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Abstract: Sigfox has become one of the main Low-Power Wide Area Network (LPWAN) technologies,
as it has attracted the attention of the industry, academy and standards development organizations
in recent years. Sigfox devices, such as sensors or actuators, are expected to run on limited energy
sources; therefore, it is crucial to investigate the energy consumption of Sigfox. However, the literature
has only focused on this topic to a very limited extent. This paper presents an analytical model
that characterizes device current consumption, device lifetime and energy cost of data delivery with
Sigfox. In order to capture a realistic behavior, the model has been derived from measurements carried
out on a real Sigfox hardware module. The model allows quantifying the impact of relevant Sigfox
parameters and mechanisms, as well as frame losses, on Sigfox device energy performance. Among
others, evaluation results show that the considered Sigfox device, powered by a 2400 mAh battery, can
achieve a theoretical lifetime of 1.5 or 2.5 years while sending one message every 10 min at 100 bit/s
or 600 bit/s, respectively, and an asymptotic lifetime of 14.6 years as the message transmission
rate decreases.

Keywords: Sigfox; energy; modeling; performance evaluation; Internet of Things; IoT; smart
cities; LPWAN

1. Introduction

Low-Power Wide Area Networks (LPWANs) have recently emerged as a category of wireless
technologies suitable for enabling Internet of Things (IoT) applications in a diversity of domains [1].
LPWAN technologies have been designed to support low energy consumption, since IoT devices (e.g.,
sensors and actuators) often rely on a limited energy source, such as a battery. However, in contrast
with the rather short range of many established IoT technologies [2], LPWAN technologies provide an
extended link range of up to several kilometers. Furthermore, a single radio gateway can offer network
connectivity to hundreds of thousands of IoT devices. In consequence, LPWAN requires a low amount
of infrastructure to be deployed and maintained, which has fueled its momentum in recent years.

One of the most popular LPWAN technologies is called Sigfox [3]. This technology was developed
in 2009 by the Sigfox company (Labège, France). As of the writing, Sigfox offers network coverage
allowing bidirectional communication for IoT devices in more than 50 countries, covering a population
of 1 billion inhabitants. Currently, the IETF LPWAN working group is developing functionality to
support IPv6 over Sigfox, thus enabling Internet connectivity for Sigfox devices [4,5].

Many academic studies focus on evaluating the performance of Sigfox [6–15]. Since Sigfox devices,
such as sensors or actuators, are expected to run on constrained energy sources, investigating the
energy consumption of Sigfox is crucial. However, as of the writing, this topic has received limited
attention, and existing models in the literature [9–15] are too simple (see Section 2).

This paper analytically models device current consumption, device lifetime and energy efficiency
of data delivery with Sigfox. In order to capture a realistic behavior, our model is based on
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measurements conducted on a real hardware platform. The model presented allows to determine the
influence of crucial Sigfox parameters and mechanisms, such as the uplink physical layer data rate,
payload size, unidirectional or bidirectional communication, and message losses, on Sigfox energy
performance. Our evaluation results illustrate the energy performance and trade-offs of Sigfox. Among
others, we have found that a Sigfox device running on a 2400 mAh battery can achieve a lifetime of
1.5 years (at 100 bit/s) or 2.5 years (at 600 bit/s) while transmitting one uplink message every 10 min,
and an asymptotic theoretical lifetime of 14.6 years as the message sending rate decreases.

The remainder of the paper is organized as follows: Section 2 reviews related work. Section 3
overviews Sigfox, describing its network architecture and its main communication mechanisms.
Section 4 models Sigfox end-device current consumption, end-device lifetime, and energy cost of
data delivery. Section 5 evaluates and discusses the results obtained by using the model presented,
assesssing also the sensitivity of the model to relevant parameters, and the use of energy harvesting
sources. Finally, Section 6 concludes the paper.

2. Related Work

Many published works focus on Sigfox performance evaluation. Relevant performance
parameters considered by researchers include coverage, capacity and energy consumption [6–8].
While the latter is crucial, considering that many Sigfox devices are expected to run on constrained
energy sources, it has not been accurately or comprehensively addressed. Next, a review of the
literature on Sigfox energy consumption is provided.

As of the writing, a few analytical models of Sigfox current consumption, device lifetime or energy
cost of data delivery have been published [9–15]. These models are too simple, since they do not
capture all the current consumption states related with data transmission or reception on a real Sigfox
device (see Table 1). Furthermore, they do not adequately consider (or do not consider at all) frame
losses. Other relevant parameters ignored by some of these models include the uplink bit rate and the
uplink frame payload size. A brief review of the main features, results and limitations of these models
is given next.

Morin et al. present a device lifetime comparison for a wide range of wireless IoT technologies [9].
Assuming two AAA batteries (of 1250 mAh each), values up to 15 and 25 years are derived for Sigfox
when only 10 bytes per day are sent at 100 bit/s and 1 kbit/s, respectively. The model provided only
considers uplink communications, and only two power consumption states (i.e., transmission and
sleep) are considered. Furthermore, how the current consumption values for these states are obtained
is not clear. Finally, impact of errors on device lifetime is modeled by assuming frame retransmission
based on lack of confirmation, while Sigfox uses a completely different approach (see Section 3.2). A
similar comparison study focusing on LPWAN technologies is presented in [10]. Assuming a 5 Wh
battery, lifetime values up to around 100 years are estimated for a device sending one byte of data
per day. The analytical model in that study does not capture all power consumption states, and their
characterization is not based on real hardware measurements. In addition, authors only consider
uplink communication, and fixed settings for the frame loss rate and the bit rate are used. How frame
losses are handled in the model is not specified. These two papers report a long device lifetime since
they assume an ideal sleep current, one order of magnitude below the one measured in our paper (see
Tables 1 and 2).

Hernández et al. provide an analytical model that considers uplink and downlink
communications, with a characterization of power consumption states based on measurements carried
out on a real platform [11]. Using a 1 Ah battery, a maximum device lifetime of 9 years and 1.2 years is
estimated for uplink and downlink communication, with 2 h between consecutive transmissions. The
model defines less power consumption states than the one presented in our paper, and state durations
appear to be rounded to hundreds of milliseconds. The model does not consider the impact of frame
losses, misses the fact that the downlink window duration is random (see Section 3), uses a fixed bit
rate (of 100 bit/s) and does not study the impact of the payload size.
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The rest of papers considered in this literature review provide an analytical energy consumption
model, but they do not use it to estimate the device lifetime. Ogawa et al. present an analytical model
for confirmed uplink communications, with the goal of estimating the energy cost of data delivery
per year [12]. Only transmission and reception power consumption states are considered and their
current consumption values are obtained from the datasheet of a module. The result is therefore a
very simplistic model. In addition, the impact of the bit rate, errors or the frame payload size are
not taken into account. Ruckebusch et al. follow a similar approach, with the same limitations, in
order to compare the behavior of different LPWAN technologies for over-the-air software updates [13].
Using this model in a confirmed uplink communication, the energy cost of delivering a 12-byte
frame payload is estimated to be around 0.4 J. In another work, the objective of the analytical model
presented is comparing the power consumption of GPS and Sigfox-based localization [14]. Power
consumption states are identified empirically. Using the model for an uplink communication at a
hypothetic 2-second transmission interval, the energy cost of delivering a frame with 1-byte and
12-byte payloads is estimated as 1.05 and 1.47 Joules, respectively. However, this model is limited to
uplink communication, and it does not take in consideration errors or the impact of the uplink bit
rate. Finally, Martínez et al. present an analytical model for estimating the current consumption of
a device, based on empirical data [15]. However, crucial information, including the device model,
the frame payload, the uplink bit rate, the states in the model and their associated duration and
current consumption values, is missing. In addition, the analytical model considers neither downlink
communication nor the impact of frame losses.

Based on our literature review, we conclude that our paper is the first one that provides a detailed
and comprehensive analytical model of Sigfox device current consumption, device lifetime and energy
cost of data delivery, considering real Sigfox device hardware behavior, the different communication
settings and mechanisms (uplink/downlink communication, payload size and uplink bit rate), and
the impact of frame losses.

Table 1. Current consumption of Sigfox devices considered in the literature. For each referenced paper,
the device and the current consumption states (names and values) are shown, indicating their source.
The work by Martínez et al. is not included because current consumption states are not identified and
their related values are not provided in that work [15].

Reference Device Name
Current Consumption: Uplink (left) and Downlink (right) Source of

ValuesState Name Value (mA) State Name Value (mA)

[9] Not specified Transmission 49 Reception 13 Not specified
Sleep 1.44 × 10−3

[10] ONSEMI AX-Sigfox

Tx (0 dBm) 19

- - Datasheet [16]Tx (14 dBm) 49
Standby 0.5

Sleep 1.3 × 10−3

[11] Telit LE51-868/DIP

Cmd 8.4 Cmd 8.4

Empirical

Tx 54 Tx 54
Delay Tx 12 Delay Tx 12
Standby <0.1 (a) Standby <0.1

RxW 34
Delay Rx 8.4

Rx 34

[12] TD1207R/08R Transmission 50 Reception 13 Datasheet [17]

[13] ONSEMI AXSFEU Transmission 49 Reception 10 Datasheet [18]

[14] FiPy

Wake up 1 80

- - Empirical
Wake up 2 160

Idle 280
Tx 0.32/0.42

Deep sleep 25 × 10−3
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3. Sigfox Overview

This section provides an overview of Sigfox. The section is organized in two parts. The first
one describes the Sigfox network architecture. The second one focuses on the Sigfox radio interface,
covering physical communication characteristics, as well as protocol features.

3.1. Network Architecture

The Sigfox network architecture comprises devices, base stations and a core network (Figure 1).
Devices (e.g., sensors or actuators) are provided with wireless connectivity via neighboring base
stations. A device is not bound to a particular base station. Therefore, association signaling is not
needed. The base stations are connected through the public Internet with a single cloud-based core
network. This approach avoids handover procedures to support device mobility. The core network
is composed of the Service Center and the Registration Authority. The Service Center controls and
manages the base stations and the devices. The Registration Authority is responsible for authorizing
the network access of devices. Applications may interact with the data collected by devices, and with
devices themselves, via a web interface and a number of Application Program Interfaces (APIs).

Sensors 2019, 19, 681 4 of 19 

 

This section provides an overview of Sigfox. The section is organized in two parts. The first one 
describes the Sigfox network architecture. The second one focuses on the Sigfox radio interface, 
covering physical communication characteristics, as well as protocol features.  

3.1. Network Architecture 

The Sigfox network architecture comprises devices, base stations and a core network (Figure 1). 
Devices (e.g. sensors or actuators) are provided with wireless connectivity via neighboring base 
stations. A device is not bound to a particular base station. Therefore, association signaling is not 
needed. The base stations are connected through the public Internet with a single cloud-based core 
network. This approach avoids handover procedures to support device mobility. The core network 
is composed of the Service Center and the Registration Authority. The Service Center controls and 
manages the base stations and the devices. The Registration Authority is responsible for authorizing 
the network access of devices. Applications may interact with the data collected by devices, and with 
devices themselves, via a web interface and a number of Application Program Interfaces (APIs). 

 
Figure 1. Sigfox network architecture [3]. 

3.2. Sigfox Radio Interface 

Sigfox supports unidirectional and bidirectional communication over unlicensed spectrum. In 
Europe, the bands 868.00 MHz–868.60 MHz and 869.40 MHz to 869.65 MHz are used for uplink and 
downlink transmission, respectively. In the USA, the 902 MHz band is used. In order to achieve a 
long link range, while limiting the transmit power, Sigfox uses Ultra Narrow Band (UNB) radio 
transmission for both uplink and downlink. The bandwidth of an uplink channel depends on the 
region (e.g. it is 100 Hz in Europe and 600 Hz in the United States), while the downlink channel 
bandwidth is 1.5 kHz. The maximum uplink transmit power is 25 mW in Europe (158 mW in the 
USA), whereas the maximum downlink transmit power is 500 mW in Europe (4 W in the USA). The 
modulations used for the uplink and the downlink are Differential Binary Phase-Shift Keying 
(DBPSK) and Gaussian Frequency-Shift Keying (GFSK), respectively. DBPSK is more 
bandwidth-efficient than GFSK, which favors an increased uplink range (compensating for the 
lower permitted transmit power in the uplink band). In addition, DBPSK yields good protection 
against interference (e.g. jamming), as received power then concentrates in a very narrow 
bandwidth and reaches a high received power level. The uplink physical layer bit rate is 100 bit/s (in 
Europe) or 600 bit/s (in the United States) whereas the downlink physical layer bit rate is 600 bit/s 
worldwide. 

Sigfox uses license-free spectrum, which is subject to spectrum access regulations. For example, 
in Europe, the bands used by Sigfox for uplink and downlink transmission are subject to a duty cycle 
limitation of 1% and 10%, respectively [6]. In order to comply with spectrum usage regulations, the 
system typically allows up to 140 uplink messages and four downlink messages per day. These 
message rate constraints may be relaxed depending on the specific regulatory domain of operation 
and on system conditions [3]. 

Figure 1. Sigfox network architecture [3].

3.2. Sigfox Radio Interface

Sigfox supports unidirectional and bidirectional communication over unlicensed spectrum. In
Europe, the bands 868.00 MHz–868.60 MHz and 869.40 MHz to 869.65 MHz are used for uplink and
downlink transmission, respectively. In the USA, the 902 MHz band is used. In order to achieve
a long link range, while limiting the transmit power, Sigfox uses Ultra Narrow Band (UNB) radio
transmission for both uplink and downlink. The bandwidth of an uplink channel depends on the
region (e.g., it is 100 Hz in Europe and 600 Hz in the United States), while the downlink channel
bandwidth is 1.5 kHz. The maximum uplink transmit power is 25 mW in Europe (158 mW in the
USA), whereas the maximum downlink transmit power is 500 mW in Europe (4 W in the USA). The
modulations used for the uplink and the downlink are Differential Binary Phase-Shift Keying (DBPSK)
and Gaussian Frequency-Shift Keying (GFSK), respectively. DBPSK is more bandwidth-efficient than
GFSK, which favors an increased uplink range (compensating for the lower permitted transmit power
in the uplink band). In addition, DBPSK yields good protection against interference (e.g., jamming),
as received power then concentrates in a very narrow bandwidth and reaches a high received power
level. The uplink physical layer bit rate is 100 bit/s (in Europe) or 600 bit/s (in the United States)
whereas the downlink physical layer bit rate is 600 bit/s worldwide.

Sigfox uses license-free spectrum, which is subject to spectrum access regulations. For example,
in Europe, the bands used by Sigfox for uplink and downlink transmission are subject to a duty
cycle limitation of 1% and 10%, respectively [6]. In order to comply with spectrum usage regulations,
the system typically allows up to 140 uplink messages and four downlink messages per day. These
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message rate constraints may be relaxed depending on the specific regulatory domain of operation
and on system conditions [3].

Sigfox defines the physical frame formats for uplink and downlink message transmission (see
Figure 2). The minimum uplink and downlink frame sizes are 14 bytes and 21 bytes, respectively. The
maximum frame size is 29 bytes for both uplink and downlink.
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Figure 2. Sigfox frame formats: (a) uplink and (b) downlink. All frame field sizes are expressed in
bits. The third frame header field starting from the left is the Device Identifier (Device ID) or the Error
Correcting Code (ECC), for uplink and downlink frame formats, respectively. The two rightmost frame
fields are a Message Authentication Code (Msg Auth Code) and a Frame Check Sequence (FCS).

Communication is asynchronous and device-initiated, which allows the device to stay in sleep
state by default and minimize its energy consumption. An uplink message transmission may be
received by several base stations (on average, by three base stations [19]), enabling cooperative
reception and spatial diversity. This approach naturally supports device mobility.

Sigfox defines two types of message exchanges: unidirectional and bidirectional transactions
(Figure 3). In the first one, the device transmits an uplink frame via a randomly selected frequency
channel, and then transmits two exact replicas of that frame, by using other random frequency channels
at different time intervals. This feature provides frequency and time diversity, which contribute to
communication robustness in the presence of issues such as multipath fading, interference, etc. Note
that, in unidirectional transactions, there is no response to uplink frame transmission. Therefore,
unidirectional transactions are unconfirmed. In bidirectional transactions, an uplink message is first
transmitted by the device by using the same procedure as in unidirectional transactions (i.e., a first
uplink frame is followed by two replicas in different frequency channels). After a time, denoted
TDL_WIN_START, since the end of the first uplink frame transmission, the device initiates a receive
window, of maximum duration denoted TDL_WIN_MAX, intended to enable reception of a downlink
frame sent by a base station. The downlink frame may carry actual application data for the device and,
at the same time, it may also serve as an acknowledgment for the uplink frame. After reception of the
downlink message, an uplink confirmation is sent by the device after TACK time. Note that, in contrast
with other technologies, retransmissions due to absence of feedback from the other endpoint of a link
do not exist in Sigfox.
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4. Modeling Sigfox Device Current Consumption

This section presents models of crucial energy performance parameters of Sigfox, such as device
current consumption, device lifetime (for battery-operated devices), and energy efficiency of data
delivery. A device periodically transmits an uplink data message (e.g., a message that carries a sensor
reading) is assumed. The models consider the impact of frame losses. The section is divided in two
subsections, which offer the aforementioned models for unidirectional and bidirectional transactions,
respectively. All Sigfox physical layer bit rates are considered.

4.1. Unidirectional Transactions

We first model the average current consumption of a device communicating by means of
undirectional exchanges, denoted Iavg_uni. To this end, a profile of the different states involved in
a unidirectional transaction is created, considering the duration and current consumption of each
state. In order to realistically model the device current consumption characteristics, and without loss
of generality, the model is developed based on measurements from a real Sigfox device. Figure 4
shows the measurement setup, which includes an N6705A power analyzer (Agilent, Santa Clara,
CA, USA) and an MKRFOX1200 Sigfox device (Arduino, Somerville, MA, USA) [20]. The voltage
supplied by the power analyzer is 3 V. The transmit power of the device is 14.5 dBm. The uplink bit
rate supported by the device is 100 bit/s. The device is located in an indoor scenario, and makes use of
the network coverage provided by Sigfox in the Barcelona area. A 16-bit Msg Auth Code field is used
in uplink frames.

The Sigfox device is assumed to periodically perform a transaction, therefore its current
consumption behavior is modeled over one period. In this subsection, unidirectional transactions are
assumed. Therefore, each period comprises the operations carried out by the device to perform the
transmission of one data message, including its replicas, whereas the device is in sleep mode during
the remaining time in the period. Note that, in unidirectional transactions, device current consumption
is independent of packet losses. Time and current consumption measurement results are obtained
from several individual measurements within a transaction period. Negligible differences were found
within each set of individual measurements.
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Figure 5 depicts the current consumption profile of a unidirectional transaction performed by the
MKRFOX1200 device. Table 2 indicates the different states involved in a unidirectional transaction, as
well as the variables used to denote the corresponding duration and current consumption of each state.
The state duration and current values shown in Table 2 correspond to the average of 10 individual
measurements in each case, with a maximum observed deviation from the average value below 5%.
The initial state of the device is the sleep state, where the device current consumption is 2–3 orders
of magnitude below that of the rest of states. Note that this measured sleep current is greater than
that obtained from transceiver datasheets (e.g., [9,10]). A similar phenomenon was observed for
LoRa/LoRaWAN devices [21]. A reason is that, on devices such as development kits, measured sleep
current is the sum of the sleep currents from all circuits including the transceiver, microcontroller, plus
the sum of the leakage currents of decoupling and filtering capacitors, as well as resistors. In order to
initiate the procedure for carrying out the message transmission, the device first wakes up (state 1).
Next, the device performs the transmission of the first uplink frame transmission (state 2). After that,
it waits for an interval (state 3) that ends with the start of the transmission of the first uplink frame
replica (state 2). Similarly, another wait time (state 3) and a second replica transmission (state 2) follow.
Finally, the device executes a cool down sequence (state 4) before returning to the sleep mode (state 5).
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Table 2. States, variables and measurement results for Sigfox unidirectional transactions. For a bit rate
of 100 bit/s, Ttx can take values between 1200 ms (1-byte payload) and 2080 ms (12-byte payload).
Tsleep_uni ranges in this study from 0 up to ~TPeriod (Tsleep_uni tends to TPeriod for very high TPeriod values).

State Number Description
Duration Current Consumption

Variable Value (ms) Variable Value (mA)

1 Wake up Twu 287 Iwu 10.4
2 Transmission Ttx [1200,2080] (4) Itx 27.2
3 Wait next transmission Twntx 486 Iwntx 1.2
4 Cool down Tcd 510 Icd 1.2
5 Sleep Tsleep_uni [0,TPeriod) (2) Isleep 16 × 10−3

Let TPeriod denote the time between two consecutive periodic transactions initiated by the device.
Let Ti and Ii represent the duration and current consumption of state i in Table 1, respectively. Based
on the introduced variables, the average current consumption for a device performing unidirectional
transactions, Iavg_uni, can be obtained as per Equation (1):

Iavg_uni =
1

TPeriod

Nstates_uni

∑
i=1

ni·Ti·Ii (1)

where ni indicates the number of times state i is present in the uplink data frame transmission procedure
(note that n2 = 3, n3 = 2, and ni = 1 otherwise) and Nstates_uni is 5. Note that Tsleep can be computed as:

Tsleep_uni = TPeriod − Tact_uni (2)

where Tact_uni denotes the sum of the durations of all states related with transmission activities,
i.e., a wake-up state (of duration Twu), 3 transmission states (each one of duration Ttx), 2 wait next
transmission states (of duration Twntx) and the cool down state (of duration Tcd):

Tact_uni = Twu + 3·Ttx + 2·Twntx + Tcd (3)

The transmission time, Ttx, is variable and depends on the total uplink frame size (lframe_UL), and
on the uplink bit rate in use (BRUL):

Ttx =
l f rame_UL

BRUL
(4)

As Iavg_uni can be computed by using Equations (1)–(4), the theoretical lifetime of a
battery-operated device that performs unidirectional transactions, denoted Tlifetime_uni, can be
determined as shown next, by taking into account the battery capacity, Cbattery (expressed in mA·h), and
by approximating a realistic battery behavior by considering the battery self-discharge current, Iself_dis:

Tli f etime_uni =
Cbattery

Iavg_uni + Isel f _dis
(5)

where Iself_dis is assumed as a constant value over time.
The third performance parameter modeled is the energy cost of data delivery, ECdelivery_uni, which

indicates the energy consumed by the device per each successfully delivered bit of data payload in
unidirectional transactions. ECdelivery_uni can be obtained as shown next:

ECdelivery_uni =
Iavg_uni·V·TPeriod

E
[
ldelivery

] (6)
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where V denotes the battery voltage and E[ldelivery] indicates the expected amount of data delivered
by the device. In the previous equation, the numerator indicates the energy consumed by the device
during TPeriod.

In unidirectional transactions, the current consumed by the device and its lifetime are independent
of uplink frame delivery success. However, E[ldelivery] depends on the Frame Loss Rate (FLR), and
therefore frame losses have an impact on ECdelivery_uni. Let lPayload be the frame payload size, and let
FLRUL denote the FLR at the base station for a single uplink frame transmission. The uplink data
message will be correctly delivered if at least one of the corresponding three uplink frame transmissions
is successfully received. Then, the expected amount of data delivered by the device per transaction is
determined as:

E
[
ldelivery

]
= lPayload·

(
1 − FLRUL

3
)

(7)

4.2. Bidirectional Transactions

This subsection models the average current consumption of a device that initiates bidirectional
transactions periodically, Iavg_bi. The model is derived from measurements on the corresponding
current consumption profile of the same hardware platform, and with the same environment and
methodology, used in the previous subsection. Figure 6 illustrates the current consumption of a device
that initiates and successfully completes a bidirectional transaction.
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In a bidirectional transaction, the number of states involved increases compared to that of a
unidirectional transaction. Table 3 summarizes the states that correspond to a bidirectional transaction,
as well as their related duration and current variables and values. The state duration and current
values shown in Table 3 correspond to the average of 10 individual measurements in each case, with a
maximum deviation from the average value below 6%.

The bidirectional transaction starts with the device transmitting the three replicas of its uplink
message. Therefore, states 1–3 as described for unidirectional transactions (Table 2) are also present
at the beginning of the bidirectional transaction. However, after the transmission of the third replica,
the device waits (state 4) until it starts a reception interval (state 5). Once the device receives the
downlink message sent by the base station, it waits for a shorter interval (state 6) until it sends the
uplink confirmation. Shortly after, the device goes through a cool down phase (state 8), after which it
returns to sleep mode (state 9).
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Table 3. States, variables and their values for Sigfox bidirectional transaction. For a bit rate of 100 bit/s,
Ttx can take values between 1200 ms (1-byte payload) and 2080 ms (12-byte payload). The reception
duration ranges from 387 ms up to TDL_WIN_MAX = 25 s (in US and EU regions), with an average of
Trx = 12.69 s. Tsleep_bi ranges in this study from 0 up to ~TPeriod (Tsleep_bi tends to TPeriod for very high
TPeriod values).

State Number Description
Duration Current Consumption

Variable Value (ms) Variable Value (mA)

1 Wake up Twu 305 Iwu 10.7
2 Transmission Ttx [1200,2080] (4) Itx 27.6
3 Wait next transmission Twntx 493 Iwntx 1.2
4 Wait next reception Twnrx 16493 Iwnrx 1.3
5 Reception Trx 12690 (11) Irx 18.5

6 Wait confirm.
transmission Twctrl 1430 Iwctrl 1.2

7 Confirmation
transmission Tctrl_tx 1850 Ictrl_tx 27.0

8 Cool down Tcd 495 Icd 1.2
9 Sleep Tsleep_bi [0,TPeriod) (9) Isleep 16 × 10−3

In the absence of frame losses, the average current, Iavg_bi, can be obtained by using Equations (8)
and (9):

Iavg_bi =
1

TPeriod

Nstates_bi

∑
j=1

nj·Tj·Ij (8)

Tsleep_bi = TPeriod − Tact_bi (9)

where Tj and Ij represent the duration and current consumption of state j in Table 3, respectively, and
nj indicates the number of times state j is present in the uplink data frame transmission procedure
(note that n2 = 3, n3 = 2, and nj = 1 otherwise). Equations (8) and (9) are equivalent to (1) and (2),
however considering now the states described in Table 3, using the number of states that corresponds
to bidirectional transactions, Nstates_bi (equal to 9), and the time related with bidirectional transaction
activities, Tact_bi. The latter is computed as per the next equation:

Tact_bi = Twu + 3·Ttx + 2·Twntx + Twnrx + Trx + Twctrl + Tctrl_tx + Tcd (10)

Note that the base station has flexibility to determine the start of a downlink transmission.
However, such transmission needs to fit the interval defined by the downlink window, with maximum
duration denoted TDL_WIN_MAX. Assuming that all possible downlink start times are equally probable,
Trx can be modeled as the expected value of a uniformly distributed random variable within the
interval [Ttx_DL, TDL_WIN_MAX]. Therefore, Trx is defined by the following equation:

Trx =
Ttx_DL + TDL_WIN_MAX

2
(11)

Next, Iavg_bi is determined in the presence of a non-zero FLR. Three different device current
consumption profiles need to be considered, corresponding to three events that may occur, which are
denoted A, B and C. Let A be the event where at least one of the three uplink frame transmissions is
correctly received by the base station, and the downlink frame is also correctly received by the device.
In this case, device current consumption is illustrated by Figure 6 and Table 3. Let B correspond to the
event where the downlink frame is incorrectly received, and therefore the final uplink confirmation
is not sent by the device. Finally, let C denote the event where none of the three uplink frame
transmissions is correctly received, thus the base station does not send a downlink message, and
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therefore the device remains listening during the maximum downlink window duration. Based on the
three events described, Iavg_bi can be computed as shown next:

Iavg_bi = IA·pA + IB·pB + IC·pC (12)

where IA, IB and IC correspond to the average current consumption over a transaction period where
events A, B and C occur, respectively, and pA, pB, and pC denote the corresponding respective
probabilities. These current consumption and probability variables can be calculated as described next.

IA corresponds to the calculation of Iavg_bi as determined by using Equations (8)–(11), since both
the uplink and the downlink frame transmissions are successful in event A.

IB can be obtained similarly to (8), although the states related with sending the uplink confirmation,
i.e., states 6 and 7 in Table 3, need to be excluded from the calculation as shown next:

IB =
1

TPeriod

(Nstates_bi

∑
j=1

Tj·Ij −
7

∑
j=6

Tj·Ij

)
(13)

where state 9 in event B, i.e., the sleep interval in event B, denoted Tsleep_bi_B, is calculated by using (14)
and (15):

Tsleep_bi_B = TPeriod − Tact_bi_B (14)

Tact_bi_B = Twu + 3·Ttx + 2·Twntx + Twnrx + Trx + Tcd (15)

Finally, IC can be determined on the basis of (13)–(15), but setting Trx to the maximum duration of
the downlink receive window, denoted TDL_WIN_RX_MAX, since in event C the device stays in receive
mode for that time.

The probabilities pA, pB, and pC, can be calculated as follows:

pA =
(

1 − FLRUL
3
)
·(1 − FLRDL) (16)

pB =
(

1 − FLRUL
3
)
·FLRDL (17)

pC = FLRUL
3 (18)

where FLRDL denotes the FLR for downlink transmission.
With regard to the rest of performance parameters considered in this paper, let Tlifetime_bi and

ECdelivery_bi denote the device lifetime and the energy cost of data delivery, respectively, for a device
that triggers bidirectional transactions. These performance parameters can be obtained on the basis of
Equations (5) and (6), by replacing Iavg_uni by Iavg_bi in both equations, as shown next:

Tli f etime_bi =
Cbattery

Iavg_bi + Isel f _dis
(19)

ECdelivery_bi =
Iavg_bi·V·TPeriod

E
[
ldelivery

] (20)

Note that the expected amount of data delivered by the device, E[ldelivery], is the same in either a
unidirectional transaction or in a bidirectional transaction.

5. Evaluation

Based on the models presented in Section 4, this section evaluates Sigfox device current
consumption and lifetime, as well as the energy cost of data delivery. This section is divided in five
subsections. The first three focus on one of the aforementioned performance parameters, respectively.
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Section 5.4 analyzes the impact of critical parameters on the model. Finally, Section 5.5 studies the
performance of Sigfox devices when using energy harvesting systems as power sources.

The evaluation considers a wide range of TPeriod values, including values (below 10 min) that
are smaller than the minimum ones that stem from the maximum uplink and downlink message
rate limitations intended to comply with spectrum access regulations. The purpose is illustrating the
performance that can be achieved when such regulations are not in force (e.g., in some regions of
the world).

5.1. Device Current Consumption

This subsection evaluates the average Sigfox device current consumption, based on
Equations (1)–(4) and (8)–(18). Figure 7 shows the average current consumption of the Sigfox device
for both unidirectional and bidirectional transactions, as a function of TPeriod, for an uplink bit rate
of 100 bit/s, FLR = 0, and uplink message payload sizes of 1 byte and 12 bytes. An uplink bit rate
of 600 bit/s has also been evaluated; however, for the sake of illustration clarity, the corresponding
curve is only shown for a 1-byte payload and unidirectional transactions in Figure 7. As expected,
the current consumption decreases with the transaction period. When the latter is greater than
1000 min, the sleep interval becomes dominant, therefore differences among the considered options
become reduced. Otherwise, unidirectional transactions yield significant current consumption savings,
which increase as the transaction period decreases. For example, the average current consumption is
0.18 mA and 0.68 mA, for 1-byte payload unidirectional and bidirectional transactions, respectively,
for TPeriod = 10 min.
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Figure 7. Average current consumption of the device, for unidirectional and bidirectional transactions,
as a function of TPeriod, for FLR = 0, and for uplink payload sizes of 1 byte and 12 bytes.

Impact of the payload size on current consumption is relatively greater for unidirectional
transactions, since bidirectional transactions comprise a downlink message and a final uplink
confirmation that are independent of the data payload size in the data message sent. Finally, using a
600 bit/s uplink bit rate reduces significantly the current consumption for low to moderate transaction
periods, especially for unidirectional transactions. The reason is an uplink frame transmission time
decrease by a factor of 6, when compared to using 100 bit/s. For example, for TPeriod = 10 min,
unidirectional transactions and a 1-byte payload, the average current consumption is 0.18 mA and
0.11 mA for uplink bit rates of 100 bit/s and 600 bit/s, respectively. The relative impact of the uplink
bit rate decreases for bidirectional transactions (from 0.82 mA to 0.74 mA for a 1-byte payload, for
uplink bit rates of 100 bit/s and 600 bit/s), and it decreases for both unidirectional and bidirectional
transactions as TPeriod increases, where the sleep interval becomes dominant.
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We next evaluate the impact of a non-zero FLR on the current consumption of the device in
bidirectional transactions, for an uplink payload size of 1 byte, and an uplink bit rate of 100 bit/s
(Figure 8).
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Figure 8. Impact of FLR on the average current consumption of the device, for bidirectional transactions,
for an uplink bit rate of 100 bit/s, for an uplink payload size of 1 byte, and for different values of TPeriod.

For simplicity, symmetric link performance is assumed, so that FLRUL = FLRDL. As shown in
Figure 8, for relatively low FLR values, current consumption of the device slightly decreases (current
consumption decrease is below 3%). This happens because in such region of FLR values, event B gains
non-negligible influence. In this event, the downlink message is lost and the final uplink transmission is
not performed, therefore reducing device current consumption (note that, while the uplink message is
successfully delivered, the downlink one is not). For FLR values greater than 0.5, current consumption
increases, since event C (i.e., none of the three uplink data frame transmissions is successful) becomes
significant. In that event, the uplink transmission is not received by the base station, then there is
no downlink message sent in response, and the device stays listening for the whole duration of the
downlink receive window. However, in a real deployment, it is expected that FLR values should be
reasonably low. Finally, note that the relative impact of FLR on current consumption decreases with
the transaction period, since then the sleep interval becomes more dominant.

5.2. Device Lifetime

On the basis of Equations (5) and (19), and the results presented in the previous subsection,
we next determine the device lifetime, for the same range of scenarios considered in the previous
subsection. A battery with a capacity of 2400 mAh, and a self-discharge rate of 1%/year of its initial
capacity is assumed [22].

Figure 9 shows the lifetime of a Sigfox device under the assumed conditions, for both
unidirectional and bidirectional transactions, as a function of TPeriod, for an uplink bit rate of 100 bit/s,
for uplink message payload sizes of 1 byte and 12 bytes, and for FLR = 0. An uplink bit rate of 600
bit/s has also been evaluated; however, for the sake of illustration clarity, the corresponding curve is
only shown for a 1-byte payload and unidirectional transactions. Overall, device lifetime behavior is
inversely proportional to that of current consumption shown in the previous section. As expected,
device lifetime increases with the transaction period, with an asymptotic device lifetime of 14.6 years.
Differences between the considered options become negligible for a transaction period greater than
1000 min or more, since sleep interval then becomes dominant. Otherwise, differences among the
considered options are significant, and they increase (in relative terms) as the transaction period
decreases. For example, for a transaction period of 1000 min, and an uplink bit rate of 100 bit/s, device
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lifetime for unidirectional transactions is 13.4 years and 12.6 years, for 1-byte and 12-byte payloads,
respectively. However, for a transaction period of 10 min and the same uplink bit rate of 100 bit/s,
device lifetime for unidirectional transactions is 1.47 years and 0.87 years, respectively. As it can
be seen, impact of the uplink message payload size on device lifetime is significant, especially for
unidirectional transactions, and for low to moderate transaction periods (of up to ~100 min). On
the other hand, use of bidirectional transactions significantly reduces device lifetime compared to
unidirectional transactions, especially for low to moderate transaction periods. For example, for a
1-byte payload, an uplink bit rate of 100 bit/s and a transaction period of 10 min, device lifetime is
1.47 years and 0.40 years for unidirectional transactions and for bidirectional transactions, respectively.
Finally, using an uplink bit rate of 600 bit/s increases device lifetime for low to moderate transaction
periods. For example, for TPeriod = 10 min, unidirectional transactions and a 1-byte payload, the device
lifetime is 1.47 years and 2.51 years for uplink bit rates of 100 bit/s and 600 bit/s, respectively. Similarly
to the behavior of the average current consumption as the transaction period increases, the relative
impact of the uplink bit rate decreases for bidirectional transactions (e.g. from 0.40 years to 0.43 years
for a 1-byte payload, for uplink bit rates of 100 bit/s and 600 bit/s and TPeriod = 10 min), and it decreases
for both unidirectional and bidirectional transactions with the transaction period.

Sensors 2019, 19, 681 14 of 19 

 

  

  
Figure 9. Device lifetime, for unidirectional and bidirectional transactions, as a function of TPeriod, and 
for uplink payload sizes of 1 byte and 12 bytes, for FLR = 0. 

5.3. Energy Cost of Data Delivery  

This subsection evaluates the energy cost of data delivery for both unidirectional and 
bidirectional transaction types, on the basis of Equations (6) and (20). Figure 10 depicts ECdelivery_uni 
and ECdelivery_bi as a function of the transaction period, for unidirectional and bidirectional 
transactions, for 1-byte and 12-byte payload sizes, and for uplink bit rates of 100 bit/s and 600 bit/s. 
For the sake of illustration clarity, from the 600 bit/s uplink bit rate cases, only the curve 
corresponding to a 1-byte payload and unidirectional transactions is shown. For all considered 
options, the energy cost of data delivery increases with the transaction period. The reason is that one 
data payload is delivered per transaction period, and the energy consumption over a transaction 
period increases with the latter (due to the current consumption during a sleep interval that also 
increases). As the transaction period increases, the difference between using unidirectional and 
bidirectional transactions becomes less relevant, since the sleep interval becomes dominant.  

A remarkable result is that, for an uplink bit rate of 100 bit/s, the energy cost of delivering a 
12-byte payload with a bidirectional transaction is from 2 to 10 times lower than that of delivering a 
1-byte payload with a unidirectional transaction. As expected, the energy cost of data delivery is 
inversely proportional to the delivered payload size. 

Finally, the energy cost of data delivery decreases for an uplink bit rate of 600 bit/s, compared to 
that obtained for an uplink bit rate of 100 bit/s, since transmission time of the uplink messages 
decreases as well. The quantitative impact of the uplink bit rate is more relevant for unidirectional 
transactions than for bidirectional ones. For example, for a 1-byte payload, TPeriod = 10 min, and an 
uplink bit rate of 100 bit/s, the energy cost of data delivery in unidirectional transactions is 1.59 times 
greater than that obtained with an uplink rate of 600 bit/s. However, for the same settings but using 
bidirectional transactions, the relative difference decreases to a factor of 1.06. As the transaction 
period increases, impact of the bit rate tends to decrease since the active states become less relevant. 

In order to better assess the impact of loss rate on both ECdelivery_uni and ECdelivery_bi, Figure 11 shows 
both performance parameters, for unidirectional and bidirectional transactions, for an uplink bit rate 
of 100 bit/s, and for different FLR values. As the FLR grows, the energy cost of data delivery 
increases. For unidirectional transactions, while device current consumption is independent of the 
frame loss rate, the energy cost of data delivery increases with FLR. For bidirectional transactions, as 
explained in Section 5.1, FLR leads to a slight decrease in device current consumption for FLR up to 

0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000

Lif
et

im
e 

(y
ea

rs
)

Transaction period (min)

Bidir. - 1 byte
Unidir. - 1 byte
Unidir. - 12 bytes
Bidir. - 12 bytes
Unidir. - 1 byte - 600 bit/s
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for uplink payload sizes of 1 byte and 12 bytes, for FLR = 0.

With regard to non-zero FLR scenarios, the relative impact on device lifetime can be determined
on the basis of the results shown in Figure 8. Since device lifetime is inversely proportional to current
consumption, the relative impact of FLR on device lifetime is the inverse of the one shown in Figure 8.
Device lifetime slightly increases (by a factor below 3%) for low FLR values (at the expense of downlink
message loss) and it decreases for very low quality links (FLR > 0.5).

5.3. Energy Cost of Data Delivery

This subsection evaluates the energy cost of data delivery for both unidirectional and bidirectional
transaction types, on the basis of Equations (6) and (20). Figure 10 depicts ECdelivery_uni and ECdelivery_bi
as a function of the transaction period, for unidirectional and bidirectional transactions, for 1-byte and
12-byte payload sizes, and for uplink bit rates of 100 bit/s and 600 bit/s. For the sake of illustration
clarity, from the 600 bit/s uplink bit rate cases, only the curve corresponding to a 1-byte payload
and unidirectional transactions is shown. For all considered options, the energy cost of data delivery
increases with the transaction period. The reason is that one data payload is delivered per transaction
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period, and the energy consumption over a transaction period increases with the latter (due to the
current consumption during a sleep interval that also increases). As the transaction period increases,
the difference between using unidirectional and bidirectional transactions becomes less relevant, since
the sleep interval becomes dominant.
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A remarkable result is that, for an uplink bit rate of 100 bit/s, the energy cost of delivering a
12-byte payload with a bidirectional transaction is from 2 to 10 times lower than that of delivering
a 1-byte payload with a unidirectional transaction. As expected, the energy cost of data delivery is
inversely proportional to the delivered payload size.

Finally, the energy cost of data delivery decreases for an uplink bit rate of 600 bit/s, compared
to that obtained for an uplink bit rate of 100 bit/s, since transmission time of the uplink messages
decreases as well. The quantitative impact of the uplink bit rate is more relevant for unidirectional
transactions than for bidirectional ones. For example, for a 1-byte payload, TPeriod = 10 min, and an
uplink bit rate of 100 bit/s, the energy cost of data delivery in unidirectional transactions is 1.59 times
greater than that obtained with an uplink rate of 600 bit/s. However, for the same settings but using
bidirectional transactions, the relative difference decreases to a factor of 1.06. As the transaction period
increases, impact of the bit rate tends to decrease since the active states become less relevant.

In order to better assess the impact of loss rate on both ECdelivery_uni and ECdelivery_bi, Figure 11
shows both performance parameters, for unidirectional and bidirectional transactions, for an uplink
bit rate of 100 bit/s, and for different FLR values. As the FLR grows, the energy cost of data delivery
increases. For unidirectional transactions, while device current consumption is independent of the
frame loss rate, the energy cost of data delivery increases with FLR. For bidirectional transactions,
as explained in Section 5.1, FLR leads to a slight decrease in device current consumption for FLR up
to ~0.5, which is compensated by the corresponding lower delivery rate to keep a roughly constant
energy cost of data delivery as a function of FLR. For greater FLR values, energy cost of data delivery
increases; since current consumption increases, while delivery rate decreases, the energy cost of data
delivery for bidirectional transactions exhibits a greater increase with FLR than for unidirectional
transactions. For example, for FLR = 0.7, ECdelivery_uni and ECdelivery_bi increase by up to 52% and 64%,
respectively, when compared to FLR = 0.
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5.4. Impact of Critical Parameters on the Model

This subsection studies the impact of critical parameters, such as the sleep current, the Sigfox
device transmit power, and the uplink frame size, on the model presented in this paper.

A parameter with a crucial impact on energy consumption metrics is the sleep current, Isleep.
As discussed in Section 4.1, the sleep current in the device used for this work is 16 µA, whereas
transceiver datasheets may indicate a sleep current in the order of 1 µA. Figure 12 depicts the average
current consumption for Isleep settings such as 16 µA and 1 µA, for different transaction types, and
FLR = 0. An uplink bit rate of 100 bit/s is assumed. As it can be seen, impact of Isleep increases with the
transaction period, since Isleep is the asymptotic current consumption value (note that Iself_dis needs to
be considered as well when a battery is used, with a relative impact that increases as the transaction
period decreases). For bidirectional transactions, and a 12-byte payload, the Isleep settings considered
lead to significant current consumption differences for a TPeriod of around 100 min or greater. For
unidirectional transactions, and a 1-byte payload, current consumption differences arise for lower
TPeriod values (e.g., 10 min), due to the lower overall current consumption in unidirectional transactions.

Another parameter that is relevant in terms of energy consumption is the Sigfox device transmit
power. The device used in our evaluation only supports one transmit power value (i.e., 14.5 dBm).
Such a value matches the maximum allowed device transmit power according to EU regulations, and
for this reason it is commonly used as the default or the only transmit power setting in other Sigfox
hardware platforms [9–11,13]. However, from the point of view of the model, the transmit power used
has an influence on the performance parameters considered in this paper, since Itx depends on the
transmit power setting.

Figure 13 illustrates the impact on the average current consumption of considering different Itx

values, such as the one obtained with our measurements, i.e., 27.6 mA, and 15 mA, different transaction
types and uplink payload sizes. An uplink bit rate of 100 bit/s is assumed. As shown in Figure 13, the
transmit power, and thus Itx, is relevant for low transaction periods. The impact of Itx is greater for
unidirectional transactions, since in bidirectional transactions the Sigfox device consumes a significant
amount of current during the receive window.
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Finally, another relevant parameter is the uplink frame size. Note that this parameter grows
linearly with the uplink frame payload size and, as already illustrated in Sections 5.1–5.3, it has a
relevant impact on device current consumption, device lifetime and energy cost of data delivery.
However, another important aspect to consider regarding the uplink frame size is its relationship with
the FLR. A frame may be lost due to bit errors (e.g., due to poor received signal, challenging signal
propagation conditions, interference, etc.), and it may also be lost due to collisions [7]. Increasing the
uplink frame size increases the FLR for both reasons.

As shown in Sections 5.1 and 5.3, the FLR affects current consumption for bidirectional transactions
(mostly increasing current consumption for FLR > 0.5), and a non-zero FLR increases the energy cost
of data delivery.

5.5. Use of Energy Harvesting

While using a battery as the energy source for a sensor device is a common approach, energy
harvesting is also a relevant alternative. This section evaluates the minimum feasible transaction
period for a Sigfox device powered by an energy harvesting source. The results are obtained
based on Equations (1)–(4) and (8)–(18), considering 1-byte and 12-byte payloads, unidirectional
and bidirectional transactions, and two energy harvesting system models: a Panasonic AT-7665A
film outdoor solar panel, and a Panasonic AM-1815CA glass indoor solar panel [23,24]. The former
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typically provides a current of 38.6 mA and a voltage of 3 V, whereas the latter typically gives 47 µA
and 3 V.

Table 4 shows, for each considered transaction type, for an uplink bit rate of 100 bit/s, and for the
two considered energy harvesting sources, the energy required to carry out the transaction, and the
minimum feasible transaction period. The device is assumed to be in sleep state between transactions.
The outdoor solar panel allows using all TPeriod values considered in this paper, i.e., it does not limit by
itself the minimum feasible TPeriod. However, the indoor panel supplies a much lower current (three
orders of magnitude below the outdoor panel one). This requires accumulating the energy harvested
by the indoor panel over relatively large periods of time before allowing completing a transaction, up
to ~1.5 h or ~4 h for unidirectional and bidirectional transactions, respectively.

Table 4. Energy required and minimum feasible TPeriod for different types of transactions, for the two
energy harvesting sources considered, and for an uplink bit rate of 100 bit/s.

Transaction Energy Required (mJ) Outdoor Panel:
Minimum TPeriod (min)

Indoor Panel:
Minimum TPeriod (min)

1-byte, unidirectional 2.61 0.09 54.1
12-byte, unidirectional 4.56 0.14 94.7

1-byte, bidirectional 10.3 0.62 214.6
12-byte, bidirectional 12.6 0.65 261.2

6. Conclusions

This paper has presented analytical models that allow to evaluate the current consumption and
the lifetime of a battery-enabled Sigfox device, as well as the energy cost of data delivery. The model,
which has been derived based on measurements performed on real hardware, captures the impact of
using uplink and downlink communication, the frame payload size, the uplink bit rate, and frame
losses on the aforementioned energy performance parameters.

The average current consumption decreases with the transaction period, with an asymptotic value
equal to the sleep state current consumption. Differences among the considered options decrease as
well with the transaction period. For low transaction periods, bidirectional communication increases
current consumption by a factor up to ~4. Current consumption is only affected by frame losses for
bidirectional transactions. In those, since an uplink frame is sent thrice, the impact of frame losses
becomes only relevant for very high FLR values, where the device awaits a downlink frame for the
maximum receive window duration.

Assuming a 2400 mAh battery, and the device model used in the study, the theoretical asymptotic
device lifetime is 14.6 years. Similarly to the observations made for current consumption, differences
between using bidirectional or unidirectional transactions are significant for low transaction periods.
For an uplink bit rate of 100 bit/s, a 1-byte payload and a transaction period of 10 minutes, device
lifetime is 1.49 years and 0.40 years for unidirectional transactions and for bidirectional transactions,
respectively. Using an uplink bit rate of 600 bit/s (in regions where that is possible) increases device
lifetime for low to moderate transaction periods. For a transaction period of 10 min, unidirectional
transactions and a 1-byte payload, the device lifetime is 1.49 years and 2.57 years for uplink bit rates of
100 bit/s and 600 bit/s, respectively.

The uplink frame payload size has a greater impact on the energy cost of data delivery than on
the rest of performance parameters considered. Increasing the uplink frame payload size amortizes the
energy consumed per delivered bit by a factor similar to the payload size increase. Using an uplink bit
rate of 600 bit/s leads to remarkable energy cost savings (up to a factor of 1.84). Frame losses impact on
the energy cost for rather high FLR values (of 0.5 or greater) for both unidirectional and bidirectional
transactions, to a greater extent for the latter.

The paper also evaluates the sensitivity of the current consumption model to Isleep and Itx, two
relevant parameters. Finally, energy harvesting sources have been considered as well, illustrating that
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powerful ones allow the operation of the Sigfox device for the whole range of transaction types and
periods considered in this paper, whereas more limited energy harvesting sources constrain the range
of feasible transaction periods.
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