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Abstract: Modern smartphones and wearables often contain multiple embedded sensors which
generate significant amounts of data. This information can be used for body monitoring-based
areas such as healthcare, indoor location, user-adaptive recommendations and transportation.
The development of Human Activity Recognition (HAR) algorithms involves the collection of a large
amount of labelled data which should be annotated by an expert. However, the data annotation
process on large datasets is expensive, time consuming and difficult to obtain. The development of a
HAR approach which requires low annotation effort and still maintains adequate performance is a
relevant challenge. We introduce a Semi-Supervised Active Learning (SSAL) based on Self-Training
(ST) approach for Human Activity Recognition to partially automate the annotation process, reducing
the annotation effort and the required volume of annotated data to obtain a high performance
classifier. Our approach uses a criterion to select the most relevant samples for annotation by the
expert and propagate their label to the most confident samples. We present a comprehensive study
comparing supervised and unsupervised methods with our approach on two datasets composed of
daily living activities. The results showed that it is possible to reduce the required annotated data by
more than 89% while still maintaining an accurate model performance.

Keywords: human activity recognition; machine learning; active learning; semi-supervised learning;
time series; self-training

1. Introduction

Over the last years, the technological advances on ubiquitous sensing mechanisms allowed the
proliferation of available data, which often is unlabelled. Modern machine learning approaches require
large amounts of labelled data to achieve adequate performance. This duality raises a relevant question:
How can we simultaneously optimise the process of data annotation and still learn an accurate machine
learning model?

Particularly, the Human Activity Recognition (HAR) field has been a source of a large quantity
of available data, mostly due to its myriad of applications on real-life scenarios such as healthcare,
indoor location, user-adaptive recommendations and transportation [1,2]. According to World Health
Organization [3] insufficient physical activity has been identified as the fourth leading risk factor for
global mortality, being one of the main causes of several health diseases and correlated with overweight
and obesity. HAR research has been trying to mitigate this challenge by monitoring human movement
and issuing personalised recommendations in several populations, including the elderly and patients
with chronic diseases. On the other hand, the practice of physical exercise is correlated with an increase
of cardio-respiratory and muscular fitness, functional health, cognitive functions and improvement
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of bones and joint health. Additionally, the monitoring of the human movement can be used as a
preventive and diagnosis tool for triggering and warning unusual activity such as falls, movement
degeneration or cardiac abnormalities. Therefore, HAR has been the subject for numerous research
studies over these contexts [2,4,5].

Most of the latest research work has focused on using machine learning pipelines to accomplish
HAR. On a typical HAR framework, as seen in Figure 1 [6], two inputs are often necessary: the raw
data and its respective annotation metadata in the form of labels. These labels are often provided by
an expert either annotating the data during the acquisition stage or during the course of posterior data
evaluation. Human motion information is mapped into raw signals using embed wearable sensors
which are often located on different anatomical positions. The data preparation stage consists of
reducing the noise arising from the acquisition stage and enhancing the signal characteristics using a
set of pre-processing methods. The signal is divided into windows from which features are extracted.
Those features, along with the provided labels, are used as the input for the machine learning classifier.
Lastly, the classifier predictions are evaluated with the objective of delivering a model capable of
issuing correct decisions regarding the daily activities the subject is performing.
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Figure 1. Schematic representation of an Human Activity Recognition (HAR) system architecture.

To build a representative machine learning model, it is often required the collection of a broad
amount of labelled data, which constitutes the ground truth for Supervised Learning (SL) methods.
This process aims to train a model capable of correctly generalising into new unlabelled data. The data
becomes labelled during a process denoted as annotation, where each sample is mapped to its class.
Most of the times, the annotation of data labels must be performed manually by the researcher,
becoming a time-consuming, error-prone and expensive task [7]. For instance, let us take as an example
the Cityscape dataset [8], which contains stereo video sequences with a total of 5000 high-quality
annotated frames. Considering that annotating a single image can take around 1.5 h, to annotate
the entire dataset in order to use it as input to a machine learning classifier, it would be required
approximately 7500 h. Thus, becoming a fastidious, lengthy task whose quality will higy influence the
classification output and whose time could be spent on building the classifier. Therefore, the annotation
process might limit real-life application on very large datasets or complex models, where a high volume
of data will increase the algorithm’s performance. Under those circumstances, there is a need for the
development of a method able to partly automate the data annotation process and reduce considerably
its expensive cost.

In datasets with significant size, not all samples are equally informative to the classification process
and an arbitrary unlabelled example may even be redundant. Active Learning (AL) provides methods
to automatically identify the most relevant samples, which are posteriorly queued for expert annotation,
that we denote as Oracle, without compromising the model performance. Figure 2a illustrates the
behaviour of AL where samples near the decision boundary are selected for annotation since the AL
system considers these as the most informative. Additionally, Figure 2b displays the Semi-Supervised
Active Learning (SSAL) automatic annotation behaviour where after the most informative sample
selected by AL (in yellow) is annotated by the oracle, its nearest samples are automatically annotated
(as shown by the x in black).
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Figure 2. A dataset of 3000 samples illustrating the working principles of Active Learning (AL)
and Semi-Supervised Active Learning (SSAL). The samples are illustrated with colours identifying
their respective class. The samples selected by the AL for expert annotation are depicted by the x’s.
The grey vertical line denotes the decision boundary between the two classes. (a) Active Learning.
(b) Semi-Supervised Active Learning.

In this work, we apply a SSAL algorithm for HAR, where we establish criteria to select the
most relevant samples for annotation and propagate their label to similar samples and compare
it to AL. We present two major contributions: (1) application of SSAL for HAR testing several
automatic annotation methods. In literature, studies can be found applying individually both AL and
Semi-Supervised Learning (SSL) to HAR. The present work extends these works, combining SSL and
AL in the SSAL method and applying it in the context of HAR; (2) in order to accomplish this task with
an optimal SSAL system, its detailed steps were evaluated in a comprehensive study of state-of-the-art
AL (Query Strategies) QSs, (Stopping Criteria) SCs, and distance functions in the label propagation
step. The SSAL method based on Self-Training (ST) applied to HAR data, starting with near zero
annotated data, achieved high results on the algorithm’s performance while reducing considerably the
annotation effort and automatically annotating a substantial amount of the data.

The remaining of this paper is organised as follows: In Section 2 we present a brief literature
review on HAR and AL. Section 3 describes the overall pipeline of the proposed methods. In Section 4,
we evaluate our methodology against two datasets comprising real-world HAR data. Lastly,
in Section 5, the main achievements of this work are presented along with future work directions.

2. Related Work

The discrimination of human activities is often covered either by external or wearable sensors.
The former include intelligent homes, where sensors are placed in critical devices and cameras.
However, these raise numerous issues, such as privacy, pervasiveness and computational complexity
concerns [2,5]. This motivates the use of wearable sensors such as smartphones, since their small size,
low cost and non-obtrusiveness allow to integrate them easily into the users’ daily living activities,
offering better management of privacy and pervasiveness by giving more control to the user.

On this account, many on-body sensor-based machine learning classification techniques have
surged applied in the context of HAR with increasing improved results [2,4,5,9], namely, SL [9-13],
Unsupervised Learning (UL) [9,14,15] and more recently, deep learning techniques [16-18]. SL is the
most common approach for HAR, usually providing the most accurate results. However, SL techniques
require high amounts of labelled data, limiting its application on very large dataset scenarios. Over the
years a limited number of solutions have been proposed to reduce the amount of the necessary labelled
data, namely SSL techniques [7,19-21], data automatic annotation [22] or annotation apps [23-25].
In the present work, in order to obtain accurate labelled data, an AL system identifies the most
important samples to be labelled, therefore, decreasing the amount of necessary labelled data. An AL
system is composed of two main parts: the Query System, that selects the most relevant samples from
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a large unlabelled dataset according to a pre-defined criteria, and the Oracle, an expert annotator to
label the selected samples.

In the literature, several techniques for the query system have been proposed.
Shahmohammadi et al. [26] applied a Query by Committee and an uncertainty stream-based
sampling strategy to a smartwatch-based approach dedicated to HAR. The AL methodology was able
to achieve an accuracy of 92%, with a reduction of 46% in the amount of annotated data in comparison
to SL. This study allowed to verify that through AL it is possible to create an improved classifier with
a reduced number of labelled samples.

To improve the AL accuracy, one of its core points is the applied QS, which establishes a criteria
to select the most relevant samples for annotation.

Alembdar et al. [27] presented three methods to measure the classifier’s prediction confidence
(i.e., uncertainty) in a sample’s label namely: Least Confident, Margin and Entropy-based Sampling.
The proposed QSs outperformed Random Sampling in the reduction of the amount of labelled data,
with values from 80% to 66% data reduction.

However, experimental results show that, in some cases, uncertainty-based QSs may tend to select
outliers rather than boundary samples [28]. This undesirable behaviour leads to the introduction of
bias to the classifier. To overcome this issue, the authors of [28-30], used a sampling strategy combining
the samples’ uncertainty and the local data density, resulting in the selection of a informative sample
inserted in a region of high local density. Since outliers are usually located in low density regions, this
procedure minimises the selection of outliers to the data annotation.

In [30] the authors developed a SSAL framework in the context of multivariate time series, using
k-Nearest Neighbour (NN) and a k-reverse Nearest Neighbour (rNN) technique to automatically label
close neighbours of the newly annotated sample. In the end, for the same amount of initially labelled
data, NN method outperformed the NN method, obtaining higher accuracy, F1-score and percentage
of automatically annotated samples.

Lastly, Maja Stikic et al. [31] explored SSL techniques in the context of HAR: Co-Training
(two classifiers work on independent data and the most confident predictions of each classifier
is used to teach the other), Self-Training (the classifier iteratively increases its training set with its
most confidently predicted samples [32]) and AL. Using accelerometer data, Co-Training and ST
attained very competitive results, being surpassed by AL using two QSs uncertainty-based functions.
Both techniques allowed to significantly reduce the amount of necessary training labelled data and
AL was able to outperform the SL technique when trained on the same amount of randomly sampled
annotated data.

The literature review allowed verifying the promising results of AL and SSL for HAR in reducing
considerably the data annotation effort. The present work extends the state-of-the-art of HAR,
combining SSL and AL in a SSAL method applied in the context of HAR. To create an optimal
SSAL system, several automatic annotation methods were tested using different distance functions
and a comprehensive study regarding state-of-the-art AL QSs and SCs was performed.

3. Methods

3.1. General Active Learning Strategy

In AL, a QS function selects from a large unlabelled dataset (also referred as pool set) the samples
which are more informative to be labelled by the Oracle and added to the classifier’s labelled training
set. Algorithm 1 [33] describes the methodology of an AL process. Following the learner’s initialization
on the initial training set (L), a QS selects the most informative sample (x*) from the unlabelled data
(U) for the oracle to annotate. This process is then repeated iteratively until a stopping criterion is
met. Initially L << U, however in every iteration, the newly annotated sample x* is removed from U
and added to L, incrementing the labelled train set and consequently, reducing U. Hence, in every
iteration the learner’s training set expands with informative data and its performance improves [27,34].
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The samples considered more informative are usually the samples with the highest gain for the
classification process, so that, with a lower amount of labelled data and, therefore, lower data volume
and manual annotation effort from the user, it is possible to reach a classification performance similar
to a full labelled dataset.

Algorithm 1 General Active Learning

Input: initial train set L, unlabelled validation set U, independent test set T

Output: predicted labels for the test set

1: 0 < clf.fit(L) > Learns model on initial training set
2: while SC not met do

3 selection by QS of the most informative sample: x*

4 ask Oracle for x* label

5 L+ LUx* > Increments the model’s training set with x*
6: U« u\x* > Removes x* from unlabelled samples U
7 © <« clf.fit(L) > Updates model
8: return cl f.predict(T) > Returns predicted labels for the test set
9: end while

To obtain a good accuracy in an AL system, there are three main considerations that will be
addressed in the forthcoming sub-sections: the initial train set, the QS and the SC.

3.1.1. Initial Train Set

To develop a framework requiring the minimum annotation effort from the user, the initial train
set was created with only one sample per class, which was randomly selected and posteriorly removed
from the validation set.

3.1.2. Sample Selection Strategy

The second core element of an AL system is the QS, which must be able to select from the
unlabelled dataset the sample considered as the most informative. We considered as an informative
sample the one that will cause an improvement of the classification performance. Thus, through AL it
is possible to optimise the trade-off between the classifier’s performance and the number of labelled
samples in its training set. The ability of the AL process to create a representative labelled training
set, reaching a higy accurate classification with less labelled data is denoted as Selective Sampling.
In contrast, in Passive Learning (PL), samples are chosen randomly from the entire dataset, resulting
in a classifier requiring extra annotation effort that does not properly generalise due to its poor and
non-representative training data.

Considering a probabilistic model, the classifier prediction output is a U x n matrix, where U
represents the total number of the unlabelled validation set samples (Xy; = {x1, x2, ..., xy}, x; € R™, i
={1,..., U}), and n the total number of classes existent in the validation set. Each row isa 1 x n vector
with the sample’s predicted class probabilities with each cell value given by the prediction posterior
probability - Py(yk|x;), k € {0, ..., n} under the model 6.

A common metric to evaluate the sample’s usefulness for the classification is to access the
classifier’s prediction confidence in that sample’s label [21,27,31], which is given by the classifier’s
uncertainty in the sample’s label prediction. In the present work three metrics were studied to evaluate
the classifier’s uncertainty, corresponding to three different uncertainty-based selective sampling
functions: Least Confident Sampling, Margin Sampling and Entropy Sampling.
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Least Confident Sampling [33,34]: Selects the sample whose label the classifier is least certain
about, according to the following equation [33-35].

xpc = argmax(1 — Py(gx))
X

. )
j = argmax(Py(y|x))
Y

where 7 is the class label which the predictor considers most probable for the sample x.
Margin Sampling [33,34]: Selects the sample with the minimum difference (margin) between

the prediction probabilities of the first and second most likely classes, according the
following equation.

Xy = afg;nm(Pe(%V) — Po(92]x))) )

where 1} and 1, represent the first and second class labels which the classifier considers as
most probable for the sample x. Thus, the Margin Sampling QS allows to incorporate into the
uncertainty calculation, the probability distribution of one more class label in comparison to Least
Confident sampling.

Entropy Sampling [33,34]: Selects the sample with the greatest entropy value, according to the
following equation.

n
Xp = argmax < — ) Po(yklxi) log Pe(yk|xi)> ®)
x K

where j; represents the prediction probability of the sample x; belonging to the class y.
This method has the advantage of considering the prediction probability for all the class labels, in
contrast to the previously mentioned QSs [33-35].

Additionally, in order to create a homogeneous initial training set, a weight (1 — p;) was
introduced to the previously mentioned QSs while the training set was less than 1% of the
validation set, according to the following equation [36].

X = (1= p)*f @

where f = {Least Confident Sampling, Entropy Sampling, Margin Sampling} and p; constitutes
the percentage of each label in the training set.

According to the literature [28], a sample with high uncertainty will most likely be an outlier.
Thus, to overcome this issue, we tested the Local Density Sampling and the Uncertainty and Local
Density Sampling QSs.

Local Density Sampling: Selects the sample with higher representation on the feature space,
i.e., located in a high-density region, which is measured by the amount of NNs surrounding the
sample, according to the following equation.

o u ok 1 5
LD = arg max Z‘ (; 1+ dist(NN(x;, xj))) ”

1

where x; and x; are two samples belonging to the unlabelled samples’ dataset and dist the distance

between each sample and its k-NNs. The k parameter was empirically set to 5.
Uncertainty and Local Density Sampling [28,30,36]: Obtained through the linear combination

between the previously mentioned QSs according to the following equation.

X{ip = argmax(afo + (1 —a)f1) (6)

where fj is a density weight = {Local Density Sampling}, and f; = {Least Confident Sampling,
Margin Sampling, Entropy Sampling}. Setting « to 1, would equal the Uncertainty and Local
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Density QS to the Local Density QS, while a = 0 to the uncertainty-based QS. The « parameter
was set to 0.5 so the QS would choose the most informative sample taking into consideration
equally both its local density and its prediction uncertainty.

3.1.3. Stopping Criterion

The last core point to be defined on an AL process is its SC. As it can be seen in Figure 3a, there
is an instant during the AL cycle in which the classification’s performance stabilises and, therefore,
annotating additional samples will not improve the model’s performance. Hence, the AL process
should be ended at this instant, optimising the trade-off between the classifier’s performance and the
oracle annotation effort. Therefore, we should guarantee that the AL system must not stop too early,
at the cost of resulting in a limited labelled set and under-performing classification, as well that the
system does not stop too late either, at the cost of exceeding annotation work. Ideally, we would like
to stop when the accuracy of the learner stabilises around its maximum value [37]. However, in a
real-life application, we expect to work with unlabelled data, so its ground truth is not available and
the accuracy of the classification cannot be obtained.

100 100
Least Confident Overall ]

80 3 80
9 2
o= Q

> 60 3 60
) =

3 40 S 40
< 5
e

20 > 20

Supervised Learning
—— Active Learning
0 0
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(@ (b)
Figure 3. In (a) it is shown the AL performance of the initial 300 iterations. The horizontal red
line denotes the accuracy average score of Supervised Learning (SL). In (b) it is shown the classifier
Least Confidence score and Classifier Overall Uncertainty score throughout 300 iterations. (a) Least
Confidence Uncertainty Score. (b) Overall Uncertainty Score.

On this account, with the goal of obtaining a SC applicable to all the methods, QSs and datasets,
the following SCs were evaluated:

¢ Max-Confidence SC (Max-Conf) [38]: As previously described, in the Least Confident Sampling
it is selected for the oracle to annotate the sample with the highest uncertainty, i.e., the sample
that the classifier is least confident in its classification. Moreover, if the selected sample has a low
uncertainty score, it is possible to presume that the classifier is able to confidently classify that
sample, as well as the remaining samples. Hence, the AL process can be stopped.

e  Overall Uncertainty SC (Over-Unc) [38]: Similar to Max-Confidence SC, but instead of stopping
the AL system if the least confident score is low, it is used the average of the least confident
score computed on the remaining unlabelled samples. That is, if this value, denominated overall
uncertainty score, shows insignificant low values, we can assume that the classifier has sufficient
confidence in the classification of the remaining unlabelled samples and, therefore, the AL cycle
can stop.

Figure 3 shows that the stabilisation of the AL performance overlaps the stabilisation of both the
least confident score and the overall uncertainty score. Hence, it was developed a condition to
automatically detect whether the scores stabilised based on the mean and standard deviation over
a given number of consecutive iterations S. The AL process stops when both the two following
conditions are verified: | — pp_s| < A pgc and |ox — 0j_s| < Aosc; k € {0,25,...,N}, S =5
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and N = number of iterations. The A jig¢ threshold was obtained through a calibration based on
the stabilisation of the classifier accuracy score using the ground truth data.
Classification-Change SC (CC) [37,38]: As discussed in Section 2, uncertainty-based QSs aim to
select the most informative samples for the classification, which should correspond to the ones
located near decision boundaries. Thus, dictating the class to which each sample is allocated to,
therefore, significantly changing the classifier’s performance and its prediction output. Hence,
in the CC SC the AL is stopped once decision boundaries samples have been annotated and added
to the classifier’s training set. Under these assumptions, alterations in the classifier’s prediction
of the unlabelled data labels can be used to infer if the decision boundaries have been changed.
Thus, if in two consecutive iterations the classifier’s labels prediction has been constant, then, we
can assume that the newly annotated samples are not near a decision boundary but rather inside
it, hence, the AL process can be put to an end.

Combination Strategy SC: Consists in a multi-createria-based strategy that combines the
prior SCs, namely Overall Uncertainty SC and Classification-Change SC (Over-CC) SC and
Max-Confidence Uncertainty SC and Classification-Change SC (Max-CC) SC. The AL is stopped
only if both SCs are verified. This method is justified in the cases where the uncertainty score
quickly drops to insignificant low values, however, there are inconsistencies in the classifier’s
prediction. Thus, the annotation of new samples may result in changes on the decision boundaries
and, therefore, on an improvement of the classifier’s performance.

3.2. Semi-Supervised Active Learning Framework

As stated in Section 1, there is a need for an annotation technique able to partly automate the

annotation process and reduce considerably the annotation cost of constructing a representative
labelled dataset in the context of HAR. Thus, with the goal of significantly increasing the amount
of available labelled data, we tested the SSAL framework, whose algorithm pipeline is presented in
Algorithm 2 [30,39]. The SSAL model is similar to the standard AL framework, however, this method
also provides the ability to automatically propagate the annotated label without requiring further
inputs from the Oracle.

Algorithm 2 Semi-Supervised Active Learning

Input: initial train set L, unlabelled validation set U, independent test set T

Output: predicted labels for the test set

1. © < clf.fit(L) > Learns model on initial training set
2: while SC not met do

9:
10:
11:
12:

selection by Q, of most informative sample: x*
ask Oracle for x*’s label

L+ LU{x*} > Augments the model’s training set with x*
U<« u\{x*} > Removes x* from unlabelled samples
©® « clf.fit(L) > Updates model
automatically label confident samples C in U

L+ LU{C} > Augments the model’s training set with C
u«+u\{c} > Removes C from unlabelled samples
©® <« clf.fit(L) > Updates model
return clf.predict(T) > Returns predicted labels for the test set

13: end while

Three SSAL techniques are used:

Self-Training Semi-Supervised Active Learning (ST-SSAL) [31,32,40]: A classifier is trained on
the available labelled data and posteriorly tested on the unlabelled data. Validation set samples
having the highest prediction confidence score are added to the classifier’s training set and
removed from the unlabelled dataset. This process is repeated iteratively as the classifier is
re-trained on an increasingly larger and larger training set. Therefore, under the assumption that



Sensors 2019, 19, 501 9 of 23

higy confident predicted labels are correct, the learner uses its own predictions to iteratively teach
himself, consequently improving its performance. Hence, a sample will get annotated with 7
if Py(9|x) >= ds7. The ds7 threshold will influence the amount of propagation and its accuracy.
A larger ds7 will increase the automatic annotation but decrease its accuracy, since the model is
less certain in the annotated sample’s label. On the other hand, a smaller ds7 will decrease the
amount of annotation but increase its accuracy, since the few annotations are performed with
high certainty. In the present work, gt was empirically set to 0.98 in order to obtain a significant
automatic annotation while maintaining a good certainty in the annotation.

o  k-Nearest Neighbour Semi-Supervised Active Learning (k-NN-SSAL) [30]: The sample
selected by the QS (x*) propagates its label to its k-NNs. The definition of k (the number of
NNis to propagate x*’s label) requires a trade-off between the amount of automatic annotation
and the addition of error to the system. With a small k, few samples are automatically annotated,
but, the ones annotated are done so with a good confidence, as they are close in the feature space.
On the other hand, with a higher k, more samples are annotated, however, at the cost of possibly
adding error to the classifier, as x* is giving its label to samples at a further distance and therefore,
may be wrongly annotated. In the present work, k empirically was set to 5, in order to obtain
a significant amount of automatic annotation without compromising the classification accuracy
and execution time. Figure 4 depicts the 1-NN label propagation step. Each circle represents a
sample whose colours (green and red) represent two different classes. Samples in grey denote
unlabelled samples. In this example, the sample x* propagates its label to its 1-NN the sample B.

o  k-rNN Semi-Supervised Active Learning (k-rNN-SSAL) [30]: The sample selected by the QS
(x*) propagates its label to all the samples to which, regarding the labelled samples, it is their
NN and it is within a empirically set distance. For the NN method, as in [30], k was set to 1 to
enhance the label propagation performance. Figure 5 illustrates 1-rNN label propagation step.
Thus, in this example, the sample x* propagates its label to the samples A, B and C.

®® ®®
© ©

01016 101G
© ©

(a) Step 0 (b) Step 1
Figure 4. Example of 1-Nearest Neighbour (NN) label propagation, in which the sample x* propagates
its label (in this example represented by the colour green) to its 1-NN, the sample B. Each circle
represents a sample whose colours, green and red, represent two different classes. The samples in grey
denote unlabelled samples.

Distance Measures

When performing the label propagation step in the NN-SSAL and rNN-SSAL methods, there
is a need for a measurement function able to obtain the distance between the different instances.
Henceforth, in this section, it is provided four distance measurements. The first two applied in
measuring the distance between the feature vector samples and the latter two between time series.
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@ x* A B x*
© C

(a) Step 0 (b) Step 1
Figure 5. Example of 1-reverse Nearest Neighbour (rNN) label propagation, in which the sample x*
propagates its label (in this example represented by the colour green) to the samples to which, regarding
the labelled samples, it is their NN, the samples A, B and C. Each circle represents a sample whose
colours (green and red) represent two different classes. Samples in grey denote unlabelled samples.

o  Euclidean Distance: Measures the length of the straight line distance between two samples (x;
and xp, with dimension m) according to the following equation.

(x1 —x2)2 ()
i=1

e  Cosine Similarity Distance: Measures the cosine of the angle between two samples (x; and x3)
according to the following equation. Cosine similarity ranges between -1 and 1, for opposite and
coincident samples, respectively, with the distance value becoming larger as the samples become

less similar.
X1+ X2

[ ]] - [ |2

e  Dynamic Time Warping (DTW): Measures the similarity between two time-dependent sequences
through a non-linear alignment minimising the distance between both. Moreover, the minimal
distance is obtained through the computation of a local cost measure C(51, S2), where S1 :=
{s1y, 81y, ..., 51N}, 52 := {521, 522, ..., s2)1} are two time series of length N and M; N, M € N,
respectively, producing a N x M cost matrix. Where each element corresponds to the Euclidean
distance, between each pair of elements in the both sequences. Thus, C(51, 52), will hold a small
value (low cost) if S1 and S2 are similar, or a larger value (high cost) otherwise. Hence, the DTW

1 )

finds the warping path (W) yielding the minimum total cost amount all possible warping paths,
by going through the low cost values in the local cost matrix [41,42].

e  Time Alignment Metric (TAM) [41]: Uses the optimal time alignment obtained by the DTW to
infer the intervals when two time series are in phase, advance or in delay in relation to each
other. TAM returns a distance metric benefiting series in phase, and penalising when signals
are in advance or delay with each other. Thus, resulting in an output value decreasing as the
similarity between the two signals increases and increasing otherwise between 0 and 3, the former
for signals constantly in phase and the latter for completely out of phase signals. Considering
again, two time sequences S1 := {s1y, sy, ..., sly} and 52 := {s21, 52y, ..., s2)y} of length N and
M; N, M € N. Assuming 52 is delayed in relation to S1, by a total time %, advanced a total
time 95—15; and in phase by a time m The TAM (I') is given by:

I' = Yadvance + Ydelay + (1- wphase>, I'e {R(ﬂl‘ €[0:3]}

5155 5152 5155 ©)

Yadvance = T/ l,bdeluy = 7’ #’phase o min(N, M)
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4. Results

In this section, we start by introducing the datasets used in this research, followed by an analysis
of the performances of the aforementioned methods over several evaluation criteria. All the presented
methods were implemented in Python using the modAL framework [43].

4.1. Datasets

The performances of the proposed frameworks were evaluated using two real-world datasets fully
annotated and class balanced: the public Human Activity Recognition Using Smartphones Dataset
from University of California Irvine (UCI) [13] and the Continuous Activities of Daily Living (CADL)
acquired by the authors, whose information is summarised in Table 1. The CADL dataset was obtained
continuously, in contrast to UCI dataset, where the activities were segmented. Thus, the CADL was
used to provide a validation in a scenario more closely with the real-world requirements. To validate
the proposed frameworks, a 10-fold Cross-Validation (CV) was implemented, each fold dividing the
dataset into a train and test set. From each train set, one sample per class was chosen randomly
to integrate the classifier’s initial training set, while the rest composed the validation set, used to
improve the learner in the AL process during 250 iterations. From the 10 folds, the last 5 iterations
accuracy score values were averaged to compute the model’s performance accuracy value and its
standard deviation.

Table 1. University of California Irvine (UCI) dataset and Continuous Activities of Daily Living (CADL)
dataset information on: number of users, activities performed, sensors, acquisition device, its position
and dataset size.

Datasets
UCI HAR Using Smartphones Continuous Activities of Daily Living
NP° of Users 30 12
o Laying, sitting, standing, walking, Laying, sitting, standing, running,
Activities . . . . .
upstairs and downstairs walking, upstairs and downstairs
Accelerometer (100 Hz), gyroscope
Sensors Accelerometer (50 Hz), gyroscope (50 Hz) (100 Hz), barometer (30 Hz)
Samsung S5 (right hand) and wearable
Device Samsung Galaxy S2 (waist) sensor (left hand, right ankle and right
side of the waist)
N° of Samples 10,299 2047

4.2. Signal Processing

The data from the CADL dataset was submitted to a band-pass filter with cutoff frequencies
of 0.3 Hz and 15 Hz, from which temporal, statistical and frequency domain features were
extracted [11,14] from every 5 s window. The data from the UCI dataset was previously pre-processed
according to [13]. A forward feature selection method was applied resulting in a feature vector
composed of the features presented in Figure 6.

4.3. Model Selection

An analysis with common SL and UL techniques was performed with the purpose of finding the
optimal technique to incorporate as the learner into the AL process. The respective performance results
are shown in Table 2, for the SL and UL methods in accuracy and Adjusted Rand Index (ARI) score,
respectively. As observed, Random Forest achieved the highest accuracy in both datasets, 91.4 (2.4)%
and 89.1 (4.0)%, for the UCI and CADL dataset, respectively. For the UL methods, Spectral Clustering
attained the highest ARI values for both datasets with a score of 57.8 (3.5)% and 61.9 (8.9)%, respectively.
It was compared the performance results, for the public UCI dataset, to state-of-the-art researches [44],
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namely, refs. [10,12,13] who have achieved accuracies of 86%, 96% and 96%, respectively. When
training and evaluating the SL method on the same train and test set, it obtained an average accuracy
of 89.1 (0.6)%.
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Figure 6. Horizon Plot showing the features and their behaviour along some of the dataset activities.
In the y axis, it is presented the information about the sensor, its signal axis and the feature name.
The green and red colours denote the signal’s positive and negative values, respectively, with its
intensity increasing with the feature’s normalised absolute value and decreasing otherwise. (a) UCI
dataset. (b) CADL dataset.

Table 2. SL and Unsupervised Learning (UL) methods classification’s performance shown in accuracy
and Adjusted Rand Index (ARI) score, respectively. For all listed values it is shown its 10-fold
Cross-Validation (CV) average and standard deviation in percentage, the latter between parenthesis.
The highest performance is shown in bold for each dataset.

(a) Supervised Learning

Dataset
Supervised Learning Method UCI CADL
Nearest Neighbours 91.0(1.9) 83.6(34)
Decision Tree 874 (3.5) 83.6 (4.3
Random Forest 91.4 (2.4) 89.1 (4.0)
SVM 90.7 (2.6) 77.6(3.3)
AdaBoost 40.8 (6.8) 54.1(4.6)
Naive Bayes 88.9(29) 759 (3.1)
QDA 90.8 (2.7) 79.0(3.7)

(b) Unsupervised Learning

Dataset
Unsupervised Learning Method UCI CADL
K-Means 52.1(4.3) 509 (6.1)
Mini Batch K-Means 50.7 (5.5) 50.5 (5.3)
Spectral Clustering 57.8 (3.5) 61.9(8.9)
Gaussian Mixture 49.8 (2.7) 58.9 (6.6)
DBSCAN 16.4(7.2) 13.9(6.5)

4.4. QS Analysis

In the current sub-section, the QSs are analysed using the AL framework. This process aims to
find the optimal QS, able to obtain the most representative labelled set and consequently attain the
highest performance so it could be incorporated into the SSAL frameworks. In Table 3, the QSs are
presented against PL (in which the QS randomly selects a sample from the unlabelled dataset), SL and
UL. The comparison between the different QSs techniques is performed based on the following criteria:
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Accuracy (%)

Accuracy: The obtained accuracy values from the QSs are very similar and tend to the value
obtained by the SL algorithm. This is supported by Figure 7, where it is presented the classifier’s
accuracy for the QSs throughout the AL iterations. As expected, overall, the learner becomes more
reliable as its training set size increases, resulting in the continuous increase of its accuracy value
throughout the iterations. Margin Sampling and Local Density * Least Confident Sampling attain
the highest classification’s performances, outperforming PL. However, the difference between
AL and PL is low due to two reasons: (1) an initial biased prediction probability due to the
classifier very small initial training set; (2) both UCI and CADL datasets are equally balanced.
In this circumstance a random selection of samples is enough to create a representative dataset
with a few samples from each class. Local Density and Local Density * Margin Sampling, attain
the lowest score, not achieving a reasonable performance. These QSs’ low performances are
explained by the biased training set, non-representative of the entire dataset distribution under
which the classifier operates. As observed in Figure 8a, the density weight causes the preferential
selection of activities located in high-density regions, for the deterioration of the remaining as
they become unknown for the classifier. Under these circumstances, the classifier does not have a
homogeneous training set with sufficient amount of samples from all the class labels from which
it can learn to be able to correctly predict all the samples’ labels. Still, with the exception of the
aforementioned QSs, the remaining results are in accordance with the literature review [29,30]
with the introduction of a density weight to the uncertainty sampling functions avoiding the
selection of outliers as observed in Figure 8.

SL Margin LD * Margin SL Margin LD * Margin
uL LD *LC LD uL LD *LC LD
— LC LD * Entropy = —— PL — LC LD * Entropy —— PL
Entropy Entropy
100 100
80
S
60 g
[5)
o
40 3
<
20 |
0 0
0 50 100 150 200 250 0 50 100 150 200 250
Iteration (#) Iteration (#)

(@) (b)
Figure 7. Average increase of the AL classifier’s accuracy for the Query Strategies (QSs) throughout
the cycle of iterations. The horizontal lines denote the average accuracy for SL (in red) and UL (in
blue). LD denotes the Local Density Sampling and LC the Least Confident Sampling. (a) UCI dataset.
(b) CADL dataset.

QS Execution Time: With the exception of the density weighted QSs, in general, the selective
sampling functions hold a low execution time. For the density weighted QSs it is observed a
significant increase in the QS execution time due to the calculation of the density weight which
requires the calculation of each sample’s NNs. This process ultimately increases the algorithm’s
computational complexity and execution time. The execution times were obtained using a E3-1285
v6 @ 4.10GHz CPU and 16 GB of RAM.

Due to the coherent high accuracy performance, surpassing PL, and its low execution time and
computational complexity, Margin Sampling was selected as the most suitable QS to be included
in both the AL and SSAL frameworks. Hence, forthcoming result presentations on this section
were achieved using Margin Sampling. Besides the algorithm’s performance analysis, it is also
worth to mention a comparison between the amount of labelled data for SL and AL. From 100%
of the validation set annotated in SL, to, approximately 2.8 (0.1)% and 13.9 (0.5)%, for the UCI



Sensors 2019, 19, 501

14 of 23

and CADL dataset, corresponding to the annotation of 250 samples and a reduction of 97.2 (0.1)%
and 86.1 (0.5)% in the validation set annotation cost, respectively. These results confirm the
applicability of AL in the context of HAR and its efficiency in reducing the annotation effort

required to construct a higy confident classifier.
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Figure 8. Principal Component Analysis (PCA) of the CADL dataset samples after performing AL for
50 iterations. The classifier’s training set samples are depicted by the x’s, whose colour identifies their
respective class. The darker grey dots represent the unselected samples existent in the validation set.

(a) Local Density * Margin Sampling. (b) Local Density * Least Confident Sampling.

Table 3. Experimental results for the Query Strategies in terms of: classifier’s accuracy and the QS

algorithm’s execution time. For all listed values it is shown its 10-fold CV average and standard
deviation, the latter between parenthesis. The best performing algorithm is shown in bold for

each dataset.

UCI Dataset CADL Dataset
Accuracy QS Time Accuracy QS Time
Query Strategy in % ins in % ins
Local Density * Least Confident 87.6(4.0) 27.2(5.1) 835(6.7) 0.9(0.1)
Least Confident 879(3.7) 01(.1) 720(.00 0.1(0.1)
Local Density * Entropy 85.7(3.7) 225(0.4) 80.3(79) 0.9(0.1)
Entropy 87.1(25) 0.1(.1) 709(6.00 0.1(0.1)
Local Density * Margin 525(8.6) 22.6(0.5) 32.8(8.00 0.9(0.1)
Margin 88.4(28 01(0.1) 848(7.00 0.1(0.1)
Local Density 63.6(5.9) 225(04) 689(85) 0.9(0.1)
Passive Learning 87.0(4.5) 0.1(0.1) 820(7.6) 0.1(0.1)
Supervised Learning 91.4(2.4) 89.1 (4.0)
Unsupervised Learning 57.8 (3.5) 61.9 (8.9)

4.5. Active Learning Semi-Supervised Analysis

This sub-section aims to present a comparison and select the optimal automatic annotation
method. In Table 4 it is shown the methods presented in Section 3.2 compared against techniques
previously applied in the context of HAR, described in the literature review, such as AL, PL, SL and
UL, replicated in order to verify the model competitiveness.
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Table 4. Experimental results for the SSAL methods: accuracy, automated annotation percentage,

automated annotation accuracy and the algorithm’s execution time. For all listed values it is shown its

10-fold CV average and standard deviation, the latter between parenthesis. Following the underscore
in the NN and rNN methods: Euc, Cos, DTW and TAM, denote the similarity distances used in the
respective method. The best performing algorithm is shown in bold for each dataset.

UCI Dataset CADL Dataset
Accuracy AutAnn  Ann Acc Time Accuracy AutAnn Ann Acc Time
Method . . . . . . . .
in % in % in % ins in % in % in % ins
NN_Euc 88.1(27) 135(0.1) 76.8(1.0)  923(94) 825(57) 682(27) 682(10) 44.3(4.8)
NN_Cos 89.4(30) 135(0.1) 753(14) 8609 (74)  82.8(82) 682(27) 646(17) 79.1(4.2)
NN_DTW  703(60) 135(0.1) 39.7(1.7) 6772.0(45) 684 (54) 682(27) 303(3.1) 67354 (1.3)
NN_TAM  752(4.8) 135(0.1) 441(40) 67714(54) 68.8(7.3) 682(27) 31.6(1.2) 67354 (1.9)
NN_Euc 854 (27) 333(20) 77.3(38) 437.9(61.9) 749(78) 56.6(1.3) 66.5(27) 60.0(10.8)
NN_Cos  825(3.6) 377(40) 747(52) 11653(864) 713(8.1) 61.7(25) 59.5(5.6) 89.7(11.2)
fNN_DTW 65.1(49) 137(1.6) 41.8(29) 69954 (749) 77.3(7.1) 208(0.8) 39.9(1.9) 6739.2(7.6)
fNN_TAM 645(84) 119(39) 457(49) 6968.3(81.2) 81.8(84) 11.2(2.0) 41.3(46) 6733.8(7.3)
ST-SSAL 84.0 (6.3) 56.7 (11.6) 86.1 (10.5) 99.3 (17.5) 84.8 (7.0) 20.9(6.9) 92.5(2.7) 11.3 (1.0)
AL 88.4 (2.8) 23.6(5.0)  84.8(7.0) 12.0 (1.0)
PL 87.0 (4.5) 232(14)  82.0(7.6) 10.3 (1.0)
SL 91.4 (2.4) 0.7 (0.1) 89.1 (4.0) 0.1 (0.1)
UL 57.8 (3.5) 03(02)  61.9(8.9) 0.1(0.1)
1.  Accuracy: Experimental results demonstrated that with the exception of the SSAL methods using
the DTW or TAM distance, the accuracy of the proposed methods converges to the results of the
SL technique. Figure 9 presents the classifier’s accuracy for the SSAL methods throughout the
AL iterations. For each method, in every iteration the model training set grows, resulting in the
increase of the classification’s accuracy.
SL NN_euc —— NN_dtw SL NN_euc —— NN_dtw
uL rNN_euc —— rNN_dtw uL rNN_euc —— rNN_dtw
— AL NN_cos NN_tam — AL NN_cos NN_tam
PL rNN_cos rNN_tam PL rNN_cos rNN_tam
ST-SSAL ST-SSAL
100 100
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[
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Figure 9. Classifier’s accuracy for the SSAL methods throughout the AL iterations. The horizontal
lines denote the 10-CV average accuracy for SL (in red), and UL ARI score (in blue). Following
the underscore in the NN and rNN methods: Euc, Cos, Dynamic Time Warping (DTW) and Time
Alignment Metric (TAM), denote the distances used. (a) UCI dataset. (b) CADL dataset.
2. Automated Annotation Percentage (Aut Ann): Consists of the percentage of samples

automatically annotated in relation to the total validation set size. Figure 10 displays the evolution
on the percentage of the validation set unlabelled samples for the SSAL methods throughout the
AL cycle iterations. In the AL and PL, the oracle annotates one sample per iteration, therefore,
in Figure 10, both present an overlapping linear decline in the number of unlabelled samples.
The NN-SSAL methods annotate six samples per iteration, one by the oracle and five by the
automatic annotator, therefore, these show in Figure 10 an overlapping linear decline with higher
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Unlabelled Samples (%)
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slope than AL and PL. On the other hand, INN-SSAL presents a curved decline in the number of
unlabelled samples, outperforming the remaining during the first iterations. ST-SSAL displays
during the initial iterations an automatic annotation percentage similar to AL and PL, with only
the expert annotator labelling new samples and no automatic annotation, since the 0.98 prediction
confidence threshold required for automatic annotation is not reached due to the classifier small
labelled training set. Once the labelled set becomes representative of the dataset, the 0.98 threshold
is reached and ST-SSAL automatic annotation increases exponentially until the unlabelled dataset
becomes exhausted, easily surpassing the 5 constantly automatically annotated by the NN-SSAL.
On the whole, ST-SSAL attains the highest performance for the UCI dataset, and NN-SSAL for
the CADL dataset, the latter closely followed by rNN-SSAL.

Automated Annotation Accuracy (Ann Acc): Consists of the percentage of correctly
automatically annotated samples. Moreover, Figure 11 presents the evolution throughout the
AL process of the automated annotation accuracy for the SSAL methods. As observed, ST-SSAL
outperforms the remaining, attaining high results, especially for the latter iterations. ST-SSAL
high annotation accuracy on the latter iterations results from the dst threshold required for the
automatic annotation to be performed. As noted, this threshold is only reached during the latter
iterations when the model training set becomes representative of the dataset and predictions can
be performed with high certainty. This fact contrasts with the remaining methods, where higher
results are obtained during the first iterations. For the NN-SSAL methods, this is justified by
the queried sample propagating its label to closer samples during the first iterations. Whereas
in the latter iterations, its closest neighbours start to be already annotated so the sample’s label
is given to further away samples. The same is applied to INN-SSAL, with the stabilisation of
the propagation accuracy being accompanied by the stabilisation of the amount of automatic
propagation (Figure 10). Additionally, this metric allows to discriminate between the performance
of the different distance functions. As it can be seen, the Euclidean distance and Cosine similarity
obtained similar results. In contrast to DTW and TAM, presenting a poor percentage of correctly
annotated samples, explaining their low classification performance.

— AL rNN_euc —— rNN_dtw — AL rNN_euc —— rNN_dtw
PL NN_cos NN_tam PL NN_cos NN_tam
ST-SSAL rNN_cos rNN_tam ST-SSAL rNN_cos rNN_tam
NN_euc —— NN_dtw NN_euc —— NN_dtw
= 100 =
g 5 \
(7]
2
g 60
@©
(2]
B 40
©
o)
o}
5 20
0 0
0 50 100 150 200 250 0 50 100 150 200 250
Iteration (#) Iteration (#)

(@) (b)
Figure 10. Evolution on the percentage of the validation set unlabelled samples for the SSAL methods
throughout the AL cycle iterations. Following the underscore in the NN and rNN methods: Euc,
Cos, DTW and TAM, denote the similarity distances used in the respective method. (a) UCI dataset.
(b) CADL dataset.
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Figure 11. Percentage of correctly automatically annotated samples throughout the AL iterations, for
the SSAL methods, using the UCI and the CADL datasets. Following the underscore in the NN and
rNN methods: Euc, Cos, DTW and TAM, denote the similarity distances used in the respective method.
(a) UCI dataset. (b) CADL dataset.

4.  Execution time: AL shows the fastest execution time. The algorithm execution time, allows
to favour between the different similarity measures, since the DTW and TAM expensive time
and computational complexity, render those algorithms non-applicable to a viable solution.
Furthermore, comparing the presented four distance metrics, Euclidean distance presents the
lowest time expense and, therefore, was chosen as the most suitable distance metric.

As noted, generally speaking, ST-SSAL outperformed the remaining SSAL methods reaching
a higher classification accuracy due to its good performance in the automatic annotation with high
certainty. The rNN-SSAL method, although annotating a substantial percentage of the dataset,
its lower automatic annotation accuracy performance resulted in the decay of its classification accuracy.
To conclude, if we compare ST-SSAL and AL, both methods achieve similar classification performance.
However, ST-SSAL was able to annotate a higher volume of data with similar annotation effort without
compromising the classification accuracy.

4.6. Stopping Criterion Analysis

In this sub-section, we analyse the introduction of a SC to the AL process. Previously, the presented
results were based on a pre-defined number of queries (250 queries). As depicted in Figure 9, depending
on the dataset some models reach their highest accuracy score quicker than other, stabilising around
that value for the forthcoming iterations. Thus, as explained in Section 3.1.3, in order to optimise
the trade-off between the classifier’s performance and the expensive training set annotation cost,
the number of iterations should be minimised according to the respective algorithm and dataset.

Table 5 presents for both datasets the experimental results for the SSAL methods using the
proposed SCs methods in terms of accuracy and below, total number of iterations. Moreover, in the
columns SP, for both datasets it is shown the accuracy score for each method in stabilisation and the
considered optimal number of iterations at the stopping point. These values were selected in order
to achieve a stable accuracy performance with the minimal annotation effort and higher coherency
between different folds from the 10-CV (i.e., minimal standard deviation).
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Table 5. SC methods accuracy and standard deviation average, acc (std) in percetage. Accuracy score denoted as Acc, and average iterations denoted as N.it over a
10-fold CV on the UCI and CADL datasets. Moreover, for each dataset, under the Stopping Point (SP) columns, the accuracy results in stabilisation are shown and
below, the considered optimal number of iterations are shown. The most suitable method is shown in bold for each dataset.

ucCI CADL
Method SP Max-Conf Over-Unc CcC Max-CC Over-CC SP Max-Conf  Over-Unc CcC Max-CC Over-CC
NN Euc Acc 85.5(3.3) 69.2 (12.5) 787 (8.7) 73.6 (11.9) 82.2(8.2) 81.5(9.2) 81.6 (5.1) 68.2(8.9) 76.7 (6.3) 57.3 (14.1) 77.9 (6.0) 80.2 (6.4)
N.it  68.5(26.1) 20.0(11.4) 37595 289 (12.4) 68.0 (39.3) 82.5(44.1) 69.6 (38.4) 44.5(23.4) 645(14.3) 21.2(8.2) 123.0 (97.5)  103.0 (73.8)
NN Cos Acc 79.6 (7.3) 703 (11.3)  79.0 (9.6) 68.8 (13.3) 81.5 (10.4) 82.7 (10.8) 74.6 (15.6) 62.8 (16.9) 69.8 (9.9) 44.2 (20.5) 74.9 (11.0) 78.4 (10.5)
Nit  61.1(29.7) 22.0(13.2) 41.5(11.9) 16.8 (7.6) 76.5 (47.5) 67.5 (27.0) 80.5 (31.4) 28.0 (10.0) 52.5(15.8) 13.5 (6.8) 88.5 (65.1) 88.5 (56.9)
NN DTW Acc 67.0 (4.3) 54.3 (6.0) 47.8(12.4) 57.6(244.7) 67.4 (7.4) 58.1(17.5) 58.7 (12.5) 43.9 (7.6) 33.8 (7.3) 52.0 (17.0) 62.8 (4.0) 64.5(7.3)
N.it  250.0 (0.0) 26.0 (7.4) 16.0 (2.2) 244.7 (155.0) 297.7(105.9) 220.4(158.8) 117.0(95.1) 22.5(4.5) 16.0 (5.5)  215.1(134.5) 278.3(79.9)  305.3 (11.2)
NN TAM Acc 77.0 (4.9) 59.5 (9.0) 68.0 (7.9) 63.8 (20.0) 73.1(7.0) 67.3 (12.4) 62.0 (6.0) 49.5 (8.0) 50.2 (8.4) 60.9 (12.7) 63.9 (5.2) 65.8 (5.4)
N.it 3132(783) 37.5(17.0) 53.5(10.8) 244.6(153.2) 318.1(95.7) 260.8(136.7) 153.0(86.3) 47.5(239) 47.5(14.8) 2749(90.0) 305.3(11.2) 3053 (11.2)
(NN Euc Acc 84.2 (2.3) 72.6 (124)  83.7(3.9) 61.9 (13.4) 72.6 (13.9) 84.9 (2.7) 77.2(5.9) 59.9 (14.5) 76.9 (9.0) 45.0 (10.8) 74.9 (7.0) 78.1(5.4)
N.it  92.5(23.0) 375(17.6) 97.0 (37.6) 159 (8.7) 45.5(27.4) 129.4 (52.1)  198.3(133.3) 32.5(11.8) 174.3(97.2) 14.0 (2.6) 209.6 (125.4)  319.1(92.7)
NN Cos Acc 65.5(9.9) 60.6 (11.6)  66.0 (8.2) 52.7 (10.4) 65.9 (13.3) 72.0 (12.1) 52.7 (16.1) 53.4 (14.7)  60.6 (11.6) 34.2(17.5) 53.7 (9.4) 60.5 (14.4)
N.it  37.0(10.4) 31.0 (19.8) 37.5(15.2) 9.7 (3.5) 63.5(71.9) 66.5 (37.6) 43.0 (21.5) 32.0(11.6) 72.5(34.2) 12.3 (5.6) 87.4(101.3) 165.7 (136.7)
NN DTW Acc  38.7(154) 44.6 (8.9) 43.0 (6.8) 29.2(9.7) 56.4 (13.9) 56.1 (14.6) 41.2 (14.8) 35.4(6.9) 35.9 (6.3) 23.4 (5.8) 56.9 (20.9) 61.2(18.2)
Nit  39.0(27.2) 21.0(5.9) 315(13.2) 7.4 (0.9) 156.6 (158.0) 133.2(142.5)  51.0(32.9) 25.0(7.3) 30.0 (13.0) 9.3 (4.3) 97.0 (94.2) 132.0 (87.2)
NN TAM Acc 68.6 (9.4) 43.1(10.1) 482(7.0) 40.5 (10.2) 59.7 (16.7) 50.1 (15.8) 56.9 (19.6) 29.8 (7.8) 27.7 (7.4) 33.1 (22.6) 53.2 (19.0) 47.9 (20.3)
N.it 290.7(118.6) 17.0(3.7) 21.0 (5.5) 12.2(7.9) 124.3 (137.2) 128.2(146.3)  77.0 (34.4) 18.0 (4.6) 14.5 (5.5) 22.0 (24.7) 54.0 (29.6) 128.2 (146.2)
ST-SSAL Acc 85.2 (3.5) 48.8(15.3)  66.3(9.9) 49.1 (18.9) 75.3 (10.7) 84.5 (4.1 82.8 (6.6) 33.0(13.0) 61.9(12.1) 15.0 (0.6) 76.2 (12.7) 84.7 (7.2)
N.it 201.5(83.8) 225(9.5) 61.0(29.2) 66.4(107.1) 81.0 (41.6) 214.0 (46.5) 164.0(70.1)  25.0(10.2)  67.0(21.1) 12.0 (0.0) 120.0 (28.4)  182.0 (53.9)
AL Acc 86.1 (2.6) 60.3(11.7) 65.7(10.5)  37.4(11.1) 84.0 (4.7) 86.0 (5.6) 84.6 (7.4) 51.2(15.5) 64.0 (15.0) 15.0 (0.6) 76.8 (9.7) 76.6 (16.5)
N.it 109.5(244) 285(10.1) 38.0(16.4) 10.9 (3.9) 98.0 (26.1) 97.0 (40.8) 193.0 (51.0)  58.0(17.9) 118.0 (59.5) 12.0 (0.0) 116.0 (42.0) 139.0 (43.1)
SL 91.4(2.4) 89.1 (4.0)
UL 57.8 (3.5) 61.9 (8.9)
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The most suitable SC is overall coherent between the different datasets and changes according
to the SSAL algorithm. As it can be seen in Table 5, with the introduction of a SC the number of
iterations, consequently, the required annotation cost was notably reduced. Therefore, optimising the
computational demands of the pipeline. For the ST-SSAL (selected in the previous sub-section as the
best performing SSAL method) using the Over-CC SC, an accuracy of 84.5 (4.1)%, F1 score of 82.9 (4.5)%
and accuracy of 84.7 (7.2)%, F1 score of 86.3 (6.9)% was attained, with the annotation cost of 214.0
(46.5) and 182.0 (53.9) queries, for the UCI and CADL datasets, respectively, consisting of annotating
2.4 (0.5)% and 10.2 (2.8)% of the validation set. Moreover, the automated annotation along with the
manually annotated samples enabled to label 55.8 (11.8)% and 19.1 (13.4)% of the validation set with
an accuracy on the automated annotation of 90.5 (4.6)% and 56.7 (46.3)%. Thereupon, the ST-SSAL
method allowed to reduce the manual annotation cost on 97.6 (0.6)% and 89.8 (2.8)% for both datasets.

For last, a confusion matrix for the ST-SSAL method using the Over-CC SC is presented
in Figure 12, where it is possible to establish conclusions regarding the activities correctly and
incorrectly predicted by the classifier. For both datasets, the misclassification was higher between
Downstairs/Upstairs and Sitting/Standing. The barometer’s linear regression feature, as it can be
seen in Figure 6, presents high distinction between Downstairs/Upstairs, thus, allowed to improve
the discrimination between these activities in the CADL dataset. Dynamic activities, due to its
distinct motion characteristics and cyclic behaviour presented an overall clear discrimination against
static activities.

Walking Upstairs
Upstairs Downstairs
@ . @ Sitting
2 Downstairs |
© » o Running
2 Sitting 2
- =

Laying

Standing Standing

Laying Walking

& &
K I O
N Oo\‘;(\ Q& v 6{0
Predicted label Predicted label

(a) (b)
Figure 12. Confusion matrix for the Self-Training Semi-Supervised Active Learning (ST-SSAL) method
using the Overall Uncertainty Classification-Change Stopping Criterion (Over-CC SC). (a) UCI dataset.
(b) CADL dataset.

Lastly, comparing the performance results of the best performing method ST-SSAL method
using the Over-CC SC, to state-of-the-art researches for the UCI dataset, namely, [10,12,13] who
have achieved accuracies of 86%, 96% and 96%, respectively. When evaluating on the same test set,
ST-SSAL obtained an accuracy of 83.2 (4.5)%, after 230.5 (21.9) queries. Therefore, although it did
not outperform the aforementioned researches, satisfactory results were achieved, annotating 48.5
(18.1)% of the validation set with an accuracy of 88.0 (5.4)%, and a notable reduction of 96.8 (0.3)% in
the training set annotation cost.

5. Conclusions

Over the last years, the advances on smartphone and wearable technology allowed the
proliferation of their use as unobtrusive and pervasive sensors. The volume of the recorded data
by these equipment is significant and poses challenges on the development of traditional machine
learning approaches that rely on annotated data to guarantee accurate model performance. The process
of annotating a large dataset requires a great effort by the manual annotation of an expert.
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Based on the aforementioned challenges in the HAR context, this work addressed a
semi-automatic data annotation approach with the goal of optimising the process of data annotation
and still be able to learn an accurate machine learning model. Our method relies on two steps: (1) a QS
criterion to select the most relevant samples to be labelled by an expert; (2) an automatic method to
propagate the annotated sample’s label over similar samples on the entire dataset.

Our main contribution consists of applying SSAL in two HAR datasets, built through a
comprehensive study of state-of-the-art QSs and SCs, and the comparison to AL. These methods
were evaluated over several automatic annotation strategies based on different distance functions to
build an optimal SSAL system with applications for human movement.

Regarding the QS, Margin Sampling achieved the best results in the study performed with AL,
reaching an accuracy of 88.4 (2.8)% and 84.8 (0.1)% for UCI and CADL, respectively, and maintaining
low computational time.

If we compare ST-SSAL and AL, both methods achieve similar classification performance.
However, ST-SSAL was able to annotate a higher volume of data with similar annotation effort,
without compromising the classification accuracy. This paper extends the work conducted by [31] on
HAR, since it applies ST on the labels previously selected by AL. The ST-SSAL using the Over-CC SC
obtained an accuracy of 84.5 (4.1)% and 84.7 (7.2)% for the UCI and CADL datsets, respectively, with a
reduction in the Oracle annotation effort on 97.6 (0.6)% and 89.8 (2.8)% of total number of samples for
both datasets.

For future work we identified the following research lines: development of a multi-oracle system
with non-expert users, allowing the evaluation of the system’s response to any eventual integration
of bias in the annotation process; integration of the samples’ estimation annotation cost into the QS,
since different samples may present different annotation costs; and the development of an annotation
interface which relies on ST-SSAL to facilitate data annotation. The annotation interface can be used to
support current methods based on video recordings, with each samples being correlated to a point in
time and a recording is present so the user only is required to watch the selected frames given by the
QS instead of dedicating extensive hours watching the entire recording.
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