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Abstract: Vehicle detection with category inference on video sequence data is an important but
challenging task for urban traffic surveillance. The difficulty of this task lies in the fact that it
requires accurate localization of relatively small vehicles in complex scenes and expects real-time
detection. In this paper, we present a vehicle detection framework that improves the performance
of the conventional Single Shot MultiBox Detector (SSD), which effectively detects different types
of vehicles in real-time. Our approach, which proposes the use of different feature extractors for
localization and classification tasks in a single network, and to enhance these two feature extractors
through deconvolution (D) and pooling (P) between layers in the feature pyramid, is denoted as
DP-SSD. In addition, we extend the scope of the default box by adjusting its scale so that smaller
default boxes can be exploited to guide DP-SSD training. Experimental results on the UA-DETRAC
and KITTI datasets demonstrate that DP-SSD can achieve efficient vehicle detection for real-world
traffic surveillance data in real-time. For the UA-DETRAC test set trained with UA-DETRAC trainval
set, DP-SSD with the input size of 300 x 300 achieves 75.43% mAP (mean average precision) at the
speed of 50.47 FPS (frames per second), and the framework with a 512 x 512 sized input reaches
77.94% mAP at 25.12 FPS using an NVIDIA GeForce GTX 1080Ti GPU. The DP-SSD shows comparable
accuracy, which is better than those of the compared state-of-the-art models, except for YOLOv3.

Keywords: vehicle detection; feature concatenation; default box; convolutional neural network;
real-time

1. Introduction

Automatic analysis of vehicle activities in urban traffic surveillance is an important and urgent
issue due to a large number of vehicle traffic rule violations and their adverse effects on daily traffic
management. Compared with traditional machine learning tasks, deep learning-based methods have
made great breakthroughs in traffic surveillance techniques, and have achieved good performance in
practical applications such as vehicle detection, feature extraction and vehicle track identification [1-5].
In these areas of research, accurate and real-time vehicle detection and preliminary classification are
the most fundamental and important work.

Among the various vehicle detection algorithms of traffic surveillance, convolutional neural
network (CNN) based methods have been widely applied and can be categorized into region-based
and regression-based approaches. For region-based CNNs, Regions with CNN features (R-CNN) [6],
Spatial Pyramid Pooling Network (SSP-Net) [7], Fast R-CNN [8] and Faster R-CNN [9] are some recent
advances often utilized in vehicle detection. These approaches, although achieving state-of-the-art
accuracy through the improvement from Selective Search [10] to Region Proposal Network (RPN) [9],
are too computationally intensive for bounding boxes to be too slow for real-time or near real-time.
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As shown in Figure la, which demonstrates the detection results of the fastest high-accuracy
region-based method (Faster R-CNN), the detection frame rate of each image does not exceed 12
FPS, which is not enough for real-time detection in traffic surveillance. To achieve real-time detection
performance, a wide range of detectors have been put forward by attacking either classifiers or region
proposals. However, most of these attempts increase the speed at the expense of the detection accuracy.

FPS: 111108

Figure 1. Conventional methods vs. the proposed DP-SSD300 framework on UA-DETRAC dataset. (a)
Faster R-CNN with low FPS for vehicle detection; (b) DP-SSD300 with high FPS for vehicle detection;
(c) In SSD300, one white vehicle is labeled with two bounding boxes, and some small objects are error
detected or miss detected; (d) In DP-SSD300, the white vehicle is well labeled, and small objects are
well detected.

With the advance of novel methods for predicting bounding boxes and class probabilities directly
in a single neural network, a regression-based You Only Look Once (YOLO) approach [11] processes
images in real-time at 45 FPS, but with less accuracy than Faster R-CNN. To further increase the speed
vs accuracy trade-off, SSD [12] adopts an anchor mechanism similar to Faster R-CNN, and produces
predictions through several feature maps of different aspect ratios and scales. Although it performs
well in both speed and accuracy, SSD neglects the relationship between different layers of the feature
pyramid. Thus, SSD has a relatively poor performance in traffic surveillance of small vehicles, and
produces multiple scale bounding boxes for one vehicle. Specifically, in Figure 1c, two boxes are
produced on one car, and the bus in the distance is not detected.

Inspired by the conclusions of previous research, in this paper, we propose an enhanced
framework DP-SSD based on a single deep neural network, as shown in Figure 2, for accurate and
real-time vehicle detection in urban traffic surveillance. Specifically, DP-SSD is based on conventional
SSD, and expands the feature pyramid for vehicle detection into two parts: feature pyramid for
localization and feature pyramid for classification. The localization feature pyramid concatenates the
upper layer feature maps into lower layer features through deconvolution, which is able to predict all
the bounding boxes of vehicles. In the process of predicting, a set of default boxes over multiple scales
and aspect ratios are applied to better match the vehicle shape. The latter classification feature pyramid
concatenated feature maps of the upper layers through pooling can precisely infer vehicle categories for
each positive default box. Therefore, DP-SSD is derived from the idea of feature concatenation through
deconvolution (D) and pooling (P), respectively. Compared with the complex rainbow concatenation
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in R-SSD [13], the novelty of DP-SSD is that two different concatenated feature pyramids are used to
perform localization task and classification task respectively, which improves the detection effect while
reducing the computational complexity. Section 4 verifies the excellence of DP-SSD. This is because
previous works [14] have shown that the upper feature maps are able to achieve high recall but have
poor localization in predictions, and the lower feature maps are capable of improving the localization
accuracy but with reduced recall. It is noteworthy that both feature pyramids take advantage of
the relationship between different layers and increase the number of channels for each feature map
layer. In this way, the proposed method can prevent various boxes for one vehicle and predict smaller
vehicles in real-time.
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Figure 2. Training architecture of DP-SSD for vehicle detection. Our DP-SSD model utilizes
conventional SSD, but divides the feature pyramid for detection into two parts: feature pyramid
for localization and feature pyramid for classification. For localization, we enhance the representation
power of lower layers by concatenating feature maps through deconvolution. The classification feature
pyramid concatenates feature maps of the upper layers through pooling.

The main contributions of our work are summarized as follows:

We propose for the first time the use of different feature extractors (enhanced through
deconvolution and enhanced through pooling) for the localization and classification tasks,
respectively, in the vehicle detection process, which results in a significant improvement of
speed and detection accuracy trade-off.

In order to enhance the representation power of feature pyramids, we concatenate lower feature
maps of basic feature pyramid through deconvolution to precisely produce vehicle bounding
boxes, and concatenate upper feature maps of basic feature pyramid through pooling to accurately
and simultaneously classify vehicle categories.

For each concatenated feature pyramid, we increase the number of channels for each feature layer
in the pyramid. In this way, the multiple scale boxes for one vehicle can be effectively eliminated.
As for the size of default box, we allow the predictions to produce smaller bounding boxes than
conventional SSD by adjusting the min_size and max_size parameters, thus can accurately detect
small vehicles in real-time.

This paper is organized as follows: in Section 2, we briefly discuss the related works of vehicle

detection in the area of deep learning, and then propose a feature concatenation framework, which we
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call DP-SSD, in Section 3. In Section 4, the experiments and results of the proposed method are
presented. Finally, this paper is concluded in Section 5.

2. Related Work

With the continuous breakthroughs in deep networks on image classification tasks, such as those
mentioned in References [15-18], a wide variety of object detection algorithms using CNNs and their
applications to vehicle detection have achieved dramatic progress. Here, we briefly introduce the latest
research on deep CNNSs for object detection and vehicle detection, respectively.

2.1. Deep CNNs for Object Detection

There are two established classes of algorithms for object detection in the field of deep CNNSs,
one based on the region proposal method and the other based on the idea of regression. Region
proposal-based methods first produce candidate regions in an image and then classify each of them, are
the beginning of object detection in deep CNNs. The original R-CNN [6] applies high-capacity CNNs
to bottom-up candidate regions proposed through a Selective Search algorithm [10], which effectively
improves accuracy. Although R-CNN combines region proposals with CNNs, it leads to heavy
computational costs without sharing convolutional layers. SPP-Net [7] equips the deep network with
a spatial pyramid pooling strategy, which is more robust to region size or scale, to speed up the
original R-CNN significantly. Fast R-CNN [8] improves the disadvantages of R-CNN and SPP-Net so
that it can update all network layers end-to-end by using a multi-task loss for both localization and
classification, which was advocated in References [19,20]. Faster R-CNN [9] first replaces Selective
Search algorithm by a Region Proposal Network (RPN), and merges the RPN with Fast R-CNN into a
single network by sharing convolutional layers using “attention” mechanisms, which achieves towards
real-time detection performance with guaranteed accuracy. Among these methods, the top-most layer
is used to detect objects at multi scales. Although powerful, a single layer is difficult to consider
all shapes and scales of the objects. Inside-Outside Net (ION) [21] concatenates feature maps from
several layers by L2-normalization [22] to produce fixed-length feature map for object proposals,
which enhances the multi-scale representation power. In Reference [23], HyperNet (Hierarchical
Network, HyperNet) compresses hierarchical feature maps into a uniform space, which is shared both
in generating proposals and detecting objects. In all these methods, although detection accuracy has
been greatly improved, speed is still a problem, and real-time detection is impossible.

Regression based methods, which significantly improve the speed of object detection using a
single neural network, have attracted much attention. YOLO [11], by dividing an input image into
multiple grids and predicts bounding boxes and confidence directly in each grid, is extremely fast.
While YOLO makes numerous localization errors compared to region proposal-based algorithms, an
improved model, which is called YOLOvV2, removes the fully connected layers and uses an anchor
box to offer a trade-off between speed and accuracy [24]. SSD in Reference [12], which builds a
set of default boxes of different aspect ratios and scales, combines multiple convolution layers
with different resolutions for object detection, and performs well in both speed and accuracy. To
supplement the insufficient performance of SSD on small object, Deconvolutional Single Shot Detector
(DSSD) [25] applies a deconvolution module to enhance additional contexts, where VGGNet [17]
is replaced by Residual Network (ResNet) [18], which increases the accuracy at the expense of
speed. In [13], an enhanced SSD method by concatenating feature maps in both lower layers and
upper layers is proposed, which improves the accuracy of SSD and is denoted as R-SSD. A novel
single-shot based object detection method, called RefineDet, is presented in Reference [26], which
simultaneously optimizes an anchor refinement module and an object detection module to efficiently
detect objects. In Reference [27], Structure Inference Network (SIN), which considers the context of
scene contextual information and object relationships in a single image, is proposed to take object
detection as a problem of graph structure inference, and obtains a desirable output. To solve the scale
problem in object detection, [28] presents a scale-transferrable detection network for multi-scale object
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detection, which based on a dense convolutional network. Experiments on the PASCAL VOC 2007
and MS COCO datasets show that the proposed method achieves obvious improvements compared to
existing methods. An enhanced version of YOLOV2, which is denoted as YOLOV3 in Reference [29],
uses a residual network and combines multi-scale prediction network to improve both speed and
accuracy for object detection. Most of these methods achieve real-time detection, and the accuracy is
progressively improved.

2.2. Deep CNNs for Vehicle Detection

Conventional vehicle detection algorithms are intrinsically related to background subtraction
problems [30], which have made great breakthroughs in recent years. A Principal Component Pursuit
(PCP) method is proposed to detect moving objects in Reference [31], which recovers the low-rank and
sparse matrices via convex optimization, and successfully removes shadows from detected objects.
Reference [32] uses a Stable Outlier Pursuit (SOP) algorithm to detect moving objects, which achieves
robust decomposition while the outliers corrupt entire columns. In Reference [33], a vehicle detection
approach based on probabilistic neural networks is presented, which can accurately detect moving
vehicles in both high bit-rate and low bit-rate video streams. However, the application of deep CNNs
in vehicle detection mainly depends on state-of-the-art object detection algorithms, and is improved
based on the practical application scenarios and data characteristics. A novel framework named
Evolving Boxes [34], which obtains significant boost on mAP compared to Faster R-CNN and achieves
9-13 FPS speed, is proposed. Evolving Boxes consists of three networks called Deep Convolutional
Network (DCN), Proposal Network (PN), and Fine-Tuning Network (FTN), and evaluates on DETRAC
benchmark. In Reference [2], a scale-insensitive convolutional neural network (SINet) is adopted for
vehicle detection with various scales on KITTI benchmark, which prominently improves the detection
accuracy of extremely small objects with a speed up to 37 FPS. It is noteworthy, SINet can be applied
to any deep network and can be trained end-to-end. A multi-task vehicle detection framework with
region-of-interest voting scheme is presented in Reference [1], which experiments on KITTI benchmark
and PASCAL2007 vehicle dataset, respectively, and achieves extraordinary performance compared
with other excellent frameworks in vehicle detection. In Reference [35], a scene-adaptive algorithm by
employing deep convolutional neural network is introduced for vehicle detection, which can be applied
in various scenes and demonstrates a higher detection rate than existing machine-learning-based
method. In Reference [36], an approach by combining a bioinspired image enhancement method with a
weighted feature fusion technique is introduced for nighttime vehicle detection, which can be applied
in various scenes and demonstrates a higher detection rate than some state-of-the-art algorithms. A
Multi-Perspective Tracking (MPT) framework in Reference [37], which is conducted on a MPT dataset,
learns the surroundings of the vehicle using an iterative search procedure for detection, and a Siamese
convolutional neural network is employed for feature extraction. Experiments show that MPT achieves
good performance of vehicle detection from multiple perspective. For higher detection performance,
recently, a unified framework called Detection and Annotation for Vehicles (DAVE) [38] employs a
two-stage architecture of a shallow fully convolutional network and an extended GoogLeNet [16] for
vehicle detection and attributes learning in urban traffic surveillance. DAVE, which was trained on
the CompCars dataset [39] and used to evaluate the self-collected UTS dataset, PASCAL VOC 2007
car dataset [40] and LISA 2010 dataset [4], respectively, obtains significant improvements over other
published methods.

In addition to road vehicle detection, vehicle detection utilizing deep CNNs in aerial images
has also been rapidly developed. In Reference [41], an approach named Oriented_SSD is proposed
to generate arbitrary-oriented bounding boxes for vehicle detection in aerial images. It is based
on a single convolutional network SSD [12] and evaluated on the DLR Vehicle Aerial dataset
and VEDALI dataset, respectively. Oriented_SSD, which is more accurate and robust than SSD,
can detect vehicle location and orientation simultaneously. To ensure good performance on small
vehicles with complex backgrounds in aerial vehicle detection, an improvement algorithm based
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on Faster R-CNN is presented in Reference [42], which is applied to the Munich vehicle dataset
using a hyper region proposal network (HPRN) and achieves great improvements in accuracy
compared to the existing methods. In Reference [43], a coupled R-CNN method, which combines
an accurate-vehicle-proposal-network and a vehicle attribute learning network, is proposed to fast
and accurate detect vehicles. A vehicle detection algorithm using spatial pyramid pooling-based
convolutional neural networks in proposed [44], which can better adapt to input images of different
sizes to learn of the multi-scale characteristics of objects.

This paper is inspired by the conclusion that the lower-layer feature map has higher location
precision, and the upper-layer feature map has better classification accuracy. Therefore, we take the
advantages of SSD [12] and the idea of feature concatenation to propose our method and achieve good
results in vehicle detection.

3. The Proposed Vehicle Detection Method

The framework of our proposed vehicle detection method is a single deep neural network,
which directly performs to regress the vehicle locations and classify vehicle categories simultaneously.
As illustrated in Figure 2, the network layers of the detection approach are based on an extended
architecture (VGG-16) with converting the fully connected layers fc6 and fc7 to convolutional layers
and adding auxiliary convolutional feature layers (e.g., conv6_1, conv6_2, conv7_1, conv7_2, conv8_1,
conv8_2, conv9_1, and conv9_2) to the end of the fc7 layer to produce more lower resolution feature
maps, which we call the base network. At prediction time, conventional methods use conv4_3,
fc7, conv6_2, conv7_2, conv8_2 and conv9_2 as the basic feature pyramid to predict both location
and confidences. To make the detection more accurate, we increase the number of feature maps in
each feature pyramid layers by concatenating feature maps of lower layers through deconvolution
to enhance the localization performs and concatenating feature maps of the upper layers through
pooling to strengthen the categorization performs. This method proves to be able to enhance the
performance of vehicle location and the presence of each vehicle categories, respectively. The details
of feature concatenation and the enhanced default box for predictions will be described in the
following subsections.

3.1. Feature Concatenation

Searching the whole image to locate potential vehicle positions and classify its categories in
a single feature map is limited by the detection accuracy. The conventional SSD method combines both
lower and upper feature maps in the classifier network to address this problem, but the relationship
between each feature map is not considered, which lowers the efficiency to some extent. Particularly
for the specific application, we expect significantly increased detection accuracy can be achieved in the
case of real-time. Our proposed feature concatenation method is a way to enrich the representation
power of the feature maps in different layers (the original conv4_3, fc7, conv6_2, conv7_2, conv8_2 and
conv9_2 layers), which aims to not only precisely localize all the vehicle-like objects but also accurately
classify the presence of each vehicle-like objects in real-time.

3.1.1. Feature Concatenation through Deconvolution for Localization

We concatenate feature maps of the lower layers through deconvolution, as depicted in the top
part of Table 1, to enhance representation power of lower feature maps. From up to low, the first
convolutional layer (conv9_2) remains unchanged as the first new deconvolution layer. In the
second stage, we filter the new deconvolution layer (conv9_2) with 256 kernels of size 3 x 3 and
a stride of one pixel to the same size with the second convolutional layer (conv8_2), which we call
deconvolution feature map (deconv9_2). Then, after a batch normalization step with both layers [45],
we concatenate convolutional layer (conv8_2) with deconvolution feature map (deconv9_2), to enrich
the representation power of lower feature map (conv8_2) by increasing the number of feature maps
efficiently. In the third stage, the third convolutional layer (conv7_2) takes as input the concatenated
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feature maps obtained from the previous layer and filters them with 256 kernels of size 3 x 3 and
a stride of one pixel to generate deconvolution feature map (deconv8_2), afterwards, we concatenate
both conv7_2 and deconv8_2 in the same way as the second stage. Meanwhile, the feature maps at
the third stage consists of three feature maps. Similarly, the fourth (convé6_2), fifth (fc7), and sixth
(conv4_3) convolutional layers are concatenated with deconvolution feature map (deconv?_2) filtered
by 256 kernels of size 2 x 2 and a stride of two pixels, deconvolution feature map (deconv6_2) filtered
by 512 kernels of size 1 x 1 and a stride of two pixels, and deconvolution feature map (defc?) filtered by
1024 kernels of size 2 x 2 and a stride of two pixels, respectively. It is noteworthy that a normalization
step needs to be performed before concatenating feature maps. This is because the size of the feature
map in different layers are quite different.

Table 1. Network architectures of the feature concatenation through deconvolution and pooling.

Type Layer_Name Bottom Top
Feature concatenation through deconvolution for localization
Stage 1 Convolution conv9_2 conv9_1 conv9_2
Stage 2 Deconvolution deconv9_2 conv9_2 deconv9_2
Concat conv8_2_concat deconv9_2 & conv8_2 conv8_2_concat
Stage 3 Deconvolution deconv8_2 conv8_2_concat deconv8_2
Concat conv7_2_concat deconv8_2 & conv7_2 conv7_2_concat
Stage 4 Deconvolution deconv?7_2 conv?7_2_concat deconv?7_2
Concat conv6_2_concat deconv?7_2 & conv6_2 conv6_2_concat
Stage 5 Deconvolution deconvé6_2 conv6_2_concat deconvé6_2
Concat fc7_concat deconvé6_2 & fc7 fc7_concat
Stage 6 Deconvolution defc7 fc7_concat defc7
Concat conv4_3_concat defc7 & conv4_3 conv4_3_concat

Feature concatenation through pooling for categorization

Stage 1 Convolution conv4_3 conv4_2 conv4_3
Stage 2 Pooling pooling4_3 conv4_3 pooling4_3
Concat fc7_concat pooling4_3 & fc7 fc7_concat
Stage 3 Pooling poolingfc7 fc7_concat poolingfc7
Concat conv6_2_concat poolingfc7 & conv6_2 conv6_2_concat
Stage 4 Pooling pooling6_2 conv6_2_concat pooling6_2
Concat conv7_2_concat pooling6_2 & conv7_2 conv7_2_concat
Stage 5 Pooling pooling7_2 conv7_2_concat pooling7_2
Concat conv8_2_concat pooling7_2 & conv8_2 conv8_2_concat
Stage 6 Pooling pooling8_2 conv8_2_concat pooling8_2
Concat conv9_2_concat pooling8_2 & conv9_2 conv9_2_concat

In addition, the number of channels in the feature pyramid is increased efficiently.
By concatenating feature maps, from up to low, each of deconvolution layer contains 256, 512, 768,
1280, 2304 and 2816 feature maps, respectively. This method will directly achieve precise localization,
especially for small vehicles from whole image or frames in video.

3.1.2. Feature Concatenation through Pooling for Categorization

The bottom part of Table 1 shows the architecture details of pooling concatenation. In order
to make the network be trained with more meticulous vehicle features, from low to up, we use the
first convolutional layer (conv4_3) unchanged as the first new pooling layer. Next, we pool the new
convolutional layer (conv4_3) with kernel of size 2 x 2 and a stride of two pixels by means of max
pooling, which we call pooling feature map (pooling4_3). At the same time, we need to ensure the
same size as the second convolutional layer (fc7). Then, by utilizing a batch normalization step,
we concatenate convolutional layer (fc7) with pooling feature map (pooling4_3) to strengthen the
representation power of upper feature map (fc7) by increasing the number of feature maps efficiently.
Similar to the deconvolution process, in the next, the third (conv6_2), fourth (conv7_2) and fifth
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(conv8_2) convolutional layers are concatenated with pooling feature maps poolingfc?7, pooling6_2
and pooling7_2 that pooled by kernel of size 2 x 2 and a stride of two pixels by means of max pooling
respectively. At last, we concatenate the sixth (conv9_2) convolutional layers with pooling feature
map (pooling8_2) pooled by kernel of size 3 x 3 and a stride of one pixel by means of max pooling.
In this way, the network with large receptive fields can have enhanced representation power for vehicle
classification. Therefore, from low to up, each of pooling layer contains 512, 1536, 2048, 2304, 2560 and
2816 feature maps, respectively.

In all of the above, we use a single deep neural network for detecting vehicles, but different feature
extractors are used for the localization task and classification task, respectively. The classifier used in
the localization task is obtained by concatenating feature maps of lower layers through deconvolution,
and the classifier for the classification task combines the feature maps of upper layers through pooling.
The advantage of this method is that the network can executed with information from other layers in
each of the feature maps, which will precisely detect vehicles in real-time.

3.2. Default Box with Feature Concatenation

For vehicle detection predictions, we adopt a small convolution kernel of 3 x 3 to filter the feature
map output by the top of the network to produce a score for the vehicle category and a rectangular
offset relative to the default box coordinates. Motivated by References [22,46,47], the conventional
SSD method uses a feature pyramid that includes both the lower and upper feature maps to fit the
default box. Previous work [13] has demonstrated that the greater the number of channels in the
feature map, the better the performance becomes. Simultaneously, Reference [14] showed that the
upper feature maps can find the object of interest with high recall, and the lower feature maps can
better localize the object of interest. Inspired by these works, we use concatenated feature maps of
different resolutions obtained by deconvolution for predicting vehicle localization, and feature maps
of multiple layers concatenated through pooling for calculating confidences, respectively. Figure 3
left shows the concatenated feature map conv4_3_pb consisting of six feature layers including 2816
channels, which is used in our framework, and other feature maps are similar.

E}
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e Input image —min size
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Figure 3. Left: Feature map concatenation and the calculation of default boxes with multiple aspect
ratios and scales in the process; Right: Example detections using DP-SSD300 with new default box size
in Table 2 on PASCAL VOC 2007 car dataset.
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Table 2. The learned average default box size for each feature map cell in different concatenated feature
layers using the extend VGGNet (300 x 300 input).

Layer Min_size Max_size 1:1 (Small) 1:1 (Large) 1:2 2:1 1:3 31
conv4_3_pb 21 45 21 x 21 31 x 31 15 x 30 30 x 15 - -

fc7_pb 45 99 45 x 45 67 x 67 32 x 64 64 x 32 26 x 78 78 x 26
conv6_2 pb 99 153 99 x 99 123 x 123 70 x 140 140 x 70 57 x 171 171 x 57
conv7_2_pb 153 207 153 x 153 178 x 178 108 x 216 216 x 108 88 x 265 265 x 88
conv8_2_pb 207 261 207 x 207 232 x 232 146 x 293 293 x 146 - -
conv9_2 pb 261 315 261 x 261 315 x 315 185 x 369 369 x 185 - -

Our approach, concatenation-based feature pyramid, fits the predicted bounding boxes into a set
of default boxes through different scales and aspect ratios at each feature map location. To generate
default boxes that can match the specific vehicle shape, suppose m feature maps of different resolutions
are used, and two parameters of the default box scale min_size and max_size are defined as follows:

min_dim X ratio

min_size 100 ( )

min_dim x (ratio + step) o)
100

max_ratio — min_ratio
(3)

max_size =

where step =

m—2

Here, min_dim is the size of input image, meanwhile we set min_raito as 15 and max_ratio as 90.
Starting at 15, we generate a set of data regularly spaced at step intervals between 15 and 90, and we
assign them to ratio respectively. Tables 2 and 3 show the specific values of min_size and max_size in
several feature layers of different resolutions for the 300 and 512 input models, respectively. In addition,
we use 6 aspect ratios of 1:1, 1:1, 1:2, 2:1, 1:3, 3:1 for the default boxes in each feature map location. For

the two 1:1 aspect ratios, we compute the scales as min_size and v/ min_size x max_size, respectively.
Besides, for the rest aspect ratios, we define the width as ,/aspect_ratio x min_size, and height as
min_size//aspect_ratio for each default box. In detail, Figure 3 left also shows the calculation of
default boxes with different aspect ratios and scales.

Table 3. The learned average default box size for each feature map cell in different concatenated feature
layers using the extend VGGNet (512 x 512 input).

Layer Min_size Max_size 1:1 (Small) 1:1 (Large) 1:2 2:1 1:3 3:1
conv4d_3_pb 36 77 36 x 36 53 x 53 25 x 51 51 x 25 - -

fc7_pb 77 169 77 X 77 114 x 114 54 x 109 109 x 54 44 x 133 133 x 44
conv6_2 pb 169 261 169 x 169 210 x 210 120 x 239 239 x 120 98 x 293 293 x 98
conv7_2 pb 261 353 261 x 261 304 x 304 185 x 369 369 x 185 1“2;; 4i)§1x
conv8_2_pb 353 445 353 x 353 396 x 396 250 x 499 499 x 250 - -
conv9_2 pb 445 537 445 x 445 489 x 489 315 x 629 629 x 315 - -

3.3. Deep Nets Training

The vehicle detection network with feature concatenation can be trained end-to-end by stochastic
gradient descent (SGD) [48]. To make a full training, we randomly initialize all layers used
for predicting confidences by drawing weights from the Xavier algorithm [49]. All other layers
(i.e., predicting localization layers) are initialized by the pretrained truncated VGG model for ImageNet
classification [9]. The reason is that offsets are independent of category, and the classification layers
cannot share weights due to different number of categories.

At training time, we assign a positive label to default boxes by matching them to the ground
truth in two ways: (i) each of the ground truth box with the best jaccard overlap with the default box,
and (ii) each of the default box that has a jaccard overlap higher than 0.5 with any ground truth box.
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Otherwise, we assign a negative label to a non-positive default box if its jaccard overlap is lower than
0.5 for all ground truth boxes. The jaccard overlap calculation is as follows:

_|ANB| _ |AN B
|AUB|  |A[+|B| - |ANB|

(4,B) € [0,1] 4)
where |A N B| denotes the intersection of ground truth box and default box, and |A U B| indicates
their union.

In addition, after matching step, positive samples are much more than negative samples,
which leads to a significant imbalance between the positive boxes and negative boxes. In order
to make the training converge quickly, hard negative mining strategy is applied to balance the ratio of
negative and positive training examples to 3:1 at most.

We employ a multi-task loss L(x, ¢, 1, g) on each training batch to jointly optimize multiple vehicle
classification and offsets regression from the proposed deep network as the following function:

1
L(x,c1,g) = N (Lconf(x, ¢) 4+ aLje(x, l,g)) (5)

Here, g is the ground truth box and [ is the corresponding predicted box. x denotes whether the
matched box (between default box and the ground truth box) belongs to category p, and c indicates the
confidence value if x is 1. If the default box is negative, x is 0. The confidence loss L, is the softmax
loss over four classes (i.e., car, bus, van, and others), and is defined as follows:

p
Leonf(x,€) = — iezt; + log (éf) — ie%glog(é?), where ¢!’ = m (6)

where xf} indicates the i-th default box matches the j-th ground truth box with category p, and éf
represents the probability that the i-th default box belongs to p. For the regression loss L;,., we use the
Smooth L1 loss [8] to predict the offsets of default box, and is defined as:

N 5.
{ 0.5x= if|x| <1 @

Lioc(x,1,8) = ) ) xksmoothyq (lm — g”’),where smoothy; (x) = )
i€Pos me (cx,cy,w,h) Y 1 ! |x| — 0.5 otherwise

Especially, g;" is a four-point vector with m € (cx,cy,w,h), and we apply the following
parameterizations of the four coordinates:

. . . g"." . gh
g]qx _ (g]qx _ dIQX) /d}og]?y _ (gj?y _ d?y) /d?g;” = log<d;>g;7 = log<dél> (8)
i i

where (cx, cy) is the bounding box center, and w, h are its width and height, respectively. In addition,
(gA]C-x, g]?y, g}”, g;i) represents the coordinates of the j-th ground truth box, (d}", df’) is the width and
height of the i-th default box, and [/ indicates the offsets of the predicted box relative to the default
box.

Furthermore, in Equation (5), the term is normalized by N and weighted by a balancing parameter
«. By default, the weight term « is set to 1 by cross validation, and N denotes the number of positive

default boxes.

4. Experiments and Results

In this section, we evaluate our proposed network DP-SSD for vehicle localization and
classification on two public vehicle datasets: the UA-DETRAC dataset [50,51] and the KITTI dataset [52].
Experiments are implemented based on the deep learning framework Caffe [53] and run on Ubuntu
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14.04 LTS with an Intel Core i7-7700K CPU @ 4.2 GHz, 32 GB of DDR4 memory and an NVIDIA
GeForce GTX 1080Ti GPU.

4.1. Dataset and Experimental Configuration

4.1.1. Training Dataset and Data Augmentation

We evaluate our method on two public vehicle datasets. First, we adopt a quarter high definition
(960 x 540) UA-DETRAC Benchmark Dataset [50,51] with 40 videos for more than 50,000 real-world
vehicle images as the training samples, which are annotated with tight bounding-boxes and multiple
vehicle types such as car, bus, van and others. The dataset is captured with an EOS 550D camera (Canon,
Beijing and Tianjin, China) at 24 different locations. In detail, the real-world part of the UA-DETRAC
dataset is captured under three occlusion status as fully visible, partially occluded by other vehicles
and partially occluded by background, and different degrees of truncation as vehicle parts outside the
frame. To achieve an even training distribution, the multi-scale vehicles including small (0-50 pixels),
medium (50-150 pixels) and large (more than 150 pixels) are used to train our model. Besides, since
weather condition is another important factor in vehicle detection, we intentionally employ the dataset
with four weather conditions as cloudy, night, sunny and rainy to train our final model.

To make our model more convincing, we also use a representative (1224 x 370) KITTI Benchmark
Dataset [52] with 4000 vehicle images for training. The KITTI dataset utilized here is captured in the
mid-size city of Karlsruhe (Germany) under four scenarios: city, residential, road, and campus. Up to
15 vehicles are visible per image, and each bounding box is marked as either visible, semi-occluded,
fully occluded or truncated. The examples of the two datasets are illustrated in Figure 4a,b.

UA-DETRAC dataset with 50410 tainval images and 31672 el itmages KITT1 dataset with 4000 trainval  Number of ground truth for each category on UA-DETRAC dataset
© images and 3481 rest images 350000

L _ )] [ 300000

cloudyF |
" "

rainy

250000
200000
150000

100000

Number of ground truth

0000 -

Number of ground truth for each category on KITTT dataset
20000

- -
| tost datasct

15000 ;
10000
000
q || —_—
ar ars

van
Vehicle category

@ ] ETY ©

Number of ground truth

Figure 4. Different datasets for vehicle detection. (a) UA-DETRAC dataset: We classify the vehicles
into four categories (i.e., car, bus, van, and others) with multiple scales, occlusion ratios and truncation
ratios in each weather condition; (b) KITTI dataset: We classify the vehicles into three categories
(i.e., car, van, and others) with different degrees of occlusion and truncation in multiple scenes; (c)
Number of ground truth for each category on UA-DETRAC dataset and KITTI dataset, respectively.

For data augmentation, we first randomly sample each of the training data by the options as
Reference [12] for making our final model more robust to various vehicle sizes and shapes. In addition,
image adjusting brightness, contrast, hue and saturation with probability of 0.5 are introduced to
enable that vehicles with blurry edges can be detected as precisely as possible. Then, a strategy of
expanding the image ratio is utilized to enhance the classification accuracy of vehicles. Moreover,
in order to fully learn the information of vehicles, each training data is horizontally flipped with
probability of 0.5.
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4.1.2. Implementation Details

The entire training structure of our proposed network is illustrated in Figure 2. We re-scale
the images such that their width and height are 300 x 300 pixels. To make a better performance of
prediction, we concatenate feature maps of the lower layers through deconvolution to regress vehicle
bounding boxes, and concatenate feature maps of the upper layers through pooling to classify vehicle
categories. During training, we definitely discover that the enhanced feature extractors can indeed
benefit training the network to detect small vehicles. Unfortunately, we remove the BatchNorm layer
which ensuring that the feature maps in each concatenated layer are in the same size, due to the
consumption of a large amount of memory resources. In the next section, we will provide ablation
experiments on different feature pyramids.

For default box, we use four or six different shapes in several feature maps of different resolution
with aspect ratios of 1:1, 1:2, 1:3, 2:1, and 3:1. In addition, for the aspect ratio of 1:1, we add another
larger scale to resulting in six default boxes per concatenated feature map location. To account for
smaller vehicle sizes, we reduce the minimal width and height of default boxes by setting min_ratio
as 15 and max_ratio as 90. Figure 3 right shows the capability of our method over different aspect
ratios and scales. Tables 2 and 3 show the learned average default box size for each feature map cell
in different concatenated feature layers using the extended VGGNet, with the values of parameters
min_size and max_size display on the left. We note that the default box can larger than the underlying
receptive field, thus predictions can make adjustment to better match the vehicle shape.

In detail, we directly train the detection and classification network for about 60 epochs on
the selected real-world data that contains four vehicle types of car, bus, van and others from the
UA-DETRAC dataset. Throughout the training process, the network with 300 x 300 input is trained
with a batch size of 24, while 512 x 512 input with a batch size of 8. As in Reference [12], the momentum
and weight decay in both nets are configured as 0.9 and 0.0005, respectively. Learning rate in 300 x 300
input net is reduced from 1073 to 107> by 10~!, while in 512 x 512 input net is reduced from 10~ to
10~ by 10~1. With each learning rate, we trained 40, 10, 10 epochs, respectively. However, for KITTI
dataset with three vehicle types of car, van and others, we first train our models with 10~* learning rate
for 480 epochs, followed by 102 learning rate for 120 epochs, and then continue training for another
120 epochs with 107, in order to avoid a gradient explosion during training. The other parameter
settings are the same as UA-DETRAC dataset. Number of ground truth histograms for each category
on UA-DETRAC and KITTI dataset are depicted in Figure 4c.

4.2. Experiments on UA-DETRAC Dataset

We comprehensively evaluate our proposed method on the UA-DETRAC Train Images.
This dataset consists of 60 sequences with 82,082 real-world vehicle images over four vehicle categories
of car, bus, van and others, and we divided it into two parts: 40 sequences with 50,410 images for
trainval dataset as mentioned before, and 20 sequences with 31,672 images for test dataset. All methods
in this section use the same training and testing data. For the ImageNet pre-trained network, we use
the truncated VGG-16 [17] that has 16 convolution layers.

4.2.1. The Importance of Feature Concatenation

We evaluate the performance of DP-SSD by mean average precision (mAP) and frames per second
(EPS), respectively.

Table 4 (top) shows DP-SSD results when trained and tested using different size input images.
Both DP-SSDs use our new default boxes as adjusted in Table 2 or Table 3. For 300 x 300 input and
512 x 512 input, as shown in Table 5, DP-SSD generates about 8732 and 24,656 default boxes by
default settings, respectively. The 300 input model achieves an mAP of 75.43% at 50.47 FPS under our
proposed DP-SSD framework. For the 512 input model, there is a 2.51% improvement in accuracy with
77.94% mAP compared to the 300 input model, because more information can be obtained in large
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images. However, due to the increased computational complexity, the speed is reduced to 25.12 FPS
but still achieves in real-time.

Table 4. Detection results on UA-DETRAC test set (trained on UA-DETRAC trainval dataset in this
paper). The input size is 300 or 512, but using various detectors for training and testing. * denotes
using the new default box size in Table 2 or Table 3.

Method Input FPS mAP (%) Car Bus Van Others
Ours (DP-SSD) * 300 50.47 75.43 85.38 82.12 70.35 63.87
Ours (DP-SSD) * 512 25.12 77.94 86.27 83.39 78.26 63.84

Aablation experiments follow below:

SSD [12] 300 5878 7418 8446 8156 7185 5886

Ours (SSD pooling) * 300 52.36 73.49 84.03 79.26 71.76 58.91

Ours (SSD 300 5178 7327 8510 7886 7087 5826
deconvolution) *

Ours (DP-SSD) 300 4922 7477 8469 8054 7027 6357

SSD [12] 512 2775 7683 8474 8432 7664 6162

Ours (SSD pooling) * 512 2679 7587 8580 8126 7723  59.18

Ours (SSD 512 2583 7515 8542 7733 7691  60.94
deconvolution) *

Ours (DP-SSD) 512 2526 7704 8487 8373 7635 6321

Table 5. Detection results of DP-SSD on UA-DETRAC test set using different number of default
boxes in multiple feature maps. The training data is UA-DETRAC trainval dataset in this paper.
The multiple feature maps are conv4_3_pb, fc7_pb, conv6_2_pb, conv7_2_pb, conv8_2_pb and
conv9_2_pb, respectively. The default setting of using different number of default boxes (75.43%
or 77.94%) is the same as that in Table 4. All models use the new default box size in Table 2 or Table 3.

Default Boxes in

Method Input Settings Multiple Total Boxes mAP (%)
Feature Maps
Ours (DP-SSD) 300 default 4 6 6 6 4 4 8732 75.43
Ours (DP-SSD) 300 all small 4 4 4 4 4 4 7760 75.10
Ours (DP-SSD) 300 all large 6 6 6 6 6 6 11,640 73.62
Ours (DP-SSD) 512 default 4 6 6 6 4 4 24,656 77.94
Ours (DP-55D) 512 all small 4 4 4 4 4 4 21,968 75.60
Ours (DP-5SD) 512 all large 6 6 6 6 6 6 32,952 76.54

To investigate the performance of default box with feature concatenation as a proposal method,
we conducted several ablation experiments for comparation. In the first part of the ablation studies,
we show the behaviors of different networks with the same 300 x 300 input images. To do this,
first, we train the traditional SSD300 model only by replacing the training and testing datasets
with UA-DETRAC dataset, which achieves a lower mAP of 74.18% and a higher FPS at 58.78 than
DP-SSD300 input model. We observe that this is because of weak feature pyramid and relatively simple
computations for vehicle detection. We use this result as a baseline for the following comparisons.

Next, we separately investigate the results of single feature concatenation for pooling
concatenation and deconvolution concatenation outputs by eliminating either of them in DP-SSD
framework. When feature concatenation through deconvolution is removed (thus the representation
power of feature pyramid for vehicle localization is the same as SSD), it results in mAP of 73.49%
which is 0.69% lower than conventional SSD. In addition, the speed drops to 52.36 FPS.

On the other hand, when the feature concatenation through pooling is removed in both training
and testing time (so the feature pyramid for vehicle categorization becomes conventional SSD), the mAP
drops to 73.27%, and the speed is degraded to 51.78 FPS. Somewhat surprisingly, the enhanced feature
pyramids in these two models have not played a positive role, the reason can be speculated that
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unilaterally enhancing low-level or high-level feature pyramids in conventional SSD can make a great
difference in computational complexity between localization task and categorization task, resulting in
inadequate learning of different tasks in a single network.

Then, we also evaluate the roles of simultaneous integration of deconvolution and pooling.
For this purpose, we train a DP-SSD model that only enhances the feature pyramid without adjusting
the default box scales. It is observed that the mAP improves from 74.18% (conventional SSD) to 74.77%
(DP-SDD using feature concatenation only), but still 0.66% lower than 75.43% (our DP-SSD using
feature concatenation and new default box scale), indicating that our feature concatenation method can
effectively improve the detection result because of the features for both localization and categorization
have been properly learned. Moreover, this shows that the adjusted default box scale in Table 2 can
also account for the accuracy of our DP-SSD model, because the default boxes in Table 2 have a wider
range. In addition, the speed drops to 49.22 FPS, because this model performs more operations than
conventional SSD.

For the 512 input models, in the second part of the ablation experiments, we observe that they have
the similar variation tendency as the 300 input models. At 27.75 FPS, conventional SSD gets 76.83%
mAP, while the two single feature concatenation models (pooling concatenation and deconvolution
concatenation) decrease by 0.96% at 26.79 FPS and 1.63% at 25.83 FPS, respectively. For the DP-SDD
using feature concatenation only, there is a 0.21% improvement in accuracy with 77.04% mAP compared
to traditional SSD.

Looking at the results from Table 4, the 512 input models achieve higher accuracy than the
corresponding 300 input models due to more information can be learned in the larger input images.
As for speed, although still reach real-time, the 512 input models are significantly reduced, because
of the increased computational complexity. It is noteworthy, both DP-SSD300 and DP-SSD512 obtain
the best accuracy at real-time, indicating that our feature concatenation method and default box
adjustment strategy have played a positive role.

Table 5 shows the experimental results of three types of DP-SSD for different default box settings.
For the 300 input models, the first one, which checks 4 or 6 default boxes per feature map location
for a total of 8732 boxes, results in mAP of 75.43%. In the model with 4 default boxes for each layer
with a 7760 total boxes, the mAP drops to 75.10%, likewise, for the model which makes a 11,640 total
boxes, the mAP becomes 73.62%. For the 512 input models, the model contains 24,656 boxes in total
achieves the best mAP of 77.94%. In the case of a 21,968 and a 32,952 total boxes, it has 2.34% and 1.4%
mAP drops when they use 4 and 6 default boxes, respectively. All these demonstrate that the different
number of boxes for each feature layers is better than that of the same number of boxes.

Figure 1b,d shows the qualitative detection results of our proposed DP-SSD300 on UA-DETRAC
dataset. As shown in Figure 1b, DP-SSD300 is robust to detect vehicles in real-time for urban traffic
surveillance. Furthermore, DP-SSD300 can prevent detecting multiple boxes for one vehicle and
improve the detection rate for small vehicles as shown in Figure 1d.

4.2.2. Comparisons with State-of-the-art Detection Methods

Table 6 shows the performance comparison between DP-SSD, Faster R-CNN [9], YOLO [11],
YOLOV2 [24], SSD [12], DSSD [25], R-SSD [13], RefineDet [26], SIN [27] and YOLOvV3 [29]. In addition
to YOLOV3, our DP-5SD512 outperforms all the other methods significantly. Specifically, regardless
of the 300 or 512 input model, DP-SSD has better performance than Faster R-CNN in both accuracy
and speed. Because DP-SSD eliminates the proposal generation stage and uses a concatenated feature
pyramid of different resolutions in a single neural network.
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Table 6. Detection results between different methods on UA-DETRAC dataset. In addition to YOLOVS3,
DP-SSD512 outperforms all other methods on accuracy in real-time, and YOLOv2 achieves the highest
speed of 64.65 FPS. * denotes using the new default box size in Table 2 or Table 3.

Method Input mAP (%) FPS

Faster R-CNN [9] (VGG16) - 72.70 11.23
YOLO [11] 448 x 448 62.52 42.34
YOLOv2 [24] 416 x 416 73.82 64.65
YOLOvV2 544 x 544 [24] 544 x 544 75.96 39.14
SSD300 [12] 300 x 300 74.18 58.78
SSD512 [12] 512 x 512 76.83 27.75
DSSD (ResNet-101) [25] 321 x 321 76.03 8.36
R-SSD300 [13] 300 x 300 75.02 43.78
R-SSD512 [13] 512 x 512 77.73 24.19
RefineDet320 [26] 320 x 320 76.97 46.83
RefineDet512 [26] 512 x 512 77.68 29.45
SIN [27] - 77.26 10.79
YOLOvV3 [29] 416 x 416 88.09 51.26
Ours (DP-SSD300) * 300 x 300 75.43 50.47
Ours (DP-SSD512) * 512 x 512 77.94 25.12

Both the YOLOV2 models (YOLOvV2 416 x 416 [24] and YOLOv2 544 x 544 [24]) obviously
improve the performance compared to YOLO [11] by 11.3% and 13.44% of mAP respectively due to
the elimination of fully connected layers and introduction of anchor boxes, but they are 4.12% and
1.98% lower than DP-SSD512, respectively. In addition, DP-SSD512 obtains an increased mAP of
1.11% compared to state-of-the-art SSD512 detection model [12], and the lower resolution network
DP-SSD300 achieves 75.43%, which is worse than SSD512 but is 1.25% higher than SSD300 [12].
Although residual network is utilized by DSSD, there is still a 1.91% mAP degraded in accuracy with
76.03% mAP compared to DP-SSD512. In particular, compared to R-SSD512 and R-SSD300, DP-SSD512
and DP-S5D300 have 0.21% and 0.41% mAP improvement in accuracy, respectively. This suggests
that using our proposed feature concatenation method with adjusted default box scales can help
improve the vehicle detection results on UA-DETRAC dataset. The other two models, RefineDet
(including 320 input and 512 input models) and SIN, produce better results than DP-SSD300, but there
is still a small gap with DP-SSD512. Surprisingly, YOLOv3 achieves 88.09% in mAP, which beats
all models and is better than DP-SSD512 by 10.15%, the reason is the good residual structure and
multi-scale prediction method used in YOLOv3. However, DP-SSD has fewer network parameters
than YOLOv3 (138M vs 214M), thus it is easy to train. As for speed, all models except Faster R-CNN [9],
DSSD (ResNet-101) [25], and SIN [27] in Table 6 can detect vehicles in real-time, and YOLOv2 [24]
outperforms all other methods with a processing speed of 64.65 FPS.

In Figure 5, we present the precision-recall curves of all the compared models on UA-DETRAC
dataset for categories of car, bus, van and others, respectively. We can see, YOLOV3 achieves the
best performance with obvious gaps in all four categories by comparing Area Under the Curve
(AUC). In addition to YOLOV3, for category car and van, we can further discover that, DP-55D512
obtains better performance than other methods. Meanwhile, compared with DP-55D512, DP-SSD300
and RefineDet512 perform slightly better in the others and bus categories, respectively. Specifically,
the capacity to detect for each category over these methods is shown in Figure 6. It can be observed
that only YOLOV3 has a relatively balanced ability to detect all types of vehicles, while YOLO has
relatively poor performance on each type. Apart from this, all the other methods are insufficient for
handling the others category, due to the uncertainty of vehicle shapes and the lack of training samples.
In our on-going work, we are exploring data augmentation techniques, such as Generative Adversarial
Networks, to improve the detection effect of DP-SSD.
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Figure 5. Precision-recall curves between different methods on UA-DETRAC dataset over four
categories of car, bus, van, and others. (a) Precision-recall curves for the car category; (b) Precision-recall
curves for the bus category; (c) Precision-recall curves for the van category; (d) Precision-recall curves
for the others category.
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Figure 6. Radar chart of AP values for four vehicle categories of car, bus, van, and others, to show the
ability of each model for detecting each type of vehicle.

4.3. Experiments on KITTI Dataset

We further evaluate our DP-SSD300 and DP-SSD512 architectures on the KITTI Images.
The dataset we utilized here consists of 7481 images, and we divided it into two parts: 4000 images for
the trainval dataset as mentioned before, and 3481 images for the test dataset.
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After training, we test our final model on the KITTI test set with 7518 images, and upload test files
to the KITTI website for results at three levels: easy, moderate and hard. We use the same framework
as those for UA-DETRAC dataset.

Table 7 shows the results of our DP-SSD300 and DP-SSD512 model on KITTI test set. Similar to
what we observed on UA-DETRAC dataset, DP-SSD512 achieves 85.32% in mAP on the moderate
case, which outperforms R-SSD512 by 0.61%. Likewise, DP-5SD300 can also obtain a relatively high
mAP of 83.86%, which is better than R-SSD300. It is clear that both DP-SSD512 and DP-SSD300
perform better than some existing methods in accuracy. However, compared to the best method
(e.g., THU CV-AI) published on the KITTI website, there is still a large gap in DP-SSD. Meanwhile,
our methods obtain a relatively fast inference speed. In Figure 7, we show some qualitative detection
examples on UA-DETRAC and KITTI test sets with the DP-SSD300 model. It can be observed that
our proposed method is robust to detect vehicles with different categories simultaneously for urban
traffic surveillance.

Table 7. Detection results between different methods on KITTI test set. All methods are ranked based
on the “Moderate”.

0,
Method mAP (%) Runtime
Moderate Easy Hard

THU CV-AI 91.97 91.96 84.57 0.38 s
DP-SSD512 (Ours) 85.32 89.19 74.82 0.1s
R-SSD512 [13] 84.71 88.96 72.68 0.1s
DP-SSD300 (Ours) 83.86 87.37 70.78 0.07 s
R-SSD300 [13] 82.37 88.13 71.73 0.08 s
A3DODWTDA (image) [54] 81.54 76.21 66.85 0.8s
SDP+CRC (ft) [55] 81.33 90.39 70.33 0.6s
MV3D (LIDAR) [56] 79.76 89.80 78.61 024s
RefineNet [57,58] 79.21 90.16 65.71 02s
Faster R-CNN [9] 79.11 87.90 70.19 2s

spLBP [59] 77.39 80.16 60.59 1.5s
Reinspect [60] 76.65 88.36 66.56 2s

UA-DETRAC test set KITTI test set

Figure 7. Selected examples of vehicle detection results on UA-DETRAC test set and KITTI test set
using our proposed DP-SSD300 framework. Both UA-DETRAC and KITTI test sets are made into video
sequence for testing. We display high quality detections with scores higher than 0.3. The detected
frame rate is displayed in the upper left corner, and each output box is associated with a category label
and a specific score.
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5. Conclusions

In this paper, we have developed DP-SSD, a single deep neural network for vehicle detection in
urban traffic surveillance, which concatenates the feature pyramid of conventional SSD [12] and adjusts
the scales of default box to detect small vehicles more accurately. The improved detection network
predicts bounding-boxes with scores for each vehicle and infers their categories simultaneously.
Extensive experiments on the UA-DETRAC and KITTI datasets show that our method outperforms
some existing algorithms on accuracy and achieves real-time detection. One of the shortcomings of
this paper is that due to the limitations of GPU memory, the batch normalization layer was removed,
which is considered to speed up the network training and improve the accuracy of the model. In our
on-going work, we are adding multi-label classification task into DP-SSD to simultaneously learn more
vehicle attributes such as color, make and model, and ultimately investigate vehicle re-identification
tasks in urban traffic surveillance images.
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