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Abstract: The interest in fisheye cameras has recently risen in the autonomous vehicles field, as they are
able to reduce the complexity of perception systems while improving the management of dangerous
driving situations. However, the strong distortion inherent to these cameras makes the usage of
conventional computer vision algorithms difficult and has prevented the development of these devices.
This paper presents a methodology that provides real-time semantic segmentation on fisheye cameras
leveraging only synthetic images. Furthermore, we propose some Convolutional Neural Networks(CNN)
architectures based on Efficient Residual Factorized Network(ERFNet) that demonstrate notable skills
handling distortion and a new training strategy that improves the segmentation on the image borders.
Our proposals are compared to similar state-of-the-art works showing an outstanding performance
and tested in an unknown real world scenario using a fisheye camera integrated in an open-source
autonomous electric car, showing a high domain adaptation capability.

Keywords: fisheye; intelligent vehicle; CNN; deep learning; distortion

1. Introduction

The most critical task for autonomous vehicles is understanding their surroundings. A good
real-time scene-comprehension is vital to a vehicle so it can drive in an unknown environment in
a safe way. The semantic segmentation task proposes a solution for this challenge based on image
pixel-level classification in multiple semantic categories such as vehicles, pedestrians, traffic signals,
etc., satisfying most of the vehicle needs in a unified way [1].

The remarkable success of semantic segmentation solutions during the last few years has been
closely related to the breakthrough of deep learning methods, which have proven to widely outperform
previous state-of-the-art machine learning techniques [2,3]. Among these techniques, the success of
Convolutional Neural Networks (CNNs) has been pushed by the development of excellent open-source
deep learning frameworks [4,5], by the progression of specific computational hardware such as
Graphics Processing Units (GPUs), and by the appearance of large-scale training datasets [6,7].

The comprehension of a vehicle’s surroundings becomes even more challenging in complex
environments such as urban traffic scenes, where the behavior of dynamic traffic participants like
pedestrians or vehicles is unpredictable, or specific situations such as intersections or roundabouts that
require big volumes of information to be adequately handled. Accordingly, a full real-time perception
of the scene is a compulsory need for autonomous vehicles. Different sensors can be used in order to
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cover this need as cameras, LiDAR, radar, ultrasound, etc. Cameras clearly stand out among other
solutions as they are able to generate real-time high-level semantic information while remaining easy
to manage, cheap and present low power consumption.

However, the limited field of view of traditional cameras complicates the management of complex
environments since cameras are expected to cover the 360◦ surroundings. The number of devices
that compose the perception system is a critical parameter to be optimized, given that a high number
of cameras involve high processing times and the fulfillment of a set of hard tasks such as sensor
calibration, synchronization and data-fusion.

Fisheye cameras have started to play an increasingly important role in autonomous vehicles
because of their ultra-wide field of view. These devices allow for acquiring more scene information using
only a sensor at the cost of radial distortion in the images. With fields of view higher than 180 degrees,
only two of these cameras are theoretically needed to cover the all of the vehicle’s surroundings.
In addition, current autonomous vehicles are betting on redundant and robust perception systems.
Fisheye cameras can clearly help in the achievement of these objectives in order to reach safe and
reliable driving.

Despite the discussed advantages, distortion associated with these cameras prevents the use of
standard computer vision algorithms on the acquired images, making the integration into autonomous
vehicles difficult. Furthermore, the application of deep learning techniques to these kinds of images
presents many problems such as the lack of large-scale annotated datasets or the management of the
distortion, which has caused that only some few works of the state of the art have focused on adapting
current semantic segmentation methods to fisheye cameras.

This paper is an extension of our previous conference publication [8]. This work proposes robust
deep learning techniques and some CNN architectures able to handle fisheye distortion correctly
and that allows real-time fisheye semantic segmentation without the need for using pixel-level
hand-annotated images. Moreover, our proposals have been validated in an open-source dataset
such as CityScapes and an additional dataset obtained from our open-source autonomous electric car.

This paper is organized as follows: Section 2 examines previous related works. Section 3
introduces the generation of a specific fisheye dataset and some fisheye data augmentation techniques.
Sections 4 and 5 present our CNN architecture proposals based on Efficient Residual Factorized
Network (ERFNet), the training strategy and the performed experiments. Finally, Section 6 presents
some qualitative results for a real autonomous vehicle.

2. Related Work

The main issue with fisheye cameras is how to correctly handle distortion. Distortion is
heterogeneous over the different fisheye image areas [9], being a function of both the radial angle and
the distance between the principal point of the camera and the image points of the detected objects.
This adds complexity to the training of CNNs, as they are forced to learn complicated features that
allow the detection of objects with changing appearances depending on their position in the image in
order to perform an accurate detection.

An initial approach to deal with the problem is the undistortion of the captured images in order
to apply traditional vision techniques [10]. In [11], an end-to-end multi-context collaborative deep
network that leveraged semantic information was used to remove distortion from single fisheye images
achieving an outstanding performance but with an inadmissible processing time for real-time tasks.

Authors in [12] successfully used a region based CNN (R-CNN) to perform multi-class object
detection on panoramic images that were constructed with three fisheye images. The distortion was
corrected using a simple and fast approach based on longitude-latitude projection, as correction
accuracy was not considered a key issue for object detection.

Nevertheless, none of the previous works achieved a good quality corrected image in a reasonable
processing time as the image undistortion process has several difficulties: the strong dependency
on intrinsic camera calibration parameters, the high consumption of computational resources that
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penalizes real-time processes and, finally, a remarkable loss of image quality, leading to information
loss all over the image, but especially in the boundaries as shown in Figure 1. These regions are critical,
as they gather a big part of the scene information. To deal with this problem, in [13], a CNN-based
preprocessing stage and a multi-frame-based view transformation were proposed and applied in an
Around View Monitor system (AVM). However, this approach uses separated CNN frameworks for
image enhancement and up-scaling and hole filling method can be improved.

(a) Original Image (b) Undistorted Image

Figure 1. Example of fisheye image undistortion.

These inconveniences have caused the sprouting up of other approaches that try to adapt existing
image processing techniques to work with the distorted images directly instead of the opposite.
The lack of available large-scale annotated datasets for non-conventional camera images, like fisheye,
has forced the generation of synthetic datasets with additional fisheye distortion leveraging existing
ones like CityScapes [7]. In [14], the ETH Pedestrian Benchmark [15] and a spherical perspective
imaging model were used to generate a fisheye dataset to allow pedestrian detection with ultra-wide
Field Of View (FOV) cameras using a Deformable Part Model (DPM) [16]. In [17], the perspective
projection equation of equidistant fisheye camera was used to transform CityScapes images in a new
distorted dataset using a mathematical remapping relationship. In [18], the same technique was used
combined with additional images generated with a SYNTHIA simulator [19].

The most relevant features to be learned in the CNN learning process are the appearance of the
detected objects, their shape and their contextual information [20]. Previous works identified that
fisheye distortion penalizes the first two points, while the third one becomes especially important as
the appearance of the objects becomes closely related to their position in the images.

Multiple ideas have been proposed to incorporate more context information in order to improve
the results of the classification task. Most works have focused on obtaining wide receptive fields to
capture valuable information. This can be achieved by including down-sampling stages followed
by a set of convolutional layers. However, the down-sampling operation implies the reduction of
the feature maps’ scale and, hence, the loss of information. In [21], dilated convolution or Atrous
convolution were proposed to enlarge the receptive field of filters without reducing the resolution
nor increasing the number of parameters by adding a fixed separation between kernel elements.
Deformable convolutions [22] introduce a similar approach where 2D offsets were added to the
kernel sampling locations expanding the receptive field of convolutions and improving the ability
of modelling geometric transformations [18] but markedly augmenting the number of the network
parameters. In order to avoid the increase of the number of parameters, handcrafted structures, like the
pyramidal parsing module [23], have been proposed.

In conclusion, multiple ideas are currently proposed to improve CNN performance on fisheye
images and handle fisheye distortion correctly, but most of them are not able to achieve real-time semantic
segmentation on real fisheye images without resorting to manually annotated images during training.

3. Fisheye Synthetic Dataset and Data Augmentation

The generation of large-scale datasets involves expensive and time-consuming tasks such as data
acquisition and the corresponding data annotation. Semantic segmentation tasks require pixel-wise
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annotations, which makes labeling extremely difficult for this kind of images. As we advanced in
our precious publication [8], our approach consists of taking advantage of public annotated datasets
applying distortions models over RGB and labeled images (ground truth) in order to shortcut the hard
manual labelling task. Therefore, we have developed a synthetic dataset from CityScapes using a
generic fisheye camera model to add artificial distortion to the images.

3.1. Synthetic Fisheye Dataset

Conventional pinhole cameras have a limited field of view defined by their imaging projection,
according to the following Equation (1):

ρpinhole = f tan(θ), (1)

where ρ is the distance between the image point and the camera principal point, f is the focal length of
the camera and θ is the angle between the incoming light ray and the image principal axis.

In the case of fisheye camera modelling, there are several mathematical models that can be used
to design fisheye lenses. Among them, the most widespread one is the equidistant fisheye, which is
described by Equation (2):

ρequidistance = f θ. (2)

Using the previous equations, a remapping can be defined between the pixels on a conventional
image (pc = (uc, vc)) and its analogous pixels on a synthetic fisheye image (p f = (u f , v f )), depending
only on the f parameter, which determines the level of added distortion as shown on Equation (3):

dc = f tan(d f / f ), (3)

where dc =
√
(uc − ucu)2 + (vc − vcv)2 measures the distance between a single pixel (pc = (uc, vc)) and

the principal point (cc = (ucu, vcv)) for the conventional image, and d f =
√
(u f − u f u)2 + (v f − u f v)2

represents the equivalent distance for the fisheye image. A comparison between these two camera
models is represented in Figure 2.

(a) Fisheye camera model
(b) Pinhole camera model

Figure 2. Comparative between camera models.

Leveraging the previous equation and the CityScapes dataset, a new collection of synthetic
distorted images was produced to carry out the training of CNNs with fisheye images representing
urban scenes. CityScapes is an optimal dataset for autonomous driving applications, as it is focused
on urban scene understanding. It provides 5000 dense pixel-wise annotated images separated into
three different subsets (2975 for training, 500 for validation and 1525 for test) and, additionally, another
20,000 with coarse annotations from 27 European cities with 19 classes for evaluation. In our case,
only the fine full dataset, including training and validation subsets images, for both RGB and annotated
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images, were transformed. Original images were resized to 640 × 576, using bi-linear interpolation for
RGB images and nearest-neighbor for label images in order to adapt them to our CNN architecture.
Some examples of the final synthetic dataset can be seen in Figure 3.

(a) RGB Image (b) RGB f = 150 (c) RGB f = 200 (d) RGB f = 300 (e) RGB f = 500

(f) Ground Truth (g) GT f = 150 (h) GT f = 200 (i) GT f = 300 (j) GT f = 500

Figure 3. Example of synthetic images and ground truth with different distortions.

3.2. Fisheye Data Augmentation

The features learned by a CNN during training rely mostly on the specific images used during this
process. Therefore, these features are limited to the domains in which these images were acquired and
should have the property to generalize to different domains. However, achieving robustness in other
domains is not an easy task, and deep networks are often prone to overfitting even with thousands of
training images. This difficulty is even greater when synthetic images are employed during training,
given that appearance in synthetic images is less rich and varied than in real images.

In order to obtain general features, data diversity must be high, due to the huge, different patterns
CNNs are forced to learn to be able to distinguish between multiple categories in changing detection
conditions. Data augmentation aims to enlarge the training datasets, preserving the available labels by
applying different transformations.

For the semantic segmentation task, numerous techniques are typically applied such as geometric
augmentations (translations, rotations, horizontal flips, etc.), texture augmentations (color jittering,
changes in brightness, contrast, etc.) [24] or specific transformations. For instance, authors
in [17] proposed an augmentation technique specifically oriented for fisheye images named zoom
augmentation. This data augmentation claimed the use of images with various distortions during
training by adopting different fixed values for the f parameter from Equation (3) aiming to obtain better
generalization abilities. In our previous publication [8], we proposed a modification of this method
employing randomly chosen distortions, eliminating the selection process of the fixed distortions and
achieving an equal performance.

4. CNN Architecture and Training

The demanding needs of real-time applications have boosted the development of efficient network
architectures, leaving behind large deep architectures that achieved outstanding performances at the
expense of the consumption of computational resources, using different ideas such as Conditional
Random Fields (CRFs) [21], residual layers [25] or dilated convolutions [26]. Initial approaches were
able to reach real-time semantic segmentation by strongly reducing the number of network parameters,
but obtaining poor performances [27].

Our previous proposal ERFNet [28] achieved a remarkable trade-off between efficiency and
accuracy. The network has an encoder–decoder structure, like other efficient CNNs such as Enet [29]
or SegNet [30], but demonstrates a notable performance due to the use of non-bottleneck residual



Sensors 2019, 19, 503 6 of 20

layers. The use of these layers is more unusual than the bottleneck layers due to efficiency reasons,
but non-bottleneck layers have exposed performance improvements in certain shallow architectures
like ResNet. However, ERFNet proposes a redesign of these layers using factorized (1D) kernels to
build the residual blocks, in order to reduce computation and achieve an efficient architecture while
keeping an equivalent performance to the non-bottleneck layers.

We adopt ERFNet as our baseline CNN architecture. The basic architecture of ERFNet is presented
in Figure 4. Encoders and decoders are both built by stacking 1D-non-bottleneck layers in a sequential
way. The encoder module consists of a reduced number of layers including three downsampling blocks
and convolutional stages. Encoder is meant to take input images and “encode” them into deep features
that represent activations to different image classes. Obtaining good features at this point is essential to
produce good classification results. We include three downsampler blocks to perform 8× downsampling
in total, which was selected to optimize the trade-off between low-res features (which is more efficient
and includes more context) and high-res features (which has better feature localization at the pixel level
but is more computationally expensive). In addition, we include dilated convolutions in some of the
encoder’s blocks to effectively increase gathering of context without affecting efficiency or resolution.

The decoder module includes upsampling and convolutional layers and a final classification
log–softmax loss layer. The decoder stage is meant to preprocess encoded features up to the input’s
resolution and provide the final probabilities for each of the trained classes. Thus, the final layer is a
volume with a number of slices equal to the number of classes, where each slice contains the per-pixel
probabilities of that class. In order to take the predicted (or most probable class), the argmax of this
volume is calculated. Many networks use a large decoder, but we chose a relatively small one because
the decoder is only meant to upsample features and convert to probabilities, without affecting much to
the extraction of good features. Therefore, the encoder does most of the feature extraction job and our
light decoder transforms these representations into meaningful outputs in the shape of probabilities.

Figure 4. ERFNet baseline architecure.

Considering the significance of context information in fisheye images, we also study the use
of an alternative architecture, consisting of replacing the original ERFNet decoder by a handcrafted
pyramidal pooling module [31]. Four different pyramid levels are used in the module, including 1/8,
1/4, 1/2 and 1 scale blocks, followed by an upsampling stage and the final log–softmax classification
layer. The scheme for this second network is shown in Figure 5 and the layer disposal in Table 1.

The training of both architectures (baseline and modified) is divided into two different stages:
on the first one, the encoder module is trained individually using downsampled annotations as
ground truth during 90 epochs with a batch size of 6. For the second one, the complete architecture
(including the decoder or the pyramidal module) are trained together to produce end-to-end semantic
segmentation for another 90 epochs.
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The Adam optimization of Stochastic Gradient Descent is used, starting with a learning rate of
5 × 10−4, which is exponentially decreased on each epoch, and including a weight decay of 1 × 10−4

for regularization. We employ the class weighing technique introduced in [29] wclass = 1
ln(c+pclass)

fixing c = 10 during the entire training.

Figure 5. Diagram that depicts the proposed segmentation CNN (ERFNetPSP). Volumes correspond to
the feature maps produced by each layer for an example input of 640 × 576.

Table 1. Layer disposal of our proposed architecture.

Layer Type Out-F Out-Re

1 Down-sampler block 16 320 × 288

2 Down-sampler block 64 160 × 144
3–7 5 × Non-bt-1D 64 160 × 144

8 Down-sampler block 128 80 × 72
9 Non-bt-1D (dilated 2) 128 80 × 72

10 Non-bt-1D (dilated 2) 128 80 × 72
11 Non-bt-1D (dilated 4) 128 80 × 72
12 Non-bt-1D (dilated 8) 128 80 × 72
13 Non-bt-1D (dilated 16) 128 80 × 72
14 Non-bt-1D (dilated 2) 128 80 × 72
15 Non-bt-1D (dilated 4) 128 80 × 72
16 Non-bt-1D (dilated 8) 128 80 × 72
17 Non-bt-1D (dilated 2) 128 80 × 72

18a Layer 17 feature map 128 80 × 72
18b Pooling and Convolution 32 80 × 72
18c Pooling and Convolution 32 40 × 36
18d Pooling and Convolution 32 20 × 18
18e Pooling and Convolution 32 10 × 9
18 Up-Sampler and Concatenation 256 80 × 72

19 Convolution C 80 × 72

20 Up-Sampler C 640 × 576

The black corners in Figure 6a are characteristic of fisheye images. These regions appear on
the syntheticly distorted images and on their associated ground truth, as a consequence of the pixel
remapping process as shown in Figure 6a. However, the pixels included on those regions are ignored
during both training and evaluation. Figure 6c shows an example of segmentation of a synthetic
fisheye image.

As it can be seen, these regions present a very heterogeneous segmentation that harms the context
information on the borders of the useful parts of the image, which are essential because they contain
an important area of the total FOV of the camera. Context information is the most determinant feature
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for the segmentation of the image borders, due to the strong distortion they present. As a consequence,
the performance of the CNN in this area is clearly degraded.

(a) Distorted Image (b) Distorted Ground Truth (c) Segmented Image

Figure 6. Example of heterogeneous segmentation on the borders.

In order to preserve this context information and improve the segmentation on the borders, a new
training strategy is proposed. We identify those areas a priori and add an additional 20th class to
represent them during training.

5. Experiments

For the validation of the proposed architectures, data augmentation and training strategies,
different experiments are presented. The first one evaluates our data augmentation strategy and the
second one studies the performance of the different architectures compared to other proposals of
the state of the art.

To prove the benefits of our data augmentation proposal, a comparative experiment with other
approaches of the state of the art was carried out. For the fixed zoom augmentation, three datasets
were generated as in [17] with f0 = 159, f1 = 96 and f2 = 242, respectively. For the random
zoom-augmentation, the focal length values were randomly changed following a Gaussian distribution,
generating five distorted images for each training image as we did in [8]. Additional data augmentation
including color jittering (randomly modifying brightness, saturation and contrast to develop a more
robust training to light changes), random-cropping (to prepare the CNN for scale and aspect-ratio and
scale changes), mirroring, rotations (between 0 and 90 degrees) and arbitrary 0–2 pixels translations
was carried out (full data augmentation).

Table 2 presents the experimental results. The first three lines correspond to other state-of-the-art
works. Dilation 10 [26] includes dilated convolutions to improve the aggregation of information.
ResNet-26 presents the score for a modified 26 layer ResNet with bottleneck blocks and dilated
convolutions [17]. OPPNet [17] is composed of a dilated fully convolutional feature extractor block
followed by an overlapping pyramid pooling module which analyzes the images at different scales
aiming to obtain more context information.

According to Table 2 results, our ERFNet proposals outperform previous state-of-the-art work
even without data augmentation. Using ImageNet pre-training improves performance regarding
to basic training. The three data augmentation techniques improve both basic and pretrained
performances, showing the importance of data diversity. Random and fixed zoom-augmentation
provide similar results for both architectures, the random augmentation being more beneficial for the
ERFNetPSP and the fixed one for the basic ERFNet architecture. The application of additional data
augmentation techniques improves the final results even more, reaching 58.3% and 59.3%, respectively.
Both networks clearly stand out in front of previous works, exceeding by 4.8 and 3.8% the previous
best score (OPPNet).

In a second experiment, an alternative synthetic dataset with a lower distortion ( f = 240) was
generated. The two proposed architectures were trained without any data augmentation, tested on
the validation subset and compared to other state-of-the-art results in the same conditions for fair



Sensors 2019, 19, 503 9 of 20

comparison. Training with an additional class proposed on Section 4 was also tested (ERFNet20),
in order to study its benefits.

Table 2. Architectures and data augmentation performances.

Network Data Augmentation Class IoU (%)

Dilation10 [26] None 51.7

ResNet-26 [17] None 52.0

OPPNet [17] None 52.6
Fixed z-aug 54.5

ERFNetPSP None 53.3
Pretrained 55.5
Fixed z-aug 55.9

Random z-aug 56.2
Full & pretrained 58.3

ERFNet [28] None 55.6
Pretrained 56.3

Random z-aug 56.8
Fixed z-aug 57.0

Full & pretrained 59.3

The comparison includes a set of network models derived from ERFNet [18]. The original ERFNet
was re-implemented in MXNet [5] with additional batch normalization layers after each convolutional
layer and with 2 × 2 kernels with a stride of 2 on the deconvolution layers (ERFNetMx). Additionally,
two extra models were proposed incorporating restricted deformable convolutions (RDCNet),
which use a reduced number of parameters, and factorized restricted deformable convolutions
(FRDCNet), which can be implemented using 1D kernels.

Furthermore, some additional CNNs were re-implemented in Pytorch to widen the comparative
including: a modified PSPNet [31] built by a ResNet-101 with deformable convolutions as the feature
extraction block followed by a pyramid pooling module. A modified DRN-D-54 following the
proposal of Dilated Residual Networks [32] and including dilated convolutions [26] and SegNet [30],
which is able to provide real-time semantic segmentation at the expense of a loss of performance.
Finally, ERFNet20 shows the score for the ERFNet training with an additional class to correctly
identify the borders of the images. ERFNet and ERFNetPSP models were trained in two stages,
as in the the previous experiment, and the rest of CNNs were trained during 200 epochs, using the
proposed parameters for them in their respective publications. Results of this experiment are listed in
Tables 3 and 4.

Table 3 shows in the second column the mean class IoU% obtained by the different networks for
an image resolution of 640 × 576. In the third column, the forward time in seconds using a single
GTX 1080Ti is depicted. A different image resolution of 814 × 512 was adopted for this column in
order to compare results with other works of the literature. Results show that the best IoU is achieved
by the ERFNetPSP model with 61.6% outperforming the best previous score for this distortion level
(RDCNet) by 3.7%. ERFNet achieves a similar score (61.5%) for 19 classes, rising to 62.2% for the
20 classes version (ERFNet20), due to the good segmentation results in the border areas (black zones in
the image). In this last case, training improves the detection of the classes with fewer training samples
that appear close to the borders as shown in Figure 7. Our ERFNet proposals obtain a higher score than
for the rest of CNNs. From the re-implemented group of architectures, only PSPNet (59.2%) improves
the RDCNet performance. The DRNet-D-54 achieves a similar score (57.6%) and SegNet clearly has
worse performance (50.1%).

The modified MXNet ERFNet presents a poor performance (55.1%), but it is improved by
the addition of factorized restricted deformable convolutions (56.1%) and restricted deformable
convolutions (57.9%). As shown in Table 3, regarding processing time, ERFNet MX is the fastest
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architecture, needing only 0.016 s to process a 814 × 512 image and achieving more than 63 fps.
The second fastest is RDCNet with 0.018 s and 55 fps, followed by the original ERFNet (50 fps) and
ERFNetPSP (>45 fps). From the rest of the tested networks, only SegNet works in real time (>14 fps)
and PSPNet and DRN-D-54 have low frame ratings (4 and 6 fps).

Table 3. Performance-efficiency comparison for the presented architectures.

Architecture Class IoU (%) Forward Pass Time (s)
(640 × 576) (814 × 512)

ERFNetPSP 61.6 0.022
ERFNet [28] 61.5 0.020
ERFNet20 62.2 0.020

PSPNet [31] 59.2 0.22
RDCNet [18] 57.9 0.018

DRN-D-54 [32] 57.6 0.146
FRDCNet [18] 56.1 -

ERFNet MX [18] 55.1 0.016
SegNet [30] 50.1 0.07

(a) RGB image (b) Ground-Truth
(c) Segmentation with
19 classes + ROI

(d) Segmentation with
20 classes

Figure 7. Comparison between different training strategies.

Table 4 shows detailed per-class results for the tested networks on the 640 × 576 dataset. As it
can be seen, most of the best per-class scores are achieved by the ERFNet architectures. However,
ERFNetPSP obtains the best results due to its outstanding performance in classes with few samples
during training. Qualitative results for this table are presented in Figure 8.
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Table 4. Per-class IoU (%) on the fisheye CityScapes validation set compared to similar works.

Network Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Ped Rid Car Tru Bus Tra Mot Bic IoU

SegNet 96.8 65.1 79.6 25.7 19.9 29.6 29.1 36.6 84.3 42.9 89.3 58.4 29.1 85.3 37.6 48.9 17.6 25.8 49.8 50.1
DRNet 97.0 67.7 82.4 34.6 31.4 30.3 36.5 49.6 85.4 47.3 88.9 66.4 43.3 87.2 51.3 65.5 35.4 36.0 57.4 57.6
PSPNet 97.2 68.7 83.2 34.9 31.3 31.4 37.5 48.7 85.7 47.7 89.5 66.7 44.6 88.3 57.4 67.7 45.0 40.1 59.1 59.2

ERFNet 20 97.4 70.2 83.8 34.7 31.6 40.7 42.2 55.2 87.1 52.4 89.5 69.1 47.9 88.7 52.3 69.4 30.5 40.9 60.1 60.3
ERFNet 97.4 70.8 83.9 37.2 29.4 39.2 41.9 55.3 86.8 53.2 89.8 69.7 49.4 89.1 56.2 76.1 42.3 41.4 59.9 61.5

ERFNetPSP 97.3 70.1 83.2 35.9 31.8 37.2 42.3 54.7 86.3 52.3 90.4 68.7 48.2 88.8 64.2 74.2 41.6 41.1 60.2 61.7
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(a) RGB Image (b) GT (c) ERFNetPSP (d) ERFNet (e) PSPNet (f) DRNet (g) SegNet

Figure 8. Qualitative results for different tested network models.

6. Application to a Real Fisheye Camera

This experiment aims to demonstrate the generalization abilities provided by the suggested
architectures and training techniques based on synthetic images obtained by using distortion models
over normal FOV images, applying them to the images captured by a real fisheye camera, over an
urban driving scenario similar to the one used during training, but never seen before. With that
purpose, a HD fisheye camera with a 180◦ FOV and a 1920 × 1080 resolution (USBFHD01M-BL180),
manufactured by ELP, was used to record a set of sequences in the Campus of the University of Alcala
(Spain) using our open-source autonomous electric car.

The previous training was not adequate for the real fisheye camera, due to the difference between
resolutions and aspect-ratio of the synthetic images regarding the real ones. A new specific training
adapted to the real fisheye camera was carried out, using nine new images with random distortions
between fin f = 200 and fsup = 700, and a new one with fc = 500 with resolutions of 1120 × 792,
in order to preserve a similar aspect-ratio to the real fisheye camera (1536 × 1080 without borders).

Both ERFNet and ERFNetPSP architectures were trained using the new range of distortions and
resolution. A quantitative validation was performed using the transformed CityScapes validation
subset for these new parameters. Once again, the ERFNetPSP reaches the best performance, obtaining
a mean IoU of 69.6% while the baseline ERFNet achieves an IoU of 68.3% for this validation subset.

Table 5 shows the frame-rate achieved by the introduced architectures using a single GTX 1080Ti
for 1536 × 1080 images.

Table 5. Forwarding time and frame-rate for the presented architectures.

Architecture Forward Pass Time (s) Frames per Second(1536 × 1080)

ERFNetPSP 0.088 11.4
ERFNet [28] 0.081 12.3
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Figure 9 analyzes the performance of the two architectures on the validation subset as a function
of distortion without using any data augmentation. As we can see, ERFNetPSP achieves better
performance than ERFNet for medium and high distortions. For the strongest distortions, which
damage context information, the behaviour is the opposite. Performance of both architectures improve
as the added distortion is reduced and becomes similar to the performance of ERFNet on the original
CityScapes dataset.

Figure 9. Mean class IoU performance vs. level of added distortion for basic training.

Figure 10 depicts a similar analysis but includes a pre-trained model on ImageNet and full data
augmentation (random distortions and geometric and color transformations) in the training. As it can
be seen, performance of both CNNs is clearly better, obtaining the best results with the ERFNetPSP
architecture for light and medium distortions and with the baseline network for strong distortions.
From the analysis of the real camera, an approximate value of 350 is estimated for the parameter f .
Therefore, following the graphics, ERFNetPSP with ImageNet pre-training and full data augmentation
obtains the best semantic segmentation results.

Figure 10. Results for validation subset with training with full data augmentation.
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Fisheye camera was integrated in an open-source autonomous car prototype [33,34] as a
complement to its main perception system, formed by a ZED camera, manufactured by StereoLabs,
a VLP-16 LiDAR, manufactured by Velodyne, a HiPer Pro RTK-GPS receiver by TOPCON and
odometry sensors by Kubler. Environment perception of the prototype is based on 3D semantic
segmentation obtained from the fusion of LiDAR and segmented images, which is able to detect
obstacles in a 3D environment [35]. Semantic segmentation for the fisheye camera runs on an embedded
Jetson TX2 GPUs, manufactured by NVIDIA, and reaches 10 fps, which is the acquisition frequency of
the rest of the sensors. Figure 11 shows the electric prototype and the camera used during the tests.

(a) SmartElderlyCar prototype (b) ELP 180◦ fisheye camera

Figure 11. Autonomous open-source electric car and fisheye camera.

Due to the absence of annotated ground-truth, only qualitative results are exposed in this section.
To provide a convincing validation, results are split focusing on the main groups of segmented classes
defined in Cityscapes, and using some representative Campus images captured from the autonomous
vehicle. To facilitate the understanding of the segmentation, we provide the Cityscapes color legend in
Figure 12.

Figure 12. Cityscapes color legend.

Figure 13 illustrates various complex situations focused on the “flat group”, mainly composed
of road and sidewalk classes, where the wider FOV of fisheye cameras clearly improves the scene
comprehension about driving areas achieved with traditional cameras. Different images including
roundabouts, intersections, pedestrian crosswalks and give-ways are depicted, where the road and
the sidewalk classes are correctly segmented even in glare images and with obstacles, which helps to
delimit the areas where the vehicle can drive in an autonomous way. The wide FOV of this camera
provides more information about the lateral zones of the vehicle, which is vital in order to perform
turning maneuvers in a safe way.

Figure 14 shows some representative examples for the “human group” segmentation (person
and rider classes), which is very important to correctly detect vulnerable users and avoid accidents.
Figure 14a shows how fisheye cameras help to handle dynamic crosswalks, where many pedestrians
on the sidewalks and on the road are detected at the same time with just one camera, providing
excellent scene-understanding. On the left side of Figure 14b, we can find a bicycle and a rider
correctly segmented and, in Figure 14c,d, different pedestrians segmented at short and long
distances, respectively.
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(a) Roundabout (b) Roundabout and intersections

(c) Roundabout and intersections (d) Give way

(e) Straight road and glares (f) Straight road with median strip

Figure 13. Real fisheye camera semantic segmentation examples for flat group.

(a) Multiple pedestrians (b) Bicycle and rider

(c) Crossing pedestrians (d) Faraway pedestrians
Figure 14. Real fisheye camera semantic segmentation examples for the human group.

Figure 15 depicts some examples for the “vehicle group” segmentation, which includes car, truck,
bus, motorcycle and bicycle classes. Figure 15a shows a case of segmented bus and Figure 15b a
segmented truck. Figure 15c,d illustrate the segmentation of many cars parked in both sides of the
road. Figure 15e,f show cars segmented under hard shades, and Figure 15g,h a couple of cases of long
distance segmented cars.

Figure 16 illustrates some segmentation cases focused on the “construction group” (building and
fence classes). On the right side of Figure 16a,b, the segmentation of different fences are depicted,
and Figure 16c,d show a couple of images with many segmented buildings.
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(a) Bus (b) Truck

(c) Parked cars (d) Parked cars and truck

(e) Cars with shadows (f) Cars with shadows

(g) Faraway cars and pedestrian (h) Faraway cars, truck and glares

Figure 15. Real fisheye camera semantic segmentation examples for the vehicle group.

(a) Fences (b) Fences

(c) Occluded building (d) Buildings

Figure 16. Real fisheye camera semantic segmentation examples for the construction group.
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The “object group” segmentation, composed of the following classes: pole, traffic light and traffic
signs, is shown in Figure 17. These images show many cases of correct segmentation for pole and
traffic sign classes. These objects are usually very small in the image and less frequent than other
classes, which is derived from a few pieces of training data and therefore a more difficult segmentation.

(a) Poles and traffic signs (b) Poles and traffic signs

(c) Faraway traffic signs and poles (d) Traffic signs and poles

Figure 17. Real fisheye camera semantic segmentation examples for the object group.

Segmentation of the “nature group”, which includes vegetation and terrain classes, and the
“sky group”, which only contains the sky class, are well represented in all of the previous images.
Their influence is secondary in autonomous vehicles’ applications mainly due to the fact that they are
faraway from the driving area. However, there are some cases where nature classes define the limits of
the road (Figure 14d or Figure 15a) and should be taken into account.

Results demonstrate that the ERFNetPSP architecture provides real-time good quality semantic
segmentation being able to detect even the classes with reduced number of training data and showing
a robust behaviour to shadows and lighting changes.

Despite the good results, segmentation has still some problems dealing with glares (which are
common in fisheye cameras due to its wide FOV) and with big classes with changing appearances
such as the sky, as we can see in Figure 18.

Figure 18. Problems with sky segmentation and glares.

An additional problem is that appearances of the classes present near the edges, corresponding to
lateral objects located on the left/right FOV limits, are not included in the training dataset, which is
captured from a conventional FOV camera. This fact degrades the obtained segmentation in the edge
regions, which tend to associate small classes with more available classes such as building, road or sky.

7. Conclusions

This paper proposed a methodology to achieve real-time semantic segmentation based on ERFNet
over real fisheye images, leveraging only synthetic images and, therefore, solving the lack of large-scale
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fisheye datasets while avoiding the heavy task of data annotation. The two introduced architectures
(ERFNet and ERFNetPSP) achieve better results than the best state-of-the-art works in various synthetic
datasets. Furthermore, the ability of ERFNetPSP to handle distortion by the prioritization of context
information is proven, showing a better performance than ERFNet. The model also demonstrates
better leveraging our data augmentation strategy, reaching the ERFNet performance in the original
CityScapes dataset. Additionally, alternative training with an extra class to segment the image borders
is presented. Our proposals have been validated with images taken from a real fisheye camera in
unseen scenarios, showing a high capacity of domain adaptation without using a fine-tuning process
with manually annotated data.

Future work involves the development of a full 360◦ vision system based on three fisheye cameras
and the following fusion with the LiDAR sensor data, in order to develop a complete 3D surrounding
perception system. In addition, we plan to research methods to improve segmentation of the small
classes close to the fisheye image borders.
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