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Abstract: This paper presents a high-accuracy method for globally consistent surface reconstruction
using a single fringe projection profilometry (FPP) sensor. To solve the accumulated sensor pose
estimation error problem encountered in a long scanning trajectory, we first present a novel 3D
registration method which fuses both dense geometric and curvature consistency constraints to
improve the accuracy of relative sensor pose estimation. Then we perform global sensor pose
optimization by modeling the surface consistency information as a pre-computed covariance matrix
and formulating the multi-view point cloud registration problem in a pose graph optimization
framework. Experiments on reconstructing a 1300 mm × 400 mm workpiece with a FPP sensor is
performed, verifying that our method can substantially reduce the accumulated error and achieve
industrial-level surface model reconstruction without any external positional assistance but only
using a single FPP sensor.

Keywords: quality control; fringe projection profilometry; depth image registration; 3D reconstruction

1. Introduction

Fringe projection profilometry provides a convenient way to measure dense and accurate three
dimensional (3D) surface point cloud of target objects. It plays an increasingly important role in
various fields such as industrial quality inspection, prototyping, culture heritage preservation and
movie industry [1–5]. Owing to the limited field of view (FOV) and object self-occlusion, 3D point
cloud obtained from a single viewpoint only contains partial surface shape data. To reconstruct
complete surface models, 3D measurements from multiple viewpoints are deserved to cover the whole
object, and their sensor poses need to be precisely tracked to further transform these partial surface
point clouds into a global coordinate system [6–9].

Existing sensor pose tracking solutions are mostly based on external assistance methods, such as
attaching artificial markers or using external positional equipment such as a laser tracker or optical
coordinate measuring machines (CMMs) [10], their usage flexibility is inherently limited. Alternatively,
sensor poses can also be directly estimated by using 3D registration techniques [11–13] to compute the
relative pose between sequential two measurements. However, sensor pose estimation drifts inevitably
exist due to 3D registration inaccuracy. Small sensor pose estimation error which may seem negligible
on a local scale, can drastically accumulate along a long scanning trajectory [12,14]. The accumulated
error directly leads to surface point clouds inconsistency between the first and last scans and finally
breaks the reconstruction result.
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Different optimization methods have been adopted to solve the accumulated error problem.
Among them, bundle adjustment (BA) is one of the most well-known approaches that performs global
optimization by minimizing the reprojection error across different frames. Specifically, BA is conducted
by firstly identifying the same visual feature points appearing in multiple frames, and then adjusting
the estimated 3D locations of feature points together with the camera poses [7,9]. Nevertheless, BA
only optimizes sparse 3D feature points and camera poses, thus it does not guarantee local shape
consistency of the reconstructed 3D models [14]. Besides, visual feature detection is the prerequisite
for BA optimization, it cannot be fulfilled when the color image is not valid or the target object surface
is textureless (e.g., industrial parts).

Instead of optimizing the accumulated error to solve surface inconsistency, Zhou et al. [15]
and Whelan el al. [16] chose to deform inconsistency local point clouds together using non-rigid 3D
registration techniques, consumer RGB-D sensors are taken as the depth input in their works. Shape
deformation provides a simple yet useful approach to obtain globally consistent models, especially
in some applications such as indoor reconstruction [12] where surface consistency instead of the
accuracy is of the most importance. However, shape deformation is not desired in our problem,
because it directly ruins the surface measurement accuracy. Furthermore, since FPP sensor provides
high-accuracy surface point cloud measurements, theoretically when sufficient accurate sensor poses
are recovered, the individual local 3D point clouds should be able to integrate into a globally consistent
model using only rigid transformations.

Differently, Cao et al. [17] and Yue et al. [18] optimized the accumulated error by first identifying
the loop closures formed through successful 3D registration between each current frame and other
earlier frames, and then performing a pose graph optimization [19] to reduce the sensor poses
drifts. However, in their works the loop closures are identifying either by manually checking the
3D point cloud overlapping ratio [17], or by using the measurement system setup information [18],
which prevents their further usage in a practical 3D scanning system. Moreover, the pose graph
optimization in [17,18] only optimized the inconsistency between two associated sensor poses and
their relative pose constraint; it ignores important surface consistency information in the 3D registration
process [6].

According to the above analysis, the key to accurate surface reconstruction lies in the reduction of
accumulated sensor pose estimation error. In this paper, we present a flexible and accurate method for
high-accuracy globally consistent surface reconstruction using a single FPP sensor. The accumulated
error problem is addressed from two aspects: (1) observing the underlying principle that surface
curvature remains invariant against measurement viewpoint changes, a novel 3D registration method
is proposed which fuses both dense geometric and curvature consistency constraints to joint optimize
the relative sensor pose estimation. The introduction of curvature consistency constraint implicitly pays
attention to high-curvature surfaces, which helps to generate more accurate 3D registration results [20].
(2) We utilize 6-DOF pose distances for adaptive keyframe determination, and use a two-step checking
scheme for automatic loop closure detection. By modelling the surface inconsistency information as a
pre-computed covariance matrix and formulating the multi-view point cloud registration problem in a
pose graph optimization framework, the accumulated error can be effectively reduced to obtain the
final accurate sensor pose estimations.

The effectiveness of our proposed method is demonstrated by reconstructing a 1300 mm ×
400 mm workpiece with a FPP sensor. Results show that the proposed method substantially reduced
the accumulated error, making the sensor pose estimation accuracy match the measurement accuracy
well. Our method shows the ability to accomplish industrial-level surface model reconstruction
without any external positional assistance but only using a single FPP sensor.
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2. Measurement Principle

In our FPP sensor, a series of sinusoidal fringes along the horizontal axes of projector image frame
with constant phase shifting are projected onto a target object, and two cameras capture the distorted
fringe images synchronously. The captured images can be expressed as:

Ii(x, y) = Ai(x, y) + Bi(x, y) cos(φ(x, y) + δi), i = 1, 2, 3, . . . , n (1)

where (x, y) is the pixel coordinates and is omitted in the following expression, Ii denotes the recorded
intensity, Ai indicates the average intensity, Bi represents the modulation intensity, δi is the constant
phase-shift, n is the phase shift number, and φ is the desired phase information. By solving Equation (1),
the phase value φ can be obtained according to:

φ = − arctan(
n

∑
i=1

Ii sin(δi)/
n

∑
i=1

Ii cos(δi)). (2)

The arctangent function in Equation (2) will result in a phase value within the range of [−π, π]

with 2π discontinuities. In our sensor, multi-frequency heterodyne technology is adopted to construct
the continuous phase map [21], so that the correspondence between two camera views can be
established unambiguously. Finally, the 3D result can be obtained according to the pre-calibrated
camera intrinsic and external parameters. The measurement principle of the FPP sensor is shown in
the Figure 1 below.

Figure 1. The 3D measurement principle of fringe projection profilometry (FPP sensor).

3. Relative Sensor Pose Estimation

The relative sensor pose estimation between sequential two measurements (also called as frames
in the following) is the basis to obtain the initial global sensor pose estimation of each measurement.
In this section, we will introduce the proposed method which estimates the relative sensor pose
(a rigid transformation) by 3D registering two depth maps to jointly optimize the dense geometric and
curvature inconsistency errors. The whole process is conducted by first computing the curvature map
of each depth map, and then iteratively performing data association and error minimization steps.

3.1. Curvature Map Estimation

Similarly to depth map (also called as depth image), curvature map is a 2D image in which the
value of each pixel is the surface curvature value instead of the depth value. Specifically, for each pixel
x = (u, v)ᵀ in the depth map with valid depth z(x), its corresponding 3D point coordinate p(x) can be
computed using the inverse of projection function Π(·) as:
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p(x) = Π−1(x, z(x))

= z(x)(
u− cx

fx
,

v− cy

fy
, 1)ᵀ, (3)

where fx, fy are the focal lengths and cx, cy are the principle point, respectively. The mean curvature of
each point on the surface is represented using a surface variation notion in [22]. Hence, the surface
curvature value κ(x) at pixel x is estimated by taking the eigen-analysis of the covariance matrix of the
local neighbor points of point p(x). The covariance matrix is defined as:

C(x) =
k

∑
i
(pi − p̄)(pi − p̄)ᵀ, p̄ =

1
k

k

∑
i

pi, (4)

where pi is one of the nearest neighbor points of p(x). Then κ(x) can be computed as:

κ(x) =
λ0

λ0 + λ1 + λ2
, (5)

where λ0 ≤ λ1 ≤ λ2 are the eigenvalues of the covariance matrix C(x).
To speed up the nearest neighbor search, we take advantage of the organized point cloud

structure embedded in the depth map, only taking adjacent pixels as candidate neighbors. Meanwhile,
the geometric continuity constraints are also considered to filter the potential depth gaps by specifying
a maximum allowed distance. Pixel xi is the nearest neighbor of pixel x, only when it satisfies
‖x − xi‖ ≤ σ1, and ‖p(x) − p(xi)‖ ≤ σ2, where σ1 and σ2 represent the pixel and point nearest
neighbor distance threshold, respectively. In this paper, we set σ1 = 3 and σ2 = 1.1 mm (with average
point cloud density as 0.275 mm) to allow approximate 30 nearest neighbor points for curvature
value estimation.

Figure 2a shows a depth map measured with the FPP sensor, Figure 2b shows the estimated
curvature map using our method. Figure 2c is the corresponding 3D point cloud whose color is
mapped from the curvature map, and the local detail is displayed in Figure 2d. It can be seen that the
estimated curvature map exhibits high consistency with the point cloud surface variation. Furthermore,
by carefully handling the discontinuous boundary case, the curvature values at boundary points can
also be robustly estimated, as shown in Figure 2d.

Figure 2. (a) A depth map acquired with the FPP sensor, (b) Its corresponding curvature map estimated
using our method, (c) The rendered 3D point cloud with its color mapped from the curvature map,
(d) Local details of curvature information at local point cloud surface.

3.2. Data Association

Data association is to identify the corresponding points between two sequential frames,
the correspondence set is then fed to the optimization process to find the optimal relative sensor
pose estimation. Assuming small camera motion between sequential frames, the projective data
association algorithm [12] is conducted to produce the point correspondences set. Given the relative
sensor pose estimation Ti−1,i between current frame fi and its previous frame fi−1, then for each pixel
x with valid depth in fi, we first transform its corresponding 3D point p(x) into the local coordinate
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system of previous frame fi−1 as Ti−1,ip(x) = (x, y, z)ᵀ. Then the corresponding pixel of x in frame
fi−1 can be computed with perspective projection:

x̄ = Π(Ti−1,ip(x))

=
1
z

KTi−1,ip(x)

= ( fx
x
z
+ cx, fy

y
z
+ cy)

ᵀ, (6)

where K is the camera intrinsic matrix. Note that for simplicity of notation, we omit the conversions
between vectors and its homogeneous vectors throughout this paper.

With the projective data association, multiple pixels in source depth image fi may correspond to a
common pixel in target depth image fi−1. To solve the many-to-one problem, the z-buffer technique is
adopted, for each pixel in target depth map fi−1 we only keep the corresponding pixel in source depth
map fi with minimum depth. All corresponding points pairs together construct the corresponding set
Ki−1,i = {(x, x̄)} between frame fi and fi−1.

3.3. Minimization

The relative sensor pose optimization function Ereg is defined as:

Ereg = Egeo + λEcur, (7)

where Egeo denotes the geometric inconsistency error, Ecur denotes the curvature inconsistency error,
λ is the weight of the curvature inconsistency error.

The geometric error is defined as the point-to-plane error [11] between current and
previous frames:

Egeo = ∑
(x,x̄)∈Ki−1,i

‖(exp(ξ̂)Ti−1,ipi(x)− pi−1(x̄)) · ni−1(x̄)‖2, (8)

in which (x, x̄) is one corresponding pixels pair in the corresponding set Ki−1,i, pi(x) is the local
3D point in the current frame fi, pi−1(x̄) and ni−1(x̄) are the corresponding 3D point and normal,
respectively. Ti−1,i is the current estimation of the relative sensor pose between the two frames.
exp(ξ̂) ∈ SE(3) is the incremental transformation to be estimated in each iteration, in which
ξ = (ω, t)ᵀ = (α, β, γ, tx, ty, tz)ᵀ ∈ R6.

The curvature inconsistency error Ecur is defined as the curvature value inconsistency between
the warped curvature map of current frame fi and the curvature map of previous frame fi−1:

Ecur = ∑
(x,x̄)∈Ki−1,i

‖κi(x)− κi−1(x̄)‖2

= ∑
(x,x̄)∈Ki−1,i

‖κi(x)− κi−1(Π(exp(ξ̂)Ti−1,ipi(x))‖2, (9)

where κi(x) is the curvature value at pixel x of the current frame, κi−1(x̄) is the curvature value at pixel
x̄ of the previous frame.

Assuming the incremental pose transformation exp(ξ̂) to optimize at each iteration is small, it can
be linearized as exp(ξ̂) ≈ I + ξ̂, where ξ̂ ∈ se(3) is the corresponding Lie algebra element:

ξ̂ =

[
[ω]× t

0ᵀ 0

]
=


0 −γ β tx

γ 0 −α ty

−β α 0 tz

0 0 0 0

 , (10)
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the [·]× : R3 → so(3) is a linear skew-symmetric operator (see [23] for details).
With this linearization and simple notation ṗi−1(x) = Ti−1,ipi(x), the error term Egeo becomes:

Egeo ≈ ∑
(x,x̄)∈Ki−1,i

‖((I + ξ̂)ṗi−1(x)− pi−1(x̄)) · ni−1(x̄)‖2

= ∑
(x,x̄)∈Ki−1,i

‖
[

pi−1(x)× ni−1(x̄)
ni−1(x̄)

]ᵀ
ξ + (ṗi−1(x)− pi−1(x̄)) · ni−1(x̄)‖2

= ‖Jgeoξ + rgeo‖2, (11)

where Jgeo is the Jacobian matrix and rgeo is the residual vector. Similarly, the error term Ecur becomes:

Ecur ≈ ∑
(x,x̄)∈Ki−1,i

‖κi(x)− κi−1(Π((I + ξ̂)ṗi−1(x)))‖2

= ∑
(x,x̄)∈Ki−1,i

‖κi(x)− κi−1(
1
z

K(I + ξ̂)ṗi−1(x))‖2

≈ ∑
(x,x̄)∈Ki−1,i

‖ − ∂κi−1(x̄)
∂x̄

∂x̄
∂ξ̂ṗi−1(x)

∂ξ̂ṗi−1(x)
∂ξ

ξ + κi(x)− κi−1(
1
z

Kṗi−1(x))‖2

= ‖Jcurξ + rcur‖2. (12)

With the above linearization, minimization of Equation (7) allows to solve the following linear system:

(JᵀgeoJgeo + λJᵀcurJcur)ξ = −(Jᵀgeorgeo + λJᵀcurrcur). (13)

In each iteration, we compute Jacobian Jgeo, Jcur and residual rgeo, rcur at current relative sensor
pose estimation Ti−1,i, and solve the linear system in Equation (13) to find the ξ that best satisfies the
geometric and curvature consistency constraint. Then the relative pose Ti−1,i is updated to exp(ξ̂)Ti−1,i,
and taken as the initialization for the next iteration.

When the optimization converges, the Ti−1,i is taken as the final relative sensor pose estimation
between two frames. We fix the sensor pose of the first frame f1 as T1 = I and regard it as the world
coordinate system. Then the initial global sensor pose of frame fi is computed as Ti = Ti−1Ti−1,i.

Figure 3 shows the 3D registration results comparison between the proposed method and
two other methods. The sensor pose estimation accuracy is directly reflected in the surface shape
consistency of two registered point clouds. When independently visual inspecting each registration
result, each method seems to converge to a correct result. However, when comparing the registration
results between Figure 3b–d, it is not hard to see that the relative sensor pose estimation accuracy of
our method outperforms the other two methods.

Figure 3. (a) Initial relative pose between source (green) and target (yellow) point cloud, (b) Registration
result by only minimizing geometric error in Equation (8), (c) Point-to-plane ICP performed on 3D
point cloud with a max distance threshold to eliminate outliers, (d) Minimizing both of the geometric
error and curvature error as proposed in this paper.
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Figure 4a,b represents the curvature value difference map between source and target point cloud
before and after the 3D registration, respectively. The curvature difference map is built on the target
frame fi−1, correspondences are built using the above data association method. Gray pixels indicate
that no correspondence is built for these pixels. It can be seen that the curvature value difference
from Figure 4a,b decreases dramatically over the whole map, which demonstrates the significance of
introducing curvature map consistency into the 3D registration constraints.

Figure 4. Curvature difference map (a) Before registration, (b) After registration.

4. Global Sensor Pose Optimization

Though fusing curvature consistency information improves the accuracy of the estimated relative
sensor poses, the global sensor pose drift will inevitably accumulate during a long scanning process.
To reduce the accumulated error and obtain globally consistent 3D models, successful relative pose
estimation to much earlier frames (also called as building loop closure) is deserved. In this section,
we will first introduce how to automatically build a series of loop closures with the proposed adaptive
keyframe selection and the two-step checking method. We will then introduce our method which
performs multi-view point cloud registration in a pose graph optimization framework [19].

4.1. Keyframe Selection

Detecting loop closure for every new-income measurement is not optimal; it will greatly increase
the computation cost after a long time scanning. Therefore, we only detect loop closure for selected
keyframes. We utilize 6-DOF (degree of freedom) pose distance metrics to determine when to add
a new keyframe for further loop closure detection. For each new input frame f j, we evaluate the
relative pose distances between it and the last added keyframe f k

i−1. In which, the rotation distance is
measured as the rotation angle using the Rodrigues’ formula:

d(Rj, Rk
i−1) = | arccos(

trace(Rᵀ
j Rk

i−1)− 1

2
)|. (14)

The translation distance is computed as:

d(tj, tk
i−1) = ‖tj − tk

i−1‖, (15)

If either the rotation or translation distance exceeds its corresponding threshold σR or σt,
the current frame f j is marked as a new keyframe f k

i . We set σR = 20◦, σt = 130 mm in our paper.
Figure 5 shows the keyframe selection results using the total 146 depth maps acquired with our FPP
sensor (see Section 5). Gray points identify the 34 selected keyframes out of a total 146 depth maps.
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Figure 5. (a,b) show the translation and rotation distance between each frame with its previous
keyframe, respectively.

4.2. Loop Closure Detection

For each new added keyframe f k
i , we use a two-step checking scheme to detect whether it forms

correct loop closures with previous keyframes. If two keyframes construct a loop closure, then they
must fulfil: (1) the overlapping area between two point clouds is enough, (2) the mean absolute error
(MAE) between them is small.

The overlapping area ratio is crucial for arbitrary two frames with loop closures, as small
overlapping area ratios are prone to correspond to non-loop-closure connection. In this paper,
we propose to use the projective association algorithm to efficiently compute the overlapping area
ratio between two keyframes. When a new keyframe f k

i arrives, we compute its depth valid map
Vk

i for each pixel. Vk
i (x) = 1 for each pixel where its depth is valid, and Vi(x) = 0 when depth is

not valid. Then for a pair of keyframes f k
i and f k

j , we obtain the correspondence set Kk
i,j = {(x, x̄)}

using the data association method in Section 3.2. Note that, the relative sensor pose between f k
i and

f k
j is computed as Tk

i,j = Tk
i
−1

Tk
j here. A correspondence pair (x, x̄) is identified as overlapped when

Vk
j (x̄) = 1. We collect all overlapped point pairs, the overlapping ratio is computed as τo = N/M,

where N is the overlapped points number, M is the total number of points with valid depth. If the
overlapping ratio τo is larger than the threshold σo, we mark keyframe f k

i and f k
j as a candidate loop

closure. Figure 6a shows the overlapping ratios between the 34th keyframe (frame 145) with all its
previous keyframes, we set the overlapping ratio threshold σo = 0.65 in this paper. We select frame 36,
96, 120 and 140 to visualize the correctness of our proposed method as shown in Figure 6b, dotted line
sketches the scanning path.

We then check the dense geometric consistency to further validate the correctness of these
candidate loop closures. A candidate loop closure ( f k

i , f k
j ) is considered as reliable only if the MAE of

the correspondence points between two frames is below a threshold σr:

1
|Ki,j| ∑

(x,x̄)∈Ki,j

‖Tk
i,jp(x)− p(x̄)‖ < σr. (16)

If the two-step checks all passed, the two frames are further registered together to construct a
loop closure.
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Figure 6. (a) The computed overlapping ratios between frame 145 with all its previous keyframes and
(b) Frame 36, 96, 120, 140 and the reference frame 145.

4.3. Graph Based Sensor Pose Optimization

Removing the accumulated error to get globally consistent model needs to eliminate the surface
inconsistencies across all associated point clouds. We define the surface inconsistency as a error term
Fi,j in terms of the dense geometric registration error between frame fi and f j, as:

Fi,j = ∑
pi ,pj

‖(Tjpj − Tipi)‖2

= ∑
pi ,pj

‖T−1
i Tjpj − pi‖2

≈ ∑
pi ,pj

‖T−1
i TjTj,ipi − pi‖2. (17)

Note that Ti, Tj is obtained through the relative sensor pose estimation in Section 3.3, Tj,i is
obtained through the loop closure detection in Section 4.2. Inconsistency exists between Tj,i and Ti,
Tj due to the accumulated error. Line (17) holds by restricting the corresponding points (pi, pj) must
fulfil ‖Tj,ipi − pj‖ < ε, we set ε = 1.0 mm in this paper.

Then by approximating T−1
i TjTj,i = I + ξ̂i,j, Equation (17) can be written as:

Fi,j ≈ ∑
pi ,pj

‖ξ̂i,jpi‖2

= ∑
pi ,pj

‖
[
−[pi]× I

]
ξi,j‖2, (18)

in which ξi,j actually measures the inconsistency between sensor pose Ti, Tj and their relative pose

constraint Ti,j. Define Gi =
[
−[pi]× I

]
, we obtain:

Fi,j ≈ ∑
pi ,pj

‖Giξi,j‖2

= ξᵀi,j ∑
pi ,pj

Gᵀ
i Giξi,j

= ξᵀi,jΩi,jξi,j. (19)
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Equation (19) shows the surface inconsistency term Fi,j can be represented with the sensor
pose inconsistency term ξi,j and a covariance matrix Ωi,j = ∑pi ,pj

Gᵀ
i Gi, it is constant and can be

pre-computed for each term during the 3D registration process.
Let C be the set of indices for which a connection between two sensor poses exists, then the

multi-view point cloud registration problem can be formulated as:

F = ∑
(i,j)∈C

Fi,j

= ∑
(i,j)∈C

ξᵀi,jΩi,jξi,j. (20)

This exactly defines a pose graph optimization, which can be directly solved using the g2o
library [19]. Figure 7 shows the pose graph constructed with our method. Vertices represent the 6-DoF
sensor poses, edges represent the constraints between sensor poses. The pose graph is visualized with
the g2o viewer software.

Figure 7. It shows a pose graph consists of 146 pose vertices, 229 edges (84 loop closure edges inside).

5. Experiment

In the experiment, a FPP sensor is constructed using (1) a Texas Instruments LighterCrafter4500
board (Texas Instruments, Dallas, TX, USA) for fringe patterns projection, (2) two Basler
acA1300-30gm cameras (Basler AG, Ahrensburg, Germany) simultaneously capturing the modulated
images with pixel resolution of 1296 × 966. The proposed method is validated by scanning a
1300 mm × 400 mm sheet metal using the FPP sensor as shown in Figure 8, the 3D measurement and
model reconstruction are conducted on a desktop PC with a 3.3 GHz Intel Xeon CPU and 16 GB RAM.
By moving the FPP sensor around, complete scan of the sheet metal with totally 146 frames (depth
maps) acquired is accomplished.

Figure 8. (a) The measurement scene, (b) Sinusoidal fringe pattern projected onto the measured object.

To test and verify the accuracy and effectiveness of the proposed relative sensor pose estimation
method and the global optimization method, a ceramic ball bar is placed beside the measured sheet
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metal. The reconstruction accuracy can then be well examined by qualitatively observing the surface
consistency and quantitatively analyzing the size fitting results of the reconstructed ceramic ball bar.

5.1. Relative Sensor Pose Estimation Accuracy

The accuracy of our proposed relative sensor pose estimation method is tested first. The sensor
pose of each frame relative to the world coordinate system (frame 1) is separately estimated by (1) jointly
optimizing the geometric and curvature consistency constraints (our method), (2) only optimizing the
geometric consistency constraint for comparison. With the estimated sensor poses, 3D point cloud of
each frame is transformed to the world coordinate system and further voxel downsampled to a unified
3D point cloud. Figure 9a shows the reconstructed surface of sheet metal with our method, it shows
that the overall shape of our reconstruction result matches the actual sheet metal shape well. The point
clouds are rendered with Open3D library [24].

Figure 9. (a) The reconstructed surface and (b) Its local details using both geometric and curvature
consistency constraints, (c) The corresponding local details using only geometric consistency constraints
(its complete surface model not displayed here).

On the other side, sensor pose estimation error inevitably accumulated in the reconstruction
process, which leads to obvious surface shape artifacts, as shown in Figure 9b,c. In which, Figure 9b
shows the local surface inconsistency at 3 difference places using our method, Figure 9c shows the
corresponding results using only geometric consistency constraints. With this comparison, it is not
hard to see that introducing the curvature consistency constraint effectively improves the sensor pose
estimation accuracy, which provides a good foundation for further global optimization.

5.2. Global Sensor Pose Optimization Accuracy

Based on the sensor pose estimation results above, the global optimization is performed by (1)
keyframe selection, (2) loop closure detection and (3) pose graph optimization. Then the globally
optimized reconstruction result is obtained with the optimized sensor poses. Figure 10a,b show
the optimized surface model and its local details, respectively. With the global model optimization,
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we obtained globally consistent surface model, surface inconsistencies due to the accumulated error
are well optimized as shown in Figure 10b.

Figure 10. (a) The reconstructed surface after global optimization, (b) Its local details.

To further quantitatively analyze the accuracy improvement with the global optimization,
we computed the relative translation and rotation changes of each keyframe pose before and after
global optimization, as shown in Figure 11, the optimized poses are taken as the reference values here.
It demonstrates that even very small translation estimation inaccuracy (less than 2.0 mm) and rotation
estimation inaccuracy (less than 0.10◦) in the reconstruction range of 1300 mm × 400 mm, are enough
to cause obvious surface inconsistency (as shown in Figure 9b), and lead to reconstruction results that
are unusable for high-accuracy dimensional inspection.

Figure 11. (a) Relative translation and (b) Rotation changes of each keyframe pose.

Meanwhile, the absolute accuracy of the reconstructed surface model can be directly and precisely
tested by comparing (1) diameter fitting values of two spheres, (2) standard deviation values of
Euclidean distances between sphere surface 3D points and the fitted sphere surface, (3) Euclidean
distance between two sphere centers. The comparison is made between the not-optimized model,
globally-optimized model and the ground truth. The ground-truth is obtained with the fitting values
of frame 130, because two spheres are both measured in this frame, the fitting values are only related
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to the measurement accuracy of our FPP sensor, and are not affected by any sensor pose estimation
error. Specifically, for each kind of data source, we manually cropped the corresponding points that
belong to the two sphere surfaces, and fitted the diameter and standard deviation values using the
Geomagic software.

Table 1 shows the comparison results of diameter and standard deviation fitting values of two
spheres. The standard deviation values directly reflect the surface consistency of our reconstruction
model. After the global optimization, it decreases from 0.1971 mm to 0.0282 mm for sphere 1,
and decreases from 0.2534 mm to 0.0301 mm for sphere 2. Furthermore, the standard deviation
value of globally-optimized model is very close to the value of a single measurement (frame 130),
which demonstrates that our reconstructed surface exhibits very good shape consistency.

Table 1. Comparison of the diameter and standard deviation fitting results between not-optimized and
globally-optimized model.

Data Source Diameter (mm) Standard Deviation (mm)

Sphere 1
not-optimized model 44.0074 0.1971

globally-optimized model 43.9713 0.0282
Frame 130 44.1121 0.0164

Sphere 2
not-optimized model 43.8685 0.2534

globally-optimized model 44.0624 0.0301
Frame 130 44.0881 0.0258

We also compared the difference of the sphere center distances between not-optimized and
globally-optimized models, as shown in Table 2. The absolute error of sphere center distance relative
to the ground truth decreases from 0.2080 mm to 0.0205 mm, the relative error relative to the ground
truth decreases from 0.1387% to 0.0137%.

Table 2. Sphere center distance fitting results with the absolute and relative errors relative to the
ground truth.

Data Source Sphere Center Distance (mm) Absolute Error (mm) Relative Error (%)

not-optimized model 149.7950 0.2080 0.1387
globally-optimized model 149.9825 0.0205 0.0137

Frame 130 150.0030 / /

Both of the above two comparison results explain the surface shape inconsistency refinement
from Figure 9a,b to Figure 10a,b, and illustrate that with the global optimization (1) the accumulated
error is substantially reduced to less than 1/10 of the not-optimized reconstruction result, (2) the final
sensor pose estimation accuracy can well match the measurement accuracy of our FPP sensor.

6. Conclusions

In this paper, we present a high-accuracy globally consistent surface reconstruction method
using fringe projection profilometry. The accumulated sensor pose estimation error problem is solved
with a first relative sensor pose estimation step and a following global sensor pose optimization step.
The former step tries to reduce the accumulated error by maximizing the relative sensor pose estimation
accuracy; it helps to ensure the initial sensor poses lie in the convergence basin of the following global
optimization method. The latter step globally optimizes the sensor poses through a multi-view point
cloud registration formulated in the pose graph optimization framework. Besides, adaptive keyframe
selection and loop closure detection method are proposed to efficiently and automatically build point
cloud connections and their relative pose constraints, which are the prerequisites of global sensor
pose optimization. By qualitatively observing and quantitatively analyzing the reconstruction results
of a 1300 mm × 400 mm workpiece, we validated the effectiveness and accuracy of our method.
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Our method demonstrates the ability to accomplish industrial-level surface model reconstruction
without any external positional assistance but only using a single FPP sensor.

Since our reconstruction method is based on 3D registration, it also shares some limitations similar
to most 3D registration based surface reconstruction methods [7,12,16]. For example, when the target
object is near a plane, 3D registration may not converge to a correct result due to insufficient geometric
constraint [11], which will stop the sensor poses from being robustly tracked. A possible solution is to
further exploit the usage of surface textures constraint to help the robust tracking of sensor poses.
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