and larger transportation distances [2–5]. Due to corrosion and
high-pressure loadings on the pipe wall, pipeline failures including defects, deformations, blockages,
leakages and explosions occur every year, resulting in serious risks to pipeline safety [6–8]. In China,
it was reported that there was a pipeline failure every 4 km [9], and in the USA, the economic
and human losses due to the significant pipeline incidents in the past 20-year period are $7 billion
and 330 fatalities along with 1292 injuries, respectively [10]. Pipeline inspection gauges (PIGs) are
periodically used for pipeline in-line inspections (ILIs) to minimize these risks and maintain pipeline
integrity [11–16]. However, during the pipeline ILI operation, the PIG is likely to be blocked by
the deformed pipelines, while an odometer installed in the PIG can only record the PIG position
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offline, because the shielding effect of the steel pipe wall makes it difficult to transmit the position
information from inside the pipeline to the ground through wireless communication technologies,
such as Wi-Fi, Bluetooth, or 3G and 4G networks [17,18]. Thus, the pipeline ILI usually needs the use
of above-ground-marker (AGM) technologies to track the position of the PIG in real time [19,20].

Existing AGM methods utilize acoustic wave, static magnetic field, extremely low frequency
(ELF) magnetic fields for PIG localization and tracking, and have been widely practiced in the oil and
gas industry [21–27]. Here, the working principle of the AGM system is shown in Figure 1. The PIG
is propelled by the flowing medium and the speed is mainly determined by the pressure inside the
pipeline. A receiver placed above the ground detects the tracking signals generated by the PIG moving
right below, and records the PIG position simultaneously. With the help of the global position system
(GPS) and general packet radio service (GPRS) technologies, all receivers along the pipeline usually
with an interval of 1 km can send the current location and local time of the PIG to the monitoring center
to form a tracking network, and the information will also be used to compensate for the accumulated
locating error caused by the PIG odometer.
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The acoustic wave method is used to detect the acoustic wave generated by the friction between
the PIG and the pipe wall. In [21,22], it is used to improve the tracking precision of the underground
PIG, and in [23], a micro-electro-mechanical-system (MEMS) acoustic vector sensor is found to have
advantages of high sensitivity for detecting low-frequency acoustic signals. However, the acoustic
signals generated by the moving PIG are easily cluttered by the environmental acoustic sources,
such as moving vehicles, trains and airplanes, and it produces a high number of false alarms. The static
magnetic field method is used to detect the static magnetic field generated by the permanent magnets
assembled in the PIG. In [24,25], experimental results showed that this method was effective when
the magnetic signals emitted by the permanent magnets were strong enough. Furthermore, it is
only applicable to certain types of PIG due to the requirement to carry heavy and bulky permanent
magnets, thus limiting the scope of application. To overcome the aforementioned challenges, the
ELF method is introduced, which is a single-frequency magnetic signal transmission and reception
method that is suitable for most types of PIG [26,27]. A small and lightweight transmitter equipped
in the PIG generates the ELF magnetic field and the receiver detects the ELF magnetic field using
magnetic sensors and real-time signal detection methods. Comparing to high-frequency magnetic
field, the ELF magnetic field with frequencies between 22 Hz and 24 Hz has a good penetrating
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ability for signal transmitting through steel pipe wall and soil, and is less susceptible to environmental
interferences [28,29]. In [30], the tracking and localization of the in-pipe PIG is realized by applying the
equivalent magnetic dipole model and the inverse calculation of the ELF magnetic field. In [27,28,30],
experimental results showed that the existing ELF tracking systems worked well for long-duration
and high-magnitude ELF magnetic signals. However, due to the higher speed of the PIG during
the pipeline ILI operation, the received time-domain ELF signals become a transient signal with a
very short duration [29]. Due to the thicker pipe wall and deeper burial depth of pipelines, as well
as the desired low power consumption requirement of the transmitter for the long working time,
the magnitude of the received ELF magnetic field is very low and immersed in strong background noise,
leading to a very poor signal-to-noise ratio (SNR) [31]. The increases of the speed, pipe wall thickness,
and burial depth means the existing ELF tracking systems still face the challenges of detecting the
short transient very weak ELF magnetic signals.

According to the signal detection theory, solving these challenges requires the use of
high-sensitivity magnetic sensors with advanced signal detection methods, so that the probability
of detection (POD) of the short transient very weak ELF signals can be high enough for a given low
probability of false alarm (PFA). There are several high-sensitivity magnetic sensors that can be used to
detect very weak magnetic signals, such as the search coil sensor, fluxgate magnetometer and SQUID
sensor [32,33]. A search coil sensor can detect magnetic fields as weak as 10−2 pT with a frequency
range from 1 Hz to 1 MHz. A fluxgate magnetometer can detect magnetic fields from 10 to 109 pT,
while the frequency response is limited by the excitation field and response time of ferromagnetic
materials. A SQUID sensor is more sensitive at low frequencies (<1 Hz) and the sensitivity is as
low as 10−2 pT. However, the need for liquid-helium coolant makes the SQUID sensor heavy and
inconvenient. As for the signal detection, the generalized likelihood ratio (GLR) is considered to be one
of the typical signal detection methods [34,35]. Poor et al. [36] develops the quickest change detection
method based on the distribution of test statistics. Wavelet transform becomes an effective tool for
joint time-frequency analysis and has a broader application in the diagnosis of mechanical faults and
the evaluation of non-destructive testing (NDT) signals [37–39]. Marius Birsan et al. [40] presents an
underwater detection of ELF electromagnetic field signals from ships using the cross wavelet transform
and wavelet coherence method for high SNR situations. Qin et al. [41] present transient weak fault
feature extraction based on an optimized Morlet wavelet transform and kurtosis index. Meanwhile,
a maximum likelihood (ML) estimator is also developed to extract the amplitude from fault-generated
transient impulses in [42].

This paper proposes a high-sensitivity real-time tracking system for high-speed PIG to detect
short transient very weak ELF magnetic signals. A 2-D finite-element method (FEM) simulation was
conducted to understand the relationships between the time-domain ELF signals and the physical
parameters of the pipeline, including transportation speed, wall thickness, and burial depth. According
to the short transient very weak characteristics of ELF signals, a data fusion model was derived to well
represent the ELF signals by fusing the envelope decay rates through a least square (LS) criterion. Then,
a fast-decision-tree (FDT) method is proposed to detect the ELF signals. The main differences of the
FDT method are: (1) it first estimates the fused envelope decay rate to maximize the orthogonal signal
power of ELF signals, and the maximized orthogonal signal power is used as the test statistic for the
signal detection, which provides an excellent detection performance; and (2) the deterministic topology
and fast calculation process of the FDT method avoid massive matrix inversion and multiplication,
which significantly reduces the computation costs and provides excellent real-time performance.
The detection performance of the proposed FDT method is discussed, with a comparison between
other existing detection methods as well as theoretical bounds through Monto-Carlo simulations.
In consideration of high sensitivity as well as convenience, a pair of orthogonal search coil sensors was
designed to receive the very weak ELF magnetic signals. Then, an ELF tracking system including an
ELF transmitter, an ELF receiver and a pair of orthogonal search coil sensors was developed and tested,
and the experimental results validate the effectiveness of the proposed FDT method. The main reason
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for the excellent detection performance obtained is discussed through the analyses of the normalized
power spectrum, estimation performance of speed and SNR. Finally, the high-sensitivity detection and
real-time implementation of high-speed PIG tracking system is achieved.

2. Simulation and Signal models

2.1. 2-D FEM Simulation Studies

In order to study the characteristics of the ELF signals for further developing a targeted signal
detection method as well as sensing system, simulation studies of 2-D harmonic magnetic analyses are
conducted using ANSYS software, and the 2-D FEM model is shown in Figure 2. The FEM model is
axisymmetric and consists of transmitter, oil, steel pipe wall, soil and air. The cylindrical transmitter
supported by the PIG’s mechanical connecting structure is located at the symmetric line of the pipeline.
The transmitter consists of a transmitting coil and an iron core which has a high permeability to
increase the strength of the ELF magnetic field. The transmitting coil is fed a sinusoidal 4 mA (root
mean square value) current with frequency of 23 Hz. The simulated speed of the transmitter ranges
from 1 m/s to 15 m/s, and the ELF signals in the pipe longitudinal direction (X-axis direction) and pipe
radial direction (Y-axis direction) are calculated at the point above the soil surface (location highlighted
by “star” in Figure 2). The element and boundary condition of the FEM simulation is set to PLANE53
and flux-parallel condition, respectively. The material parameters including conductivity, permeability
and mesh size are listed in Table 1, and the model geometry is listed in Table 2.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 21 

 

2. Simulation and Signal models 

2.1. 2-D FEM Simulation Studies 

In order to study the characteristics of the ELF signals for further developing a targeted signal 
detection method as well as sensing system, simulation studies of 2-D harmonic magnetic analyses 
are conducted using ANSYS software, and the 2-D FEM model is shown in Figure 2. The FEM model 
is axisymmetric and consists of transmitter, oil, steel pipe wall, soil and air. The cylindrical transmitter 
supported by the PIG's mechanical connecting structure is located at the symmetric line of the 
pipeline. The transmitter consists of a transmitting coil and an iron core which has a high permeability 
to increase the strength of the ELF magnetic field. The transmitting coil is fed a sinusoidal 4 mA (root 
mean square value) current with frequency of 23 Hz. The simulated speed of the transmitter ranges 
from 1 m/s to 15 m/s, and the ELF signals in the pipe longitudinal direction (X-axis direction) and 
pipe radial direction (Y-axis direction) are calculated at the point above the soil surface (location 
highlighted by "star" in Figure 2). The element and boundary condition of the FEM simulation is set 
to PLANE53 and flux-parallel condition, respectively. The material parameters including 
conductivity, permeability and mesh size are listed in Table 1, and the model geometry is listed in 
Table 2. 

 

 
Figure 2. Schematic of 2-D finite-element method (FEM) simulation model. 

Table 1. Material parameters of 2-D FEM simulation model. 

Property Iron core Coil Oil Q235 Steel Pipe Soil Air 
Conductivity (S/m) 1 × 107 5.7 × 107 0.01 2 × 106 0.005 0 
Permeability (H/m) 1000µ01 µ0 µ0 500µ0 µ0 µ0 
Mesh size (m) 0.01 0.01 0.1 0.02 0.2 0.2 

1 µ0 is permeability of vacuum. 

Table 2. Model geometry of 2-D FEM simulation model. 

Property Value 
Length of pipeline (L) 45 m 
Burial depth (DB) 2.5~5 m 

Outer radius of pipeline (R) 254 mm 
Thickness of pipe wall (T) 6~15 mm 
Inner radius of pipeline  (R-T) mm 
Length of coil (LC) 130 mm 
Width of transmitting coil (2WC) 59 mm 
Width of iron core (2WI) 25 mm 
Coil turns  25000 
Transmitting current (RMS) 4 mA 
Current frequency  23 Hz 
Speed of transmitter (V) 1~15 m/s 

Figure 2. Schematic of 2-D finite-element method (FEM) simulation model.

Table 1. Material parameters of 2-D FEM simulation model.

Property Iron Core Coil Oil Q235 Steel Pipe Soil Air

Conductivity (S/m) 1 × 107 5.7 × 107 0.01 2 × 106 0.005 0
Permeability (H/m) 1000 µ0

1 µ0 µ0 500 µ0 µ0 µ0
Mesh size (m) 0.01 0.01 0.1 0.02 0.2 0.2

1 µ0 is permeability of vacuum.

Table 2. Model geometry of 2-D FEM simulation model.

Property Value

Length of pipeline (L) 45 m
Burial depth (DB) 2.5~5 m
Outer radius of pipeline (R) 254 mm
Thickness of pipe wall (T) 6~15 mm
Inner radius of pipeline (R-T) mm
Length of coil (LC) 130 mm
Width of transmitting coil (2WC) 59 mm
Width of iron core (2WI) 25 mm
Coil turns 25,000
Transmitting current (RMS) 4 mA
Current frequency 23 Hz
Speed of transmitter (V) 1~15 m/s
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The simulated ELF signals of the X-axis and Y-axis, when the speed is 15 m/s, pipe wall thickness
is 15 mm and burial depth is 5 m, are shown in Figure 3a,b. The envelopes of the X-axis and Y-axis
ELF signals with three different speeds are shown in Figure 3c,d. The sampling interval of the 2-D
FEM simulation is set to 1 millisecond, and a sample equal to 0 means that the ELF transmitter passes
right below the measuring point. Figure 3a,b shows that the number of samples of the ELF signals
is 1000 points, corresponding to a signal duration as low as 1 second, and the amplitudes are as low
as 15 pT. Figure 3c,d shows that the steepness of the envelopes is closely related to the speed of the
transmitter, and the envelopes appear to be short transient as the transmitter moves faster.
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The amplitudes of the ELF signals of the X-axis and Y-axis, changing with the pipe wall thickness
and burial depth, are shown in Figure 4a,b. The coordinate of thickness and burial depth is set to a
linear scale, while that of the magnetic flux density is set to a logarithmic scale, and the amplitudes
decrease logarithmically as the thickness and burial depth increase linearly. Taking the X-axis results
as an example, compared to the amplitude for thin wall thickness (6 mm) and shallow burial depth
(2.5 m) which is about 1000 pT, the amplitudes for thick wall thickness (15 mm) or deep burial depth
(5 m) are about 100 pT, which decreases by an order of magnitude. Then, the amplitude for thick
wall thickness and deep burial depth is about 10 pT, which decreases by two orders of magnitude.
The trend of Y-axis results is the same as for the X-axis. The simulation results discussed above show
that under the circumstances of a high speed of 15 m/s, the conditions of a thicker pipe wall and
deeper burial depth will cause the ELF signals to become short transient in the envelope and very
weak in amplitude.
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2.2. Data Fusion Model

The very weak ELF signals are easily interfered with by strong narrow-band background noise.
The ELF signals of X-axis and Y-axis with noise can be expressed as:

x[n] = sx[n] + wx[n] n = −Nx

2
, . . . ,−1, 0, 1, . . . ,

Nx

2
(1)

y[n] = sy[n] + wy[n] n = −
Ny

2
, . . . ,−1, 0, 1, . . . ,

Ny

2
(2)

where wx[n] and wy[n] are narrow-band background noise, Nx and Ny are the number of samples along
X-axis and Y-axis, respectively. Table 3 summarizes the important notations and their definitions used
in this article.

Table 3. Notations used in this article.

Notations Description

Nx Number of samples of X-axis ELF signal
Ny Number of samples of Y-axis ELF signal
βxy Fused envelope decay rate
β̂xy Estimated fused enveloped decay rate

βmax
Fused envelope decay rate corresponding to
maximum speed of transmitter

Hx Observation matrix of X-axis ELF signal
P̂xy Maximized orthogonal signal power
PHX Energy of X-axis observation vector
PHY Energy of Y-axis observation vector
η Normalized signal energy
Cm Computation cost of multiplication
Ca Computation cost of addition
γ̂ Threshold for signal detection

As shown in Figure 3a,b, the time-domain ELF signals have two main properties including
envelope and oscillation. Here, a Morlet mother wavelet is used to represent the steepness of the
envelope as well as the oscillation:

ψ(t) = e−βt2/2 cos ωt (3)

where β is defined as the envelope decay rate, and the exponential component is used to represent the
steepness, while the cosine component is used to represent the single-frequency oscillation. There are
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a main lobe peak and two side lobe peaks in the X-axis signals. Since the two side lobe peaks are much
smaller than the main lobe peak and are more susceptible to noise interference, we set up the X-axis
signal model with the main lobe peak:

sx[n] = Axe−βx [n/ fs ]
2

cos[ω0n/ fs + ϕ0] (4)

taking the origin and two peak points as cut-off points, the Y-axis signal model is set by four intervals:

sy[n1, n2] =


Aye− βyl [n1/ fs ]

2
cos[ω0n2/ fs + ϕ0] n1 = − Ny−My

2 , · · · ,−1, 0 n2 = − Ny
2 , · · · ,−My

2

Aye− βyh [n1/ fs ]
2

cos[ω0n2/ fs + ϕ0] n1 = 0, 1, · · · , My
2 n2 = −My

2 , · · · ,−1, 0

Aye− βyh [n1/ fs ]
2

cos[ω0n2/ fs + ϕ0] n1 = −My
2 , · · · ,−1, 0 n2 = 0, 1, · · · , My

2

Aye− βyl [n1/ fs ]
2
cos[ω0n2/ fs + ϕ0] n1 = 0, 1, · · · , Ny−My

2 n2 =
My
2 , . . . , Ny

2

(5)

where n1 is window variable of the exponential function in Y-axis signal model, n and n2 are both
window variables of the sine function in X-axis and Y-axis signal models, respectively. The normalized
angular frequency is ω0 = 2πf 0/f s in unit of rad/sample. The ELF signal frequency f 0 is 23 Hz and the
sampling frequency f s is 1 kHz. Ax and Ay are amplitudes of the X-axis and Y-axis signals, respectively,
and variable My is the coordinate intervals of the two peaks in the Y-axis. Variable βx is the envelope
decay rate of main lobe peak of X-axis, and βyl and βyh are used to represent the Y-axis envelopes
deviating from the origin and facing the origin, respectively.

It is noted that the envelope decay rates (βx, βyl and βyh) increase as the speed of the transmitter
increases, as shown in Figure 3c,d. In order to simplify these three parameters to match the speed of
the transmitter well, the fused envelope decay rate is derived here by a LS criterion. Taking the X-axis
signal as an example, the LS criterion minimizes error function by estimating the parameters (Ax, ϕ0

and βx) in sx[n]:

Jx =

Nx
2

∑
n=− Nx

2

(sx[n]− x[n])2. (6)

Then, Equation (6) can be decomposed into the linear form as:

sx[n] = Hxαx (7)

where the observation matrix is:

Hx = [Hx1, Hx2] =



e−βx [− Nx
2 fs

]
2

cos[ω0(−Nx
2 )] e−βx [− Nx

2 fs
]
2

sin[ω0(−Nx
2 )]

...
...

e−βx [
1
fs
(−1)]

2

cos[ω0 × (−1)] e−βx [
1
fs
(−1)]

2

sin[ω0 × (−1)]

e−βx [
1
fs
×0]

2

cos[ω0 × 0] e−βx [
1
fs
×0]

2

sin[ω0 × 0]

e−βx [
1
fs
(1)]

2

cos[ω0 × 1] e−βx [
1
fs
(1)]

2

sin[ω0 × 1]
...

...

e−βx [
Nx
2 fs

]
2

cos[ω0(
Nx
2 )] e−βx [

Nx
2 fs

]
2

sin[ω0(
Nx
2 )]


. (8)

Thus, the estimation of αx (Ax and ϕ0) is expressed as:

α̂x= (Hx
THx)

−1Hx
Tx. (9)
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Calculating the minimization of (6) is equal to calculate the maximum estimation of the X-axis
signal energy, which is derived as:

P̂x = xTHx(Hx
THx)

−1
Hx

Tx. (10)

Thus, the estimation of βx can be estimated by maximizing (10) as:

β̂x = arg max
βx

[P̂x = xTHx(Hx
THx)

−1
Hx

T)x]. (11)

Similarly, the estimation of βyl and βyh are expressed as:

(β̂yl , β̂yh) = arg max
(βyl ,βyh)

[P̂y = yTHy(Hy
THy)

−1
Hy

T)y] (12)

where Hy is transformed by sy[n1,n2] and the transformation process is similar to Hx.
The purpose of the fusion is to find a relationship between these three envelope decay rates to

minimize the error functions of the X-axis and Y-axis simultaneously. Assume that βx = kxyβyh = kyβyl,
and define the estimation of the orthogonal signal power as:

P̂xy =
P̂x

Nx
+

P̂y

Ny
. (13)

Then, the relationship between ky and normalized P̂y for three different speeds is shown in
Figure 5a, and the relationship between kxy and normalized P̂xy for three different speeds is shown in
Figure 5b.
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Figure 5a shows that P̂y reaches a maximum when ky is around 4 in the cases of 5 m/s, 10 m/s and
15 m/s. Figure 5b shows that P̂xy reaches a maximum when kxy is around 1 in the cases of 5 m/s, 10 m/s
and 15 m/s. Thus, the fused envelope decay rate βxy is defined through the linear relationship as:

βxy = βx = βyh = 4βyl . (14)

The linear relationship has two main meanings: (1) the three envelope decay rates of the derived
data fusion model have the similar varying trend as the speed of the transmitter changes, and the
varying trend can be represented by a fixed linear relationship; and (2) the linear relationship satisfies
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the LS criterion by maximizing P̂x, P̂y and P̂xy, which contributes to the optimal estimation of the fused
envelope decay rate.

3. Fast decision Tree Method

The data fusion model sets up the relationship between the orthogonal ELF signals and the fused
envelope decay rate. According to the Equations from (10) to (14), maximizing the orthogonal signal
power is equivalent to estimating the fused envelope decay rate, which also improves the ability of
extracting the ELF signals from strong narrow-band background noise. Thus, the optimal estimation
of the fused envelope decay rate is critical, and the maximized orthogonal signal power can be used
as the test statistic for the signal detection, which is also the detection principle of the proposed FDT
method. First, the fast calculation process of the proposed FDT method is derived as follows. Take the
X-axis ELF signal as an example, according to the Equation (8), we have:

Hx1
THx2 = Hx2

THx1 =

Nx
2
∑

n=− Nx
2

e−βx [n/ fs ]
2

cos[ω0n/ fs]× e−βx [n/ fs ]
2

sin[ω0n/ fs]

=

Nx
2
∑

n=− Nx
2

e−2βx [n/ fs ]
2

sin[2ω0n/ fs] ≈ 0

(15)

Thus, simplify the Equation (10) as:

P̂x = xTHx(Hx
THx)

−1
Hx

Tx ≈ xTHx

[
Hx1

THx1 0
0 Hx2

THx2

]−1

Hx
Tx (16)

where an approximate equation can be derived as:

PHx = Hx1
THx1 ≈ Hx2

THx2 (17)

where PHx is defined as the energy of X-axis observation vector. Then, we have:

P̂x ≈
xHx

THx
Tx

PHX

=
(Hx

Tx)THx
Tx

PHX

. (18)

Similarly, the process of the Y-axis ELF signal is as follows:

PHy = Hy1
THy1 ≈ Hy2

THy2. (19)

P̂y ≈
yHy

THy
Ty

PHy

=
(Hy

Ty)THy
Ty

PHy

. (20)

Next, the topology of the FDT method is derived as follows. The FDT method evenly divides
the fused envelope decay rate into three categories at each of the tree nodes, and then calculates the
normalized signal energy of the three child nodes, which is defined as:

η =

(
P̂x

Px
+

P̂y

Py

)
/2. (21)

where Px = xTx and Py = yTy are received signal energy of X-axis and Y-axis signals, respectively.
From Equations of (10) and (12), P̂x and P̂y are always smaller than Px and Py, respectively, and that η

∈ (0,1). The FDT method estimates the fused envelope decay rate through the decision rule, which is
defined as determining the maximum η of the three child nodes as the next iteration direction. Here,
the evolution of the FDT method and the decision rule are clearly shown in Figure 6. Variables L and n
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in βL,n and ηL,n represent the tree layer and tree node. βmax corresponds to the maximum speed of the
transmitter. As shown in Figure 6, the FDT method sets the maximum η as the next iteration direction,
which is equivalent to selecting and estimating the fused enveloped decay rate that satisfies the LS
criterion through the Equations (11) and (12).
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The iteration stopping criterion is defined as follows: the FDT method calculates the η of three
child nodes and then distinguishes them into three values: ηL,max, ηL,med and ηL,min. The iteration is
stopped when the η meets:

∆η = ηL,max − ηL,med ≤ 0.001. (22)

The varying trend of η at each FDT layer through the iteration procedure is listed in Table 4.
The speed range of the FDT topology is set from 1 m/s to 15 m/s, and βmax is set to 50.

Table 4. Iteration procedure of the FDT method.

L V = 5 m/s, βxy = 5.5 V = 10 m/s, βxy = 21.2 V = 15 m/s, βxy = 46.9

1
β̂xy 8.4 25.2 42 8.4 25.2 42 8.4 25.2 43
η 0.9839 0.8184 0.6975 0.9104 0.9679 0.9234 0.7881 0.9032 0.9303

2
β̂xy 2.8 8.4 14 19.6 25.2 30.8 36.4 42 47.6
η 0.9703 0.9839 0.9288 0.9704 0.9679 0.9568 0.9261 0.9303 0.9313

3
β̂xy 6.53 8.4 10.27 17.73 19.6 21.47 45.73 47.6 49.47
η 0.9946 0.9839 0.9676 0.9681 0.9704 0.9709 0.9312 0.9313 0.9310

4
β̂xy 5.9 6.53 7.16 20.84 21.47 22.09 46.98 47.6 48.2
η 0.9956 0.9946 0.9920 0.9709 0.9709 0.9707 0.9513 0.9513 0.9512

∆η 0.9956 − 0.9946 = 0.001 0.9709 − 0.9709 < 0.0001 0.9513 − 0.9513 < 0.0001
∆βxy

1 5.9 − 5.5 = 0.40 21.47 − 21.2 = 0.27 47.6 − 46.9 = 0.70
1 ∆βxy is error between βxy (obtained from 2-D FEM simulation) and β̂xy (estimated from FDT method).

Table 4 shows in detail that the FDT method estimates βxy by comparing and determining the
maximum (which is bold) of the η in each layer. In layer 4, the iteration of the FDT meets the stopping
criterion with small errors for ∆η and ∆βxy.

According to the topology and fast calculation process, once the maximum speed of the transmitter
is confirmed, βmax of the FDT and βxy of each FDT nodes are both confirmed. Meanwhile, since the
parameters including Nx, fs, ω0 are priori knowledge, PHX and PHY are also priori knowledge by the
equation as:

(PHx , PHY) = f (βxy, Nx, fs, ω0). (23)
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Therefore, the computation cost of the proposed FDT method is derived as:
Cm = 2Nx + 3, Ca = 2Nx + 1 to get P̂x in (18)
Cm = 2Ny + 3, Ca = 2Ny + 1 to get P̂y in (20)
Cm = Nx + Ny, Ca = Nx + Ny + 2 to get Px and Py in (21)
Cm = 3Nx + 3Ny + 3, Ca = 3Nx + 3Ny + 3 to get η in (21)

(24)

where Cm and Ca are computation costs of multiplication and addition, respectively. It is worth noting
that the proposed FDT method only requires the computation costs of Cm = 3Nx + 3Ny + 3 and Ca

= 3Nx + 3Ny + 3 to calculate one η at a time instead of massive matrix inversion and multiplication
mentioned in (10) and (12), which is the key for ensuring a real-time performance.

Finally, the FDT method detects the ELF signals through a hypothesis test defined as:
H0 : P̂xy =

P̂x

Nx
+

P̂y

Ny
< γ̂

H1 : P̂xy =
P̂x

Nx
+

P̂y

Ny
> γ̂

(25)

where γ̂ is a threshold; H0 is referred as the null hypothesis which shows nonexistence of signals and
H1 as the alternative hypothesis which shows existence of signals. The Newman-Pearson criterion is
then used to build the threshold which maximizes POD for a given PFA, and the relationship between
the threshold γ̂ and PFA is defined as:

PFA = Q(
γ̂− µ̂

σ̂
) =

∫ ∞

γ̂−µ̂
σ̂

1√
2π

exp(−1
2

t2)dt (26)

where µ̂ and σ̂ are the mean and the variance of the test statistic due to narrow-band background noise,
respectively, Q(x) is called the right-tail probability function. The threshold is calculated by (26) for a
given PFA before the signal detection.

4. Performance Evaluation

4.1. Detection Methods and Theoretical Bounds

A maximum likelihood (ML)-based detection method sets the estimated amplitude of the ELF
signals as the test statistic, which is based on the time-domain signals without considering the short
transient characteristics of the envelopes. A discrete wavelet transform (DWT)-based detection method
reconstructs ELF signal envelopes using the wavelet coefficient at the characteristic scales, using a
Symlet wavelet based on the time-frequency analysis. Meanwhile, two theoretical bounds are used for
comparison with the proposed FDT method’s results. The upper bound is derived from the matched
filter (MF) method:

DMF =
sxx
σx2 +

syy
σy2 . (27)

where sx and sy are the noiseless ELF signals and regarded as a prior known here; σx and σy are noise
variances for the X-axis and Y-axis signals, respectively. The lower bound is derived from the energy
detection (ED) method:

DED =
xTx
σx2 +

yTy
σy2 . (28)

The estimation of SNR is defined as:

SNR = 10 log10

(
sx

Tsx + sy
Tsy

wxTwx + wyTwy

)
≈ 10 log10

(
P̂x + P̂y

Nxσ̂x + Nyσ̂y

)
. (29)
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where wx and wy are the narrow-band background noise, which have the same definition as Equations
(1) and (2). The mean of the narrow-band background noise can be considered to be zero, while the
variances including σ̂x and σ̂y are obtained from the long-time observation. It is worth noting that P̂x

and P̂y calculated from the FDT method are close to the noiseless ELF signal energy, and the estimation
performance of the SNR will be discussed in Section 5.

4.2. Monte Carlo Simulation Study

The simulation parameters are chosen as follows: Nx = 1200, Ny = 2000, βmax = 50. The FDT
method is compared with other detection methods using the receiver operating characteristics (ROC)
in the cases of 5 m/s, 10 m/s and 15 m/s, as shown in Figure 7a–c, respectively. Meanwhile, when the
PFA is set to 0.01, the result of POD versus SNR is shown in Figure 7d–f. All results are obtained using
Morte Carlo simulations with number of trial equals to 105 times. According to the given SNR, the
simulated narrow-band background noise is generated numerically for each trial. The range of SNR of
interest here is from −3 dB to 0 dB. An SNR equal to 0 dB means that the signal and the noise have
the same energy, and the SNR equal to −3 dB means that the signal energy is half of the noise energy.
Thus, the performance evaluation is based on comparing the detection methods’ ability to accurately
extract and identify the target ELF signals that are buried in the strong narrow-band background noise,
which is critical for the practical AGM system, because it also requires the same ability to detect the
short transient very weak tracking signals with very poor SNR.

Figure 7a–f shows that the POD of the FDT method is higher than the PODs of the ML and DWT
methods, especially when the speed is up to 15 m/s. Compared with the ML and DWT methods, the
POD of the FDT method exhibits a very small decrease as the speed of the transmitter increases at a
given SNR or PFA. Figure 7a–f shows that the detection performance of the FDT method is close to the
MF method (upper bound), which is very attractive. Taking Figure 7c as an example, when PFA is
close to 0, the PODs of the MF and FDT methods are both high, corresponding to the upper left corner
of Figure 7c. Taking Figure 7f as another example, when the SNR is 0 dB, they are both more than 95%
in POD and the difference between them is less than 5%. An in-depth discussion on the main reasons
for the obtained results will be presented in Section 5.
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Figure 7. (a–c) Probability of detection (POD) versus probability of false alarm (PFA) for 5 m/s, 10 m/s
and 15 m/s when signal-to-noise ratio (SNR) is -3 dB, respectively; (d–f) POD versus SNR in 5 m/s,
10 m/s and 15 m/s when PFA is 0.01, respectively.

4.3. Field Testing and Validation

The field testing is conducted by the newly designed and developed tracking system and 20′ ′ PIG
by the authors’ group at Tsinghua University, as shown in Figure 8. The tracking system developed
mainly includes an ELF transmitter, an ELF receiver and a pair of orthogonal search coil sensors.
The transmitter generates the transmitting current which is a 23 Hz triangle wave using the H-bridge
inverter controlled by MSP430 low power processor [43]. The titanium alloy shell is selected to protect
the transmitter circuit for the high-pressure in-pipe situations due to the non-magnetic and lightweight
properties. Figure 8c shows that the transmitter is equipped in the front of the PIG, and the PIG is
pulled into the Q235 steel pipe at different speeds. Figure 8d,e shows that the ELF receiver mainly
contains TMS320F28335 digital signal processor (DSP) and high-Q high-gain narrow-band filter and
amplifier. The Q-factor of the designed 16th order band-pass filter is 16 (f 0 = 23 Hz), and the overall
gain of the multi-stage amplifier is 100,000 (100 dB). The X-axis and Y-axis ELF signals received
from the orthogonal search coil sensors are first filtered and amplified, and then converted to digital
signals by 12-bit A/D converter. The DSP chips are programed by the proposed FDT methods in C
programming language. The digital ELF signals of the X-axis and Y-axis, and the test statistics, are
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recorded in real time. Figure 8f shows the developed search coil sensors, which also uses the titanium
alloy shell for the protection.
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The narrow-long search coil sensor is developed to receive very weak ELF magnetic signals.
The sensor is inserted by a rod of ferromagnetic material with a high magnetic permeability.
The diameter of enameled wires is 0.25 mm. The structure is shown in Figure 9 and the parameters are
listed in Table 5.
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There were two groups of experiments: a high SNR situation with thin wall thickness, and a low
SNR situation with thick wall thickness. Each group consisted of low speed (2 ~ 5 m/s), medium speed
(5 ~ 10 m/s) and high speed (10 ~ 15 m/s), and the burial depth was 5 m. The experimental results
are shown in Figure 10. The experimental parameters in Figure 10a–f, including pipe wall thickness
and true speed, and the corresponding estimated parameters calculated by the receiver based on the
proposed FDT method, are shown in Table 6. The true speed is recorded by the PIG odometer while
the estimated speed is obtained from β̂xy of Table 4.

Table 6. Estimated parameters of experimental results.

Figure 10 Pipe Wall Thickness True Speed Estimated Speed Estimated SNR

(a) 10 mm 4.7 m/s 4.9 m/s 10.35 dB
(b) 10 mm 8.0 m/s 7.6 m/s 9.45 dB
(c) 10 mm 11.1 m/s 10.1 m/s 6.95 dB
(d) 15 mm 6.1 m/s 6 m/s 4.00 dB
(e) 15 mm 8.3 m/s 7.8 m/s 0.55 dB
(f) 15 mm 12.5 m/s 13.8 m/s −0.9 dB

It is worth noting that when the normalized test statistic is equal to 1 and over the threshold
(indicated by arrows), it represents that the transmitter is passing right below the receiver, and the
receiver successfully detects the ELF signals in real time. Figure 10a–c shows that the X-axis ELF signal
appears as an obvious unimodal characteristic while Y-axis ELF signal appears an obvious bimodal
characteristic, which has the same characteristics as the 2-D FEM simulation. As the speed of the
transmitter increases, the ELF signal envelopes appeared to be short transient and the durations of the
test statistics exceeding the threshold were also shortened. Figure 10d–f shows that the ELF signals
were very weak and heavily interfered by narrow-band background noise. For the case of Figure 10f
shown in Table 5, the estimated SNR is even less than 0 dB. However, the normalized test statistic
appears to be an obvious peak over the threshold around t = 17 s, which determines the hypothesis of
the signal existence. At the same time and same measuring point, the ELF magnetic signals were also
measured by Mag-03 flux-gate high-sensitivity magnetometer and found to be smaller than 10 pT. This
result confirms that the developed tracking system can effectively detect the very weak ELF magnetic
signals. The experiment results validate the proposed FDT method and the tracking system developed
for high- sensitivity real-time PIG tracking.
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5. Discussions

The proposed FDT method and tracking system developed is summarized as the flow chart shown
in Figure 11. The tracking system mainly developed relies on high-sensitivity search coil sensors,
a high-Q narrow-band filter and high-gain amplifier, and the proposed FDT detection method to
realize real-time detection of short transient very weak ELF magnetic signals. The 2-D FEM simulation
results indicate that the magnitude of the very weak ELF magnetic signals is as low as 10 pT, which
is lower than one millionth of the magnitude of the Earth’s magnetic field. Thus, the orthogonal
search coil sensors, which have high number of turns, high-permeability iron core, and narrow long
structure, are designed and developed to measure the very weak ELF magnetic signals along the X-axis
and Y-axis. Then, the narrow-band filter and amplifier effectively eliminates out-of-band noise and
amplify 23 Hz target signals. Finally, as shown in Figure 10d–f, even if the ELF signals are immersed
in strong narrow-band background noise, the test statistics calculated from the FDT method are over
the thresholds under a low PFA when the transmitter passes right below the receiver.
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The normalized power spectrum of the three different signals, including noiseless ELF signals,
narrow-band noise and ELF signals with noise are shown in Figure 12. Since the frequency of
narrow-band noise is concentrated at 23 Hz, it is difficult to discriminate between ELF signals and
noise by frequency domain, which indicates that the frequency-domain information may not be useful
for the detection. Thus, the performance of the time-frequency analysis based DWT method is lower
than the time-domain characteristic based FDT method.
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The probability density function (PDF) of β̂xy and estimated SNR is shown in Figure 13. Figure 13a
shows a very concentrated distribution of β̂xy when the SNR is 6 dB or 3 dB, and even if the SNR is as
low as 0 dB, the PDF also shows the concentrated distribution around 40~50 with a low variance (βxy

is 46.9 from Table 4). The β̂xy is also used to estimate the real-time speed of the transmitter according
to the relationship established between the 2-D FEM simulation results of ELF signals and the data
fusion model. Then, Table 6 shows the errors between the estimated speed and the true speed are
less than 1.5 m/s. Thus, these results are the main reason that the detection performance of the FDT
method is higher than the amplitude-estimation based ML method and close to the upper theoretical
bound. Meanwhile, it can be seen from Table 6 that the estimated SNR can effectively distinguish high
SNR situations and low SNR situations, and can reflect the decrease of SNR as the speed increases
because of the short transient characteristics. The reason for the good estimation performance of the
SNR can also be verified by Figure 13b.
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The real-time performance of the ELF tracking system developed is based on the data fusion model,
fast calculation process, and the determined topology of the FDT. The data fusion model sets up the
linear relationship between the X-axis signal model and the Y-axis signal model by fusing the envelope
decay rates. Thus, the fused envelope decay rate can match well with the speed of the transmitter.
Then, the fast calculation process was derived to calculate the η without massive matrix inversion and
multiplication, and the calculation amount was found to be low enough for the DSP chip. The most
important factor is that each tree nodes of the FDT is determined when the maximum speed of the
transmitter is given. It is worth noting that the matrices including HX and HY, and the values including
PHX and PHY used for the calculation of the η and test statistic are both prior-known information
because of the fast calculation process and determined FDT topology. Therefore, the proposed FDT
method is very easily programmed, stored and calculated by the embedded DSP chip in practical
applications. The experiments conducted by the receiver using a TMS320F28335 DSP chip finally
validate the real-time performance of the FDT method.

6. Conclusions

Real-time detection of the short transient very weak ELF magnetic signals that are buried in strong
narrow-band background noise is one of the key research areas in the nondestructive testing (NDT)
field to ensure the safety of pipeline ILI for the oil and gas industry. The existing AGM systems work
well for high-SNR and low-speed situations, but still face the challenges brought by high-sensitivity
high-speed PIG tracking. This paper proposes a novel FDT detection method, as well as an ELF
tracking framework for the high-speed PIG, to detect the short transient very weak ELF magnetic
signals accurately and effectively. The 2-D FEM simulation results indicate that the duration and
magnitude of the ELF signals can be as low as 1 s and 10 pT, which is validated by the experimental
results. According to the short transient very weak characteristic as well as the linear relationship
between X-axis and Y-axis ELF signal models, the data fusion model was established, and the fused
envelope decay rate was used to match the speed of the transmitter. The proposed FDT method
estimates the fused envelope decay rate to calculate the test statistic in real time, which was compared
with the threshold to determine the existence of the ELF signals. The simulation results show that the
FDT method has a higher POD than the other existing methods, especially when the speed is faster, for
example, at 15 m/s. Meanwhile, the performance of the FDT method is close to the upper theoretical
bound and the difference between them is less than 5% when SNR is 0 dB. The experimental results
further validate that the proposed FDT method can detect the short transient very weak ELF signals in
real time. Based on these results, the proposed FDT method and ELF tracking system developed are
validated to be effective in real-time tracking of high-speed PIG.
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