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Abstract: Hyperspectral Images (HSIs) contain enriched information due to the presence of
various bands, which have gained attention for the past few decades. However, explosive growth
in HSIs’ scale and dimensions causes “Curse of dimensionality” and “Hughes phenomenon”.
Dimensionality reduction has become an important means to overcome the “Curse of dimensionality”.
In hyperspectral images, labeled samples are more difficult to collect because they require many
labor and material resources. Semi-supervised dimensionality reduction is very important in mining
high-dimensional data due to the lack of costly-labeled samples. The promotion of the supervised
dimensionality reduction method to the semi-supervised method is mostly done by graph, which is a
powerful tool for characterizing data relationships and manifold exploration. To take advantage of the
spatial information of data, we put forward a novel graph construction method for semi-supervised
learning, called SLIC Superpixel-based l2,1-norm Robust Principal Component Analysis (SURPCA2,1),
which integrates superpixel segmentation method Simple Linear Iterative Clustering (SLIC) into
Low-rank Decomposition. First, the SLIC algorithm is adopted to obtain the spatial homogeneous
regions of HSI. Then, the l2,1-norm RPCA is exploited in each superpixel area, which captures
the global information of homogeneous regions and preserves spectral subspace segmentation of
HSIs very well. Therefore, we have explored the spatial and spectral information of hyperspectral
image simultaneously by combining superpixel segmentation with RPCA. Finally, a semi-supervised
dimensionality reduction framework based on SURPCA2,1 graph is used for feature extraction task.
Extensive experiments on multiple HSIs showed that the proposed spectral-spatial SURPCA2,1 is
always comparable to other compared graphs with few labeled samples.

Keywords: Hyperspectral Image; Robust Principal Component Analysis (RPCA); Simple Linear
Iterative Clustering (SLIC); superpixel segmentation

1. Introduction

Hyperspectral Images (HSIs) provide comprehensive spectral information of the materials’
physical properties [1], which is applied in ecosystem monitoring [2], agricultural monitoring [3,4],
environmental monitoring [5], forestry [6], urban growth analysis [7,8], and mineral identification [9,10].
The abundant hyperspectral image bands bring rich spectral information, but they result in the
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“Hughes phenomenon” [11,12] that reduces the accuracy and efficiency of the classification task.
By reducing the dimensionality of the data, more compact low-dimensional hyperspectral images can
be obtained. Therefore, it is important and practically significant to perform appropriate dimensionality
reduction on hyperspectral images.

Dimensionality reduction refers to finding the low-dimensional representation of the original
data by eliminating the redundant elements and retaining their main features, which can overcome
the “Curse of dimensionality” problem. Dimensionality reduction mainly includes feature selection
and feature extraction [13]. Feature selection methods reduce the dimensions of the original data
by selecting the most representative and distinguishing features [14]. Feature extraction methods
combine multiple features linearly and non-linearly on the basis of maintaining the data structure
information [15]. Recently, many dimensionality reduction algorithms have been put forward.
The most classic ones are the early Principal Component Analysis (PCA) [16], Linear Discriminant
Analysis (LDA) [17], and Independent Component Analysis (ICA) [18–20]. In recent years, feature
extraction has quickly become one of the hotspots in machine learning and data mining. Compared
with the traditional dimensionality reduction method, the main difference of manifold learning is its
ability to maintain the invariance of the data structure. The most representative algorithms include
Laplacian Eigenmap [21], Isomap [22], and Local Linear Embedding (LLE) [23]. A multimetric learning
approach that combines feature extraction and active learning (AL) is proposed to deal with the high
dimensionality of the input data and the limited number of the labeled samples simultaneously [24].
To simultaneously deal with the two issues mentioned above, a regularized multimetric active learning
(AL) framework is proposed [25].

With the rapid development of data acquisition and storage technology, many unlabeled
samples are available, but labeled samples are more difficult to collect. If the training samples
are limited, the machine learning methods may be confronted with over-fitting problems when dealing
with high-dimensional small sample size problems [26,27]. For the classification of hyperspectral
images (HSIs), good classification results usually require many labeled samples. To resolve the
over-fitting problem, semi-supervised learning was proposed to utilize both labeled samples and the
unlabeled samples that conveyed the marginal distribution information to enhance the algorithmic
performance [28–30]. Semi-supervised dimensionality reduction combines semi-supervised learning
with dimensionality reduction, and has gradually become a new branch in the machine learning field.
Semi-supervised dimensionality reduction methods not only use the supervised information of the
data, but also maintain the structural information of the data. In the dimensionality reduction method,
the promotion of the supervised dimensionality reduction method to a semi-supervised method is
mostly done by graph-based methods. Therefore, graph-based semi-supervised learning methods
have gained a great deal of attention, which construct adjacency graph to extract the local geometry
of the data. Graph is a powerful data analysis tool, which is widely used in many research domains,
such as dimension reduction [21–23], semi-supervised learning [31,32], manifold embedding, and
machine learning [33,34]. In graph-based methods, each point is mapped to a low-dimensional feature
vector, trying to maintain the connection between vertices [30]. The procedure of graph construction
effectively determines the potential of the graph-based learning algorithms. Thus, for a specific task,
a graph which models the data structure aptly will correspondingly achieve a good performance.
Therefore, how to construct a good graph has been widely studied in recent years, and it is still an
open problem [35].

Within the last several years, numerous algorithms for feature extraction have been put forward.
PCA is a widely-used linear subspace algorithm that seeks a low-dimensional representation of
high-dimensional data. PCA works against small Gaussian noise in data effectively, but it is highly
sensitive to sparse errors of high magnitude. To solve this problem, Candès [36] and Wright et al. [37]
proposed Robust Principal Component Analysis (RPCA), which intends to decompose the observed
data into a low-rank matrix and a sparse noises matrix. In [38], a novel feature extraction method based
on non-convex robust principal component analysis (NRPCA) was proposed for hyperspectral image
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classification. Nie et al. developed a novel model named graph-regularized tensor robust principal
component analysis (GTRPCA) for denoising HSIs [39]. Chen et al. denoised hyperspectral images
using principal component analysis and block-matching 4D filtering [40].

The above mentioned methods suggest that the pixels in a hyperspectral image lie in a low-rank
manifold. However, the spatial correlation among pixels is not revealed. For HSIs, the adjacent
pixels’ correlation is typically extremely high [41], which has potential low-rank attributes. Pixels
in homogenous areas usually consist of similar materials, whose spectral properties are highly
similar and can be taken as being approximately in the same subspace. By extracting the low-rank
matrix of the data, the low-dimensional structure of each pixel is revealed and we can classify each
pixel more accurately. Xu et al. put forward a low-rank decomposition spectral-spatial algorithm,
which incorporates global and local correlation [42]. Fan et al. integrated superpixel segmentation
(SS) into Low-rank Representation (LRR) and proposed a novel denoising method called SS-LRR [43].
A multi-scale superpixel based sparse representation (MSSR) for HSIs’ classification is proposed to
overcome the disadvantages of utilizing structural information [44]. Sun et al. presented a novel noise
reduction method based on superpixel-based low-rank representation for hyperspectral image [45].
In [46], Mei et al. proposed a new unmixing method with superpixel segmentation and LRR based
on RGBM. Tong et al. proposed multiscale union regions adaptive sparse representation (MURASR)
by multiscale patches and superpixels [47]. A novel method, robust regularization block low-rank
discriminant analysis, is proposed for HSIs’ feature extraction [48].

Spatial information can play a very important role in mapping data. However, many graph
construction methods do not make full use of data’s spatial information. For example, in hyperspectral
images, adjacent pixels in a homogenous area usually belong to the same category. Therefore, how to
consider the features of the actual data globally to further improve the semi-supervised dimensionality
reduction performance is one of the main research components of this paper. Considering the spatial
correlative and spectral low-rank characteristics of pixels in HSIs, we integrate the Simple Linear
Iterative Clustering (SLIC) segmentation method into low-rank decomposition. Figure 1 shows
the formulation of the proposed SLIC Superpixel-based l2,1-norm Robust Principal Component
Analysis (SURPCA2,1) for hyperspectral image classification. As shown in Figure 1, we preprocess
the hyperspectral image by the Image Fusion and Recursive Filtering feature (IFRF), which eradicates
the noise and redundant information concurrently [12]. The proposed method divide the image into
multiple homogeneous regions by the superpixel segmentation algorithm SLIC. The pixels in each
homogeneous region may belong to the same ground object category. Therefore, we stack the pixels
in the same homogeneous region into a matrix. Due to the low-rank property of the matrix, RPCA
is used to recover the low-dimensional structure of all pixels in the homogeneous region. Then, we
combine these low-rank matrices together to an integrated low-rank graph. In addition, we process
the semi-supervised discriminant analysis for dimension reduction, which takes advantage of the
labeled samples and the distribution of the whole samples. The k-Nearest Neighbor (kNN) algorithm
is applied to handle the low-rank graph for the regularized graph of semi-supervised discriminant
analysis. Finally, we implement the Nearest Neighbor classifier method. We summarize the main
contributions of the paper in the following paragraphs.

• Inspired by robust principal component analysis and superpixel segmentation, we put forward a
novel graph construction method, SLIC superpixel-based l2,1-norm robust principal component
analysis. The superpixel-based l2,1-norm RPCA extracts the low-rank spectral structure of all
pixels in each uniform region, respectively.

• The simple linear iterative clustering addresses the spatial characteristics of hyperspectral images.
Consequently, the SURPCA2,1 graph model can classify pixels more accurately.

• To investigate the performance of the SLIC superpixel-based l2,1-norm robust principal
component analysis graph model, we conducted extensive experiments on several real multi-class
hyperspectral images.
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Figure 1. Formulation of the proposed SLIC superpixel-based l2,1-norm robust principal component
analysis for HSIs classification.

We start with a scientific background in Section 2. Section 3 deciphers the HSIs classification
with l2,1-norm robust principal component analysis. Section 4 performs comparative experiments on
real-world HSIs to examine the performance of the proposed graph. We provide the discussion in
Section 5. Conclusions are presented in Section 6.

2. Scientific Background

2.1. Graph-Based Semi-Supervised Dimensionality Reduction Method

In the dimensionality reduction method, the promotion of supervised method to semi-supervised
method is mostly done by graph-based methods. Maier et al. [49] showed that different graph
structures obtain different results in the same clustering algorithm. A good graph construction method
has great influence in graph-based semi-supervised learning. Therefore, how to construct a good
graph sometimes seems to be more important than a good objective function [50].

Graph is composed by nodes and edges, which represents the structure of the entire dataset. The
nodes represent the sample points, and the edges’ weight represents the similarity between the nodes.
Generally, the greater the weight is, the higher the similarity between the nodes will be. If the edge
does not exist, the similarity between the two points will be zero. The similarity between nodes is
usually measured by distance, such as Euclid, Mahalanobis, and Chebyshev distance [51]. Different
graph construction methods have great impact on the performance of classification results. The
graph construction process mainly includes the graph structure and the edges’ weight function. Two
commonly used graph structures are Fully Connected graphs and Nearest Neighbor graphs (k-nearest
neighbor graph and ε-ball Graph).

• Fully Connected graphs [21,52]: In the fully connected graph, all nodes are connected by
edges whose weights are not zero. The fully connected graphs are easy to construct and
have good performance for semi-supervised learning methods. However, the disadvantage
of the fully connected graphs is that it requires processing all nodes, which would lead to high
computational complexity.

• k-nearest neighbor graph [21]: Each node in the k-nearest neighbor graph is only connected with
k neighbor in a certain distance. The samples xi and xj are considered as neighbor if xi is among
the k nearest neighbor of xj or xj is among the k-nearest neighbor of xi.

• ε-ball graph [21]: In the ε-ball graph, the connections between data points occur in
the neighborhood of radius ε. That is to say, if the distance between xi and xj exists
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d(xi, xj) ≤ ε, ε ∈ R, ε > 0, there will be a neighbor relationship between these two nodes.
Therefore, the connectivity of the graph is largely influenced by the parameter ε.

It is also necessary to assign weight for the connected edges W. The followings are commonly
used weight functions:

• Inverse of Euclidean distance [53],

Wij =

{ ∥∥xi − xj
∥∥−2,

0,
i f xi ∈ Nk

(
xj
)

orxj ∈ Nk (xi)

otherwise.
(1)

• 0–1 weighting [21],

Wij =

{
1,
0,

i f xi ∈ Nk
(
xj
)

orxj ∈ Nk (xi)

otherwise.
(2)

• Heat kernel weighting [21],

Wij =

 exp
(
−‖xi−xj‖2

2σ2

)
,

0,

i f xi ∈ Nk
(
xj
)

orxj ∈ Nk (xi)

otherwise.
(3)

kNN graph can make full use of the local information of adjacent nodes. Since kNN graph
is sparse, it can solve the computational complexity and storage problem in the fully connected
graph. The parameters k and ε depend on the data density, which is difficult to select. The choice of
neighbor size parameter is the key to the effectiveness of the graph-based semi-supervised learning
method. The Nearest Neighbor graph lacks global constraints of the data points, and its representation
performance is greatly reduced when the data is seriously damaged [21].

2.2. Simple Linear Iterative Clustering

The superpixel is an image segmentation technique proposed by Xiaofeng Ren in 2003 [54].
It refers to the image regions with certain visual meanings composed of adjacent pixels which have
similar physical characteristics such as texture, color, brightness, etc. [55]. The superpixel segmentation
methods segment pixels and replace a large number pixels with a small number of superpixels, which
greatly reduces the complexity of image post-processing. It has been widely used in computer vision
applications such as image segmentation, pose estimation, target tracking, and target recognition. The
boundary information is relatively obvious between the superpixels. Achanta et al. introduced a
simple linear iterative clustering algorithm to efficiently produce superpixels that are compact and
nearly uniform [56].

The superpixel algorithms are broadly classified into graph-based and gradient-ascent-based
algorithms. In graph-based algorithms, each pixel is treated as a node in a graph, and edge weights
between two nodes are set proportional to the similarity between the pixels. Superpixel segmentations
are extracted by effectively minimizing a cost function defined on the graph [57]. Simple linear
iterative clustering was proposed in 2010, and is simple to use and understand. Simple linear iterative
clustering is based on the k-means clustering algorithm [58], which is done in the five-dimensional
Labxy space, where Lab is the pixel color vector in CIELAB color space, which is widely considered as
perceptually uniform for small color distances, and x, y is the pixel position [57]. Starting from an initial
rough clustering, the clusters from the previous iteration are refined to obtain better segmentation
in each iteration by gradient ascent method until convergence. Then, the distance metrics of the
five-dimensional feature vectors are constructed. Finally, the pixels are clustered in the image
locally [57,59]. The method has a high comprehensive evaluation index in terms of computational speed
and superpixel shape, which achieves good segmentation results. It has two significant advantages
compared with other algorithms. One is that it restricts the search space to proportionate the size
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of the superpixels, which can significantly reduce the number of distance calculations during the
optimization process. The other is that the weighted distance combines color and spatial metrics while
control the number and compactness of superpixels.

The SLIC method performs a k-means-based local clustering algorithm in a five-dimensional space
distance measurement, which achieves compactness and regularity in superpixel shapes. L represents
luminosity, and ranges from 0 (black) to 100 (white). The color-associated elements a and b represent
the range of colors from magenta to green and yellow to blue, respectively. The Lab color model not
only contains the entire color gamut in RGB and CMYK, but also colors they cannot present. The
Lab space can express all colors perceived by the human eyes, and is perceptually uniform for small
color distance. Instead of directly using the Euclidean distance in this five-dimensional space, SLIC
introduces a new distance measure that considers superpixels’ size. For an image with N pixels,
the SLIC algorithm takes a desired number of equally-sized superpixels N/K as input. There is a
superpixel center at each grid interval S =

√
N/K. SLIC is easy in practice application because it only

needs to set the unique superpixels’ desired number K.
The clustering procedure begins with K initial cluster centers (seeds) Ck = [lk, ak, bk, xk, yk]

T ,
which are sampled on regular grids with an S pixels interval. Each seed is moved to the lowest
gradient position in its 3× 3 neighborhood to avoid centering the superpixel at the edge position and
reduce the chance of seeding with noisy pixels. We assume that the cluster center is located within
a 2S× 2S area since the spatial extent of a superpixel is about S2. This strategy can accelerate the
convergence process, as shown in Figure 2. The SLIC superpixel segmentation algorithm is a simple
local k-means algorithm, whose search area is the 2S× 2S area nearest to each cluster center. Since
each pixel is searched by multiple seed pixels, the cluster center of the pixel is the seed with the
minimum value.

𝑆

(a) Traditional k-means search

𝑆

2𝑆

(b) SLIC searches in the 2S× 2S area

Figure 2. Simple linear iterative clustering (SLIC) reducing the search regions.

Let [li, ai, bi, xi, yi]
T be the five-dimensional vector of a pixel. Calculate the distance between each

pixel and the seeds. The distance between the pixel and seed Ck is shown as follows:

Dlab=

√
(lk−li)

2+(ak−ai)
2+(bk−bi)

2 (4)

Dxy=

√
(xk−xi)

2+(yk−yi)
2 (5)

DS=Dlab+
l
S

Dxy (6)

The variable l controls the superpixels’ compactness. The larger the value l is, the more compact
the cluster will be.

The above steps are repeated iteratively until convergence, which means that the cluster center of
each pixel is no longer changing. l ranges from 1 to 20. Here, we chose l = 10, which roughly matches
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the empirically perceptually meaningful Lab distance and provides good balance between spatial
proximity and color similarity.

After the iterative optimization, superpixel multi-connected conditions may occur.
Some superpixels’ sizes may be too small, a single superpixel may be segmented into a plurality of
discontinuous superpixels, etc., which can be solved by enhancing the connectivity of the superpixels.
The solution is to reassign discrete and small-size superpixels to their adjacent superpixels until all the
pixels have been traversed.

2.3. Robust Principal Component Analysis

Decomposing the matrix into low-rank and sparse parts can separate the main components from
outliers or noise, which is suitable for mining low-dimensional manifold structures in high-dimensional
data. We stack the pixels in the same homogeneous region into a matrix Xk ∈ RN×nk , where nk is
the pixel number in the kth homogeneous region. Since the matrix has low-rank property, a low-rank
matrix recovery algorithm is employed to recover the low-dimensional structure of all pixels in the
homogeneous region. After recovering the low-rank matrix, the low-rank matrices are combined
together into an integrated low-rank graph. The low-rank matrix restored by low-rank representation
is a square matrix, while the dimensionality of the low-rank matrix restored by robust principal
component analysis is the same as the original Xk ∈ RN×nk . Since the number of pixels in each
homogeneous region is different, robust principal component analysis is suitable for restoring the
low-dimensional structures of all pixels in a homogeneous region here.

Principal Component Analysis is a fundamental operation in data analysis, which assumes that
the data approximately lies in a low-dimensional linear subspace [16]. The success and popularity of
PCA reveals the ubiquity of low-rank matrices. When the data are slightly damaged by small noise,
it can be calculated stably and efficiently by singular value decomposition. However, noise and outliers
limit PCA’s performance and applicability in real scenarios.

Suppose we stack samples as column vectors of a matrix X ∈ Rm×n. The problem of classical PCA
is to seek the best estimate of Z that minimizes the difference between Z and X:

min
Z,E
‖E‖F

s.t. rank(Z) ≤ r, X = Z + E
(7)

where ‖.‖F denotes the Frobenius norm. r is the upper-bound rank of the low-rank matrix Z. This
problem can be efficiently solved via singular value decomposition (SVD) when the noise E is
independent and identically distributed (i.i.d.) small Gaussian noise. A major disadvantage of
classic PCA is its robustness to grossly corrupted or outlying observations [16]. In fact, even though
only one element in the matrix changes, the obtained estimation matrix is far from the ground truth.

Recently, Wright et al. [37] proposed an idealized robust PCA model to extract low-rank structures
from highly polluted data. In contrast to the traditional PCA, the proposed RPCA can exactly extract
the low-rank matrix and the sparse error E (relative to Z). The robust principal component analysis
model is expressed as follows:

min
Z,E

rank(Z) + λ‖E‖0

s.t. X = Z + E
(8)

where λ is to balance low-rank matrix Z and the error matrix E. We recover the pair (Z0, E0) that were
generated from data X. Unfortunately, Equation (8) is a very non-convex optimization problem with
no valid solution. Replacing the rank function with the kernel norm, and replacing the l0-norm with
the l1-norm, results in the following relaxing Equation (8) convex surrogate:

min
Z,E
‖Z‖∗ + λ‖E‖1

s.t. X = Z + E
(9)
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The optimization in Equation (9) can be treated as a general convex optimization problem.
Currently, the optimization algorithms of RPCA mainly contain Iterative Thresholding (IT), Accelerated
Proximal Gradient (APG), and DUAL. However, the iterative thresholding algorithm proposed in [37]
converges slowly. The APG algorithm is similar to the IT algorithm, but the number of iterations
is significantly reduced. In addition, the DUAL algorithm does not require the complete singular
value decomposition of the matrix, so it has better scalability than the APG algorithm. Recently,
some researchers proposed Augmented Lagrangian Multiplier (ALM) algorithm, which has a faster
speed than previous algorithms. The exact ALM (EALM) method turns out that it has a satisfactory
Q-linear convergence speed, whereas the APG is theoretically only sub-linear. A slight improvement
over the exact ALM leads to an inexact ALM (IALM) method, which converges as fast as the exact
ALM. Therefore, the IALM method is applied to obtain the optimization here.

3. Methodology

In the above section, we discuss the simple linear iterative clustering and robust principle
component analysis. Furthermore, labeled and unlabeled samples can be exploited simultaneously
by depicting the underlying superpixels’ low-rank subspace structure. Considering this, we have
attempted to decipher our present work the superpixel segmentation and l2,1-norm pobust principal
component analysis feature extraction model.

3.1. Superpixel Segmentation and l2,1-Norm Robust Principal Component Analysis

Hyperspectral images preserve low-rank properties, but the category composition corresponding
to a hyperspectral image is very complicated in practical applications. The robust principal component
analysis model supposes that the data lie in one low-rank subspace, which makes it difficult to
characterize the structure of the data with multiple subspaces. Hence, we explore the robust principal
component analysis via superpixel, which is usually defined as a homogeneous region. Here, we
employ the SLIC superpixel segmentation method to segment the hyperspectral image into spatially
homogeneous regions. Each superpixel is a unit with consistent visual perception, and the pixels in
one superpixel are almost identical in features and belong to the same class. Initially, we extract the
information of the HSIs by image fusion and recursive filtering [12].

Suppose R = (r1, r2, · · · , rD) ∈ RM×D represent the original hyperspectral image, which has M
pixels and D-dimensional bands. We segment the whole hyperspectral bands into multiple subsets
spectrally. Each subset is composed of L contiguous bands. The number of subsets N = bD/Lc,
which represents the largest integer not greater than D/L. The ith (i ∈ (1, 2, · · · ,N )) subset is shown
as follows:

Pi =

{
(rL∗(i−1)+1, · · · , rL∗i), i f (L ∗ i) ≤ D
(rL∗(i−1)+1, · · · , rD), otherwise.

(10)

Afterwards, the adjacent bands of each subset are fused by an image fusion method
(i.e., the averaging method). For example, the ith fusion band, that is, the image fusion feature
Fi, is as follows:

Qi =
∑Ni

n=1 Pi
n

Ni
(11)

Here, Pi
n refers to the nth band in the ith subset of a hyperspectral image. Ni is the band number

in the ith subset. After image fusion, we remove the noise pixels and redundant information for each
subset. Then, we transform the domain recursive filtering algorithm on Qi to obtain the ith feature:

Oi = RF δs ,δr (Q
i) (12)
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Here,RF represents the domain recursive filtering algorithm. δs is the filter’s spatial standard
deviation, and δr is defined as the range standard deviation [60]. Then, we get the feature image
O = [O1, · · · , ON ] ∈ RM×N .

Image fusion and recursive filtering (IFRF) is a simple yet powerful feature extraction method that
aims at finding the best subset of hyperspectral bands that provide high classes’ separability. In other
words, the IFRF feature method is used to select better bands that remove the noise and redundant
information simultaneously [12]. Hence, we preprocess the HSIs firstly by IFRF to eliminate redundant
information.

Let X = OT = [x1, x2, · · · , xM] ∈ RN×M be the preprocessed features vector, where xi represents
a pixel with N band numbers in the hyperspectral image, and M is the pixels number. We begin
by sampling the K cluster centers and moving them to the lowest gradient position in the 3 × 3
neighborhood of the cluster centers. The squared Euclidean norm of the image is calculated by
Equation (13):

G(x, y) =‖I(x + 1, y)−I(x− 1, y)‖2+‖I(x, y + 1)−I(x, y− 1)‖2 (13)

where I(x, y) represents the L, a, b vector corresponding to the pixel at position (x, y), and ‖.‖ is the
l2-norm. This takes both color and intensity information into account.

Each pixel in the image is associated with the nearest cluster center whose search area overlaps
the pixel. After each pixel is associated with its nearest cluster center, a new center is computed as the
average Labxy vector of all the pixels in the cluster. Then, we iteratively associate the pixel with the
nearest cluster center and recalculate the cluster center until convergence. We enforce the connection
by relabeling the disjoint segmentations with their largest neighboring cluster’s label. The simple
linear iterative clustering algorithm is summarized in Algorithm 1.

Algorithm 1 SLIC superpixel segmentation.

Input: Processed HSIs image X ∈ RN×M, Desired number of approximately superpixels K.
1: Initialize cluster centers Ck = [lk, ak, bk, xk, yk]

T by sampling pixels at regular grid steps S.
2: Move cluster centers to the lowest gradient position in a 3× 3 neighborhood.
3: Set label l(i) = −1 for each pixel i.
4: Set distance d(i) =∞ for each pixel i.
5: Repeat
6: for each cluster center Ck do
7: for each pixel i in a 2S× 2S region around Ck do
8: Compute the distance D between Ck and i.
9: if D < d(i) then

10: set d(i) = D
11: set l(i) = k
12: end if
13: end for
14: end for
15: Compute new cluster centers.
16: Compute residual error E.
17: Until E ≤threshold.
18: Enforce connectivity.
Output: Superpixel segmentations.

Hyperspectral images are segmented into many irregularly homogeneous regions. We stack the
pixels in one homogeneous region into a matrix. We record the segment image as X = {X1, X2, · · · , Xm},
where k ∈ {1, 2, · · · , m} is the index of the superpixels. m is the exact total number of superpixels in X.
nk is the number of pixels in the superpixel Xk, and each column represents the bands of one pixel.
Due to the low-rank attribute of the data, robust principal component analysis is used to extract the
low-dimensional structure of all pixels in the homogeneous region. Then, the observed data matrix
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Xk ∈ RN×nk can be decomposed into a low-rank matrix and a sparse matrix. That is, Xk = Zk + Ek,
where Zk represents the low-rank matrix of Xk, and Ek indicates the sparse noise matrix. Further, the
RPCA optimization problem for each superpixel region is converted to the following form:

min
Z,E
‖Zk‖∗ + λ‖Ek‖1

s.t. Xk = Zk + Ek
(14)

In the RPCA model, noise is required to be sparse, and the structural information of the noise is
not considered. However, in machine learning or image processing fields, each column (or row) of
the matrix has some meaning (e.g., a picture, and a signal data, etc.). Here, each column represents a
pixel, which causes the noise to be sparse in column (or row). This structural information cannot be
represented by the definition of an l1-norm. To generate structural sparsity, the l2,1-norm is proposed
in the robust principal component analysis.

Unlike the l1-norm, the l2,1-norm produces sparsity based on columns (or rows). For the matrix
X ∈ Rm×n, its l2,1- norm is [61,62]:

‖X‖2,1 =
n

∑
j=1

√
m

∑
i=1

x2
i,j =

m

∑
i=1

∥∥X:,j
∥∥

2 (15)

Thus, the l2,1-norm is the sum of the l2-norm of column vectors, which is also a measure of joint
sparsity between vectors. For data that are interfered by structured noise, the following l2,1-norm
RPCA model in Equation (16) is very suitable:

min
Z,E
‖Zk‖∗ + λ‖Ek‖2,1

s.t. Xk = Zk + Ek
(16)

In contrast to the original RPCA model, we call the error term with l2,1-norm in Equation (16) as
RPCA2,1. Here, the inexact augmented Lagrangian multiplier (ALM) algorithm [63,64] is utilized for
the optimal solution Zk.

The augmented Lagrangian multiplier method solves the optimization problem by minimizing
the Lagrangian function as follows:

L(Z, E, Y, µ) = ‖Z‖∗ + λ‖E‖2,1 + 〈Y, X− Z− E〉+ µ
2 ‖X− Z− E‖2

F (17)

where Y is defined as Lagrangian multipliers and µ > 0 is the penalty parameter. The sub-problem for
all variables is convex, which can supply a relevant and unique solution. Alternate iterations Zk, Ek,
and Y:

Zi+1 = arg min
Z

L(Z, Ei, Yi, µ)

= arg min
Z

‖Z‖∗ + 〈Yi, X− Z− Ei〉+
µ
2 ‖X− Z− Ei‖2

F

= arg min
Z

‖Z‖∗ +
µ
2

∥∥∥Z− (X− Ei +
Yi
µ )
∥∥∥2

F

= arg min
Z

1
µ‖Z‖∗ +

1
2

∥∥∥Z− (X− Ei +
Yi
µ )
∥∥∥2

F

(18)

Ei+1 = arg min
E

L(Zi+1, E, Yi, µ)

= arg min
E

λ‖E‖2,1 + 〈Yi, X− Z− Ei〉+
µ
2 ‖X− Z− Ei‖2

F

= arg min
E

λ‖E‖2,1 +
µ
2

∥∥∥E− (X− Z + 1
µ Y)

∥∥∥2

F

= arg min
E

λ
µ‖E‖2,1 +

1
2

∥∥∥E− (X− Z + 1
µ Y)

∥∥∥2

F

(19)
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Note that Zi+1 and Ei+1 are convergent to Zi+1
∗ and Ei+1

∗, respectively. Then, we update Y
as follows:

Yi+1 = Yi + µi(X− Zi+1
∗ − Ei+1

∗) (20)

Finally, parameter µ is updated:

µi+1 =

{
ρµi, i f µi‖Ei+1

∗ − Ei
∗‖F/‖X‖F < ε

µi, otherwise
(21)

where ρ > 1 is a constant and ε > 0 is a relatively small number.
The optimization process outline of the inexact ALM method [63] is given in Algorithm 2.
The initialization Y0 = X/J(X) is defined as

J(X) = max(‖X‖2, λ−1‖X‖∞) (22)

where ‖·‖∞ is the maximum absolute value of the matrix entries.

Algorithm 2 Inexact ALM method for solving RPCA.

Input: Observation matrix X ∈ Rm×n and parameter λ for local affinity.
1: Initialize: Y0 = X/J(X); E0 = 0; µ0 > 0; ρ > 1; k = 0.
2: while not converged do
3: //Lines 4-5 resolve Zi+1 = arg min

Z
L(Z, Ei, Yi, µi).

4: (U, S, V) = svd(X− Ei + µi
−1Yi);

5: Zi+1 = USµi
−1 [S]VT .

6: //Line 7 resolves Ei+1 = arg min
E

L(Zi+1, E, Yi, µi).

7: Ei+1 = Sµi
−1(X− Zi+1 + µi

−1Yi).
8: Yi+1 = Yi + µi(X− Zi+1

∗ − Ei+1
∗) ; µi+1 = ρµi.

9: i← i + 1.
10: end while
Output: The low-rank matrix Z.

After RPCA2,1, we get the low-rank matrix Zk ∈ RN×nk of each superpixel. Then, we merge these
low-rank matrices to a whole low-rank graph Z = {Z1, Z2, · · · , Zm} = [z1, z2, · · · , zM] ∈ RN×M,
which is the low-rank representation of X = [x1, x2, · · · , xM].

3.2. HSIs’ Classification Based on the SURPCA2,1 Graph

To overcome the “Curse of dimensionality” caused by the high dimension, we apply
semi-supervised discriminant analysis to reduce the dimension. SDA is derived from linear
discriminant analysis (LDA). The rejection matrix a can represent a priori consistency assumptions
according to the regularization term [65]:

aopt = arg max
a

aTSba
aTSta + αJ(a)

(23)

Here, St is the total class scatter matrix. Parameter α is used to balance the complexity
and empirical loss of the model. Empirical loss J(a) controls the learning complexity of the
hypothesis family. The regularizer term J(a) incorporates the prior knowledge into some particular
applications. When a set of unlabeled examples available, we aim to construct a J(a) incorporating the
manifold structure.

Given a set of samples {zi}M
i=1, we can construct the graph G to represent the relationship between

nearby samples by kNN. The samples zi and zj are considered as k-nearest neighbor if zi is among the
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k-nearest neighbor of zj or zj is among the k-nearest neighbor of zi. Here, we employ the most simple
0–1 weighting [21] methods to assign weights for S:

Sij =

{
1,
0,

i f zi ∈ Nk(zj) or zj ∈ Nk(zi)

otherwise.
(24)

where Nk(zi) denotes k-nearest neighbor of zi.
The SDA model incorporate the prior knowledge in the regularization term J(a), as follows:

J(a) = ∑
ij
(aTzi − aTzj)

2
Sij

= 2 ∑
i

aTziDiizi
Ta− 2 ∑

ij
aTziSijzT

j a

= 2aTZ(D− S)ZTa

= 2aTZLZTa

(25)

The diagonal matrix D, Dii = ∑j Sij is column (or row, since S is symmetric) sum of S. L = D− S
is the Laplacian matrix [66]. Then, SDA objective function is:

aopt = max
a

aTSba
aT(St + αZLZT)a

(26)

We obtain the projective vector a by maximizing the generalized eigenvalue problem where d is
the weight matrix’s rank for the labeled graph.

Sba = λ(St + αZLZT)a (27)

The low-rank matrix extracted by RPCA captures the global correlation of the homogeneous
region [37,39,67,68], whereas the k-nearest neighbor algorithm characterizes the local correlation
of pixel points [69]. The probability that the neighboring pixels belong to the same category is
large, which corresponds to the spatial distribution structure of the hyperspectral image. Therefore,
the SURPCA2,1 graph can achieve good feature representations for graph-based semi-supervised
dimensionality reduction.

Given a set of samples {(zi, yi)}l
i=1 and unlabeled samples {zi}m

i=l+1 with c classes, the lk is
the kth class’s samples number. The algorithmic procedure of HSIs’ classification by applying
the SLIC superpixel-based l2,1-norm robust principal component analysis method is stated in the
following paragraphs:

Step 1 Construct the adjacency graph: Construct the block low-rank and kNN graph S in
Equation (24) for the regularization term. Furthermore, calculate the graph Laplacian L = D− S.

Step 2 Construct the labeled graph: For the labeled graph, construct the matrix as:

W =

[
Wl×l 0

0 0

]
(28)

Define identity matrix Ĩ =

[
I 0
0 0

]
∈ Rl×l .

Step 3 Eigen-problem: Calculate the eigenvectors for the generalized eigenvector problem:

ZWZTa = λZ(Ĩ + αL)ZTa (29)

d is the rank of W, and {a1, a2, · · · , ad} is the d eigenvectors.
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Step 4 Regularize discriminant analysis embedding: Let the transformation matrix
A = [a1, a2, · · · , ad] ∈ RN×d. Then, embedding the data into d-dimensional subspace,

z→ z′ = ATz (30)

Step 5 Finally, apply the simple and ubiquitously-used classifiers nearest neighbor and Support
Vector Machine (SVM) for classification.

Figure 3 shows a model diagram of the SURPCA2,1 for hyperspectral image classification.
The low-rank matrix measures the global correlation of the homogeneous regions, while the kNN
algorithm preserves the local correlation of the pixels. The probability that adjacent pixels belong
to the same category in the kNN is large, which corresponds to the spatial distribution structure
of the hyperspectral image. Therefore, the SURPCA2,1 graph can be used to achieve high-quality
data representation.

RPCA2,1RPCA2,1

KNN Symmetry

SDA

Pixel-level classification

Original HSI

IFRF Preprocessing

SLIC superpixel segmentation

Homogeneous region g1 Homogeneous region gm-1 Homogeneous region gm
……

RPCA2,1

Low-rank matrix Zg1 Low-rank matrix Zgm-1 Low-rank matrix Zgm

Combined HSI’s 

low-rank matrix

HSI’s Adjacency graph

Semi-supervised

Dimensionality Reduction

Classification results

……

Classification map

SURPCA2,1 graph 

construction algorithm

SURPCA2,1 graph based 

SDA algorithm

Figure 3. Model diagram of the SURPCA2,1 for hyperspectral image classification.
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4. Experiments and Analysis

To investigate the performance of the SLIC superpixel-based l2,1-norm robust principal component
analysis graph model, we conducted extensive experiments on several real multi-class hyperspectral
images. We performed experiments on a computer with CPU 2.60 GHz and 8 GB RAM.

4.1. Experimental Setup

4.1.1. Hyperspectral Images

The Indian Pines (https://purr.purdue.edu/publications/1947/usage?v=1), Pavia University
scene, and Salinas (http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes) hyperspectral images were evaluated in the experiments.

• The Indian Pines image is for the agricultural Indian Pine test site in Northwestern Indiana,
which was a 220 Band AVIRIS Hyperspectral Image Data Set: 12 June 1992 Indian Pine Test
Site 3. It was acquired over the Purdue University Agronomy farm northwest of West Lafayette
and the surrounding area. The data were acquired to support soils research being conducted
by Prof. Marion Baumgardner and his students [70]. The wavelength is from 400 to 2500 nm.
The resolution is 145 × 145 pixels. Because some of the crops present (e.g., corn and soybean) are
in the early stages of growth in June, the coverage is minuscule—approximately less than 5%.
The ground truth is divided into sixteen classes, and are not all mutually exclusive. The Indian
Pines false-color image and the ground truth image are presented in Figure 4.

• The Pavia University scene was obtained from an urban area surrounding the University of Pavia,
Italy on 8 July 2002 with a spatial resolution of 1.3 m. The wavelength ranges from 0.43 to 0.86 µm.
There are 115 bands with size 610 × 340 pixels in the image. After removing 12 water absorption
bands, 103 channels were left for testing. The Pavia University scene’s false-color image and the
corresponding ground truth image are shown in Figure 5.

(a) (c)(b)

(d)

Wheat

Woods

Stone-Steel-Towers

Oats

Soybean-clean

Soybean-mintill

Soybean-notill

Buildings-Grass-Trees-Drives

Corn

Grass-trees

Hay-windrowed

Alfalfa

Corn-notill

Corn-mintill

Grass-pasture

Grass-pasture-mowed

Figure 4. Indian Pines dataset: (a) false-color image; (b) segmentation map; and (c,d) ground truth
image and reference data.

https://purr.purdue.edu/publications/1947/usage?v=1
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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Shadows
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Figure 5. Pavia University scene; (a) false-color image; (b) segmentation map; and (c,d) ground truth
image and reference data.

• The Salinas image is from the Salinas Valley, California, USA, which was obtained from an
AVIRIS sensor with 3.7 m spatial resolution. The image includes a size of 512 × 217 with
224 bands. Twenty water absorption bands were discarded here. There are 16 classes containing
vegetables, bare soil, vineyards, etc. Figure A1 displays the Salinas image’s false-color and ground
truth images.

4.1.2. Evaluation Criteria

We give some evaluation criteria to evaluate the proposed method for HSIs, as follows.
Classification accuracy (CA) is the classification accuracy of each category in the image.

The confusion matrix [71] is often used in the remote sensing classification field, and its form is
defined as: M = [mij]n×n, where mij indicates that the number of pixels labeled by the j class should
belong to the i class. n is the class number. The reliability of classification depends on the diagonal
values of the confusion matrix. The higher the values on the diagonal of the confusion matrix are,
the better the classification results will be.

We also used the following three main indicators: overall accuracy (OA), average accuracy (AA),
and the kappa coefficient [72]. OA refers to the percentage of the overall correct classification. AA
estimates the average correct classification percentage for all categories. The kappa coefficient takes
the chance agreement into account and fixes it, whereas OA and AA check how many pixels are
classified correctly. Assuming that the reference classification (i.e., ground truth) is true, then how
well they agree is measured. Here, we assumed that both classification and reference classification
were independent class assignments of equal reliability. The advantage of the kappa coefficient over
overall accuracy is that the kappa coefficient considers chance agreement and corrects it. The chance
agreement is the probability that the classification and reference classification agree by mere chance.
Assuming statistical independence, we obtained this probability estimation [73,74].

4.1.3. Comparative Algorithms

We give several comparative methods to illustrate the great improvement by the SLIC
superpixel-based l2,1-norm robust principal component analysis graph model in the HSIs’ classification.
For fairness, these comparative algorithms incorporate the simple linear iterative clustering (SLIC),
which are shown below.

• RPCA (robust principal component analysis) method [63]: The original robust principal
component analysis with l1-norm.
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• PCA (principal component analysis) method [63]: PCA [16] seeks the best low-rank representation
of the given data matrix that minimizes the difference between Z and X:

min
Z,E
‖E‖F

s.t. rank(Z) ≤ r, X = Z + E
(31)

• IFRF (image fusion and recursive filtering) algorithm.
• Origin: Original bands of the unprocessed image.

4.2. Classification of Hyperspectral Images

We performed experiments on the three hyperspectral images to examine the performance of
the SURPCA2,1 graph. Ten independent runs of each algorithm were evaluated by resampling the
training samples in each run. We chose the mean values as the results. In practice, it is difficult to
obtain labeled samples, while unlabeled samples are often available and in large numbers. Unlike
most of the existing HSI classifications, we tested the performance of all comparative methods using
only small rate of the labeled samples. Table 1 shows the training and testing sets for all datasets,
where the training sets are chosen randomly. The training samples were approximately 4%, 3%, and
0.4% for the three images, which were minimal sets to the entire dataset. Considering the classes with
a meager number of samples, we incorporated a minimum threshold of training samples. Here, we set
the minimum threshold of training samples for each class as five, which can eradicate the difference
between the classes with a low number of samples. The SLIC superpixels’ number for the three HSIs is
200, 600, and 400, respectively. Figures 4b, 5b and A1b show the segmentation maps. The amount
of reduced dimension is 30 for the three hyperspectral images. The spatial standard deviation and
range standard deviation of the filter are δs and δr with 200 and 0.3, respectively. The parameter σ in

k-nearest neighbor Sij = exp(−‖zi−zj‖2

2σ2 ) is 0.1, which is provided randomly.

Table 1. Training and testing samples for the three hyperspectral images.

Class
Indian Pines Image Pavia University Scene Salinas Image

Train Test Sample No. Train Test Sample No. Train Test Sample No.

C1 7 39 46 205 6426 6631 14 1995 2009
C2 63 1365 1428 565 18,084 18,649 20 3706 3726
C3 39 791 830 69 2030 2099 13 1963 1976
C4 15 222 237 97 2967 3064 11 1383 1394
C5 25 458 483 46 1299 1345 16 2662 2678
C6 35 695 730 156 4873 5029 21 3938 3959
C7 7 21 28 45 1285 1330 20 3559 3579
C8 25 453 478 116 3566 3682 51 11,220 11,271
C9 6 14 20 34 913 947 30 6173 6203

C10 44 928 972 - - - 19 3259 3278
C11 104 2351 2455 - - - 10 1058 1068
C12 29 564 593 - - - 13 1914 1927
C13 14 191 205 - - - 9 907 916
C14 56 1209 1265 - - - 10 1060 1070
C15 21 365 386 - - - 35 7233 7268
C16 9 84 93 - - - 13 1794 1807

Total 702 9547 10,249 1762 41,014 42,776 305 53,824 54,129

In the beginning, we utilized different manifold mapping graphs to obtain the manifold matrix of
the hyperspectral images. Then, we applied the SDA algorithm for semi-supervised dimensionality
reduction. Both the nearest neighbor and support vector machine algorithms were applied as the
classifiers here to test and verify the proposed SURPCA2,1 graph. Tables 2, 3 and A1 give detailed
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classification results for CA, OA, AA, and kappa coefficients received from different methods,
where bold numbers represent the best ones for various graphs. Figures 6, 7 and A2 indicate
classification maps of the hyperspectral images acquired by several methods (randomly selected
from our experiments above) with the NN classifier. It was observed that the results in the figures
were random for each method. We analyzed the running times of different models on the Indian Pines
image, Pavia University scene, and Salinas scene image. Ten separate runs were calculated for the
total time.

Table 2. Indian Pines image classification results.

Method RPCA2,1 RPCA PCA IFRF Origion RPCA2,1 RPCA PCA IFRF Origin

Classifier NN SVM

C1 1 1 0.9870 0.9809 0.8051 1 1 1 1 0.9473
C2 0.9686 0.9442 0.9380 0.9487 0.4961 0.9676 0.9701 0.9295 0.9482 0.5169
C3 0.9667 0.9524 0.9718 0.9342 0.6572 0.9659 0.9679 0.9426 0.9574 0.3793
C4 0.9578 0.9698 0.9589 0.9122 0.3964 0.9819 0.9133 0.9383 0.9420 0.5671
C5 0.9868 0.9463 0.9384 0.9687 0.8225 0.9933 0.9856 0.9821 0.9868 0.8809
C6 0.9837 0.9833 0.9394 0.9483 0.7568 1 1 0.9986 0.9986 0.8476
C7 0.8686 0.7254 0.6164 0.8107 0.6786 1 0.9375 1 0.9886 0.9188
C8 1 1 1 1 0.9486 1 1 1 1 0.9367
C9 0.9800 0.7812 0.8496 0.7469 0.5042 1 1 1 1 0.8042

C10 0.9342 0.9139 0.9215 0.8742 0.6777 0.9647 0.9618 0.9743 0.9471 0.4916
C11 0.9721 0.9700 0.9748 0.9749 0.6933 0.9672 0.9604 0.9626 0.9677 0.5560
C12 0.9602 0.9024 0.9753 0.9344 0.6833 0.9854 0.9908 0.9658 0.9701 0.6454
C13 0.9705 1 0.9748 0.9935 0.9240 1 1 1 0.9987 0.9909
C14 0.9952 0.9895 0.9939 0.9915 0.9217 0.9954 0.9996 0.9975 0.9975 0.9190
C15 0.9624 0.9711 0.9768 0.9379 0.6666 0.9916 0.9937 0.9958 0.9897 0.7551
C16 0.9905 0.9881 0.9881 0.9881 0.9871 0.9866 0.9859 0.9712 0.9846 0.9825

OA 0.9706 0.9585 0.9594 0.9514 0.7077 0.9786 0.9759 0.9682 0.9713 0.6536
AA 0.9686 0.9399 0.9378 0.9341 0.7262 0.9875 0.9792 0.9787 0.9798 0.7587

Kappa 0.9664 0.9527 0.9536 0.9446 0.6633 0.9755 0.9724 0.9636 0.9672 0.6000

Table 3. Pavia University scene classification results.

Method RPCA2,1 RPCA PCA IFRF Origion RPCA2,1 RPCA PCA IFRF Origin

Classifier NN SVM

C1 0.9581 0.9630 0.9632 0.9581 0.8969 0.9771 0.9745 0.9698 0.9657 0.8119
C2 0.9925 0.9942 0.9935 0.9944 0.8491 0.9957 0.996 0.9956 0.9951 0.8676
C3 0.9465 0.9420 0.9212 0.9543 0.6836 0.9758 0.9678 0.9715 0.9578 0.6425
C4 0.9923 0.9841 0.9865 0.9880 0.9360 0.9918 0.9889 0.9938 0.9895 0.8802
C5 0.9993 0.9989 0.9957 0.9985 0.9929 0.917 0.9377 0.9433 0.9355 0.9972
C6 0.9966 0.9953 0.9921 0.9981 0.7228 0.9965 0.9963 0.9953 0.9977 0.7286
C7 0.9177 0.9090 0.8921 0.8822 0.7385 0.9751 0.9689 0.9642 0.963 0.6193
C8 0.9169 0.9082 0.9182 0.9135 0.7990 0.9656 0.9589 0.9575 0.9574 0.7057
C9 0.9353 0.9302 0.9369 0.9509 1 0.964 0.9577 0.9546 0.9575 0.9996

OA 0.9751 0.9744 0.9734 0.9748 0.8425 0.9849 0.9839 0.9832 0.9815 0.8238
AA 0.9617 0.9583 0.9555 0.9598 0.8465 0.9732 0.9719 0.9717 0.9688 0.8058

Kappa 0.9670 0.9660 0.9647 0.9666 0.7869 0.98 0.9787 0.9777 0.9754 0.7628
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(a) OA (0.9768) (b) OA (0.9644) (c) OA (0.9533) (d) OA (0.9601) (e) OA (0.7040)

Figure 6. Indian Pines image classification results: (a) robust principal component analysis (RPCA2,1);
(b) RPCA; (c) PCA; (d) image fusion and recursive filtering (IFRF); and (e) Origin. OA, overall accuracy.

(a) OA (0.9737) (b) OA (0.9619) (c) OA (0.9706) (d) OA (0.9703) (e) OA (0.8457)

Figure 7. Pavia University scene classification results: (a) RPCA2,1; (b) RPCA; (c) PCA; (d) IFRF; and
(e) Origin. OA, overall accuracy.

In Tables 2, 3, and A1, we can notice that the SURPCA2,1 graph is superior to the other graph
models. Therefore, it significantly improves the classification performance of hyperspectral images,
which indicates that the SURPCA2,1 graph is a superior HSIs feature extraction method with both NN
and SVM classifiers. For example, in Table 2, although the overall accuracy and kappa coefficient of
other graphs are high, the average accuracy is not good. The accuracy of Grass-pasture-mowed and
Oats are more (i.e., 12–37%) improved with the NN classifier and with SVM classifier (i.e., 25–64%) than
the compared graphs. In addition, the Corn, Soybean-notill, and Soybean-clean classes are significantly
improved, especially the Grass-pasture-mowed, for the Indian Pines image. For the Salinas dataset, the
classification of Fallow, Lettuce_romaine_6wk, and Vinyard_untrained classes are obviously improved.
We can see that, although sometimes the overall accuracy is not very different, the average accuracy is
far ahead of the compared graphs. This is because, when there are fewer samples in some classes, it
is very easy to be confused. For the Indian Pines image, the accuracy of all categories is more than
89.81%, except for the 81.96% accuracy of the Grass-pasture-mowed with the NN classifier, and it
is also more than 95.03% with the SVM classifier, which meets the general accuracy requirement of
remote sensing. For the Pavia University scene and Salinas image, the accuracy of all categories is
larger than 91.69% and 91.95%, and 91.7% and 97.45% with NN and SVM, respectively. We can also see
that our graph performed well in all categories with both of the classifiers. However, for other methods,
they might perform much worse in some confusing categories, especially with the NN classifier. This
phenomenon shows that our proposed graph is robust to classifier methods.

We analyzed the running times of different models on the three hyperspectral images. We used
ten separate runs to calculate the total time. We give the mean running time. As shown in Table 4,
the execution time of the SURPCA2,1 graph method is slightly longer than the other methods. Although
our algorithm is slower than the traditional algorithms, the performance is much better than these
baselines at an acceptable running time. Note that the RPCA2,1 is significantly faster than the classic
RPCA. This is owing to the superior ability of the l2,1-norm to converge more quickly than the l1-norm.
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Although the classification results with NN are slightly worse with the SVM algorithm,
the running time is much less than the SVM classifier. Moreover, in Tables 2, 3, and A1, we can see that
the classification results with NN classifier are acceptable. Therefore, in the following experiments, the
nearest neighbor is applied.

Table 4. Different graphs’ running time on real-word hyperspectral images (HSIs) (unit:s). NN, nearest
neighbor; SVM, support vector machine.

Method RPCA2,1 RPCA PCA IFRF Origion RPCA2,1 RPCA PCA IFRF Origin

Classifier NN SVM

Indian Pines image 16.73 21.62 5.16 5.31 5.69 27.94 34.53 14.39 16.90 17.34
University of Pavia 83.89 100.31 54.28 56.92 47.11 115.84 135.86 88.52 90.26 116.61

Salinas image 15.55 18.14 4.24 4.27 3.22 28.56 32.61 14.39 14.32 15.29

4.3. Robustness of the SURPCA2,1 Graph

We evaluated the performance of the proposed SURPCA2,1 graph. To fully determine the
superiority of the proposed graph model, we also analyzed the robustness of SURPCA2,1. Considering
the practical situation, we analyzed the robustness of SURPCA2,1 on the size of the labeled samples
and noise situation.

4.3.1. Labeled Size Robustness

We analyzed the impact of different sizes of training and testing sets. The experiments were
carried out with ten independent runs for each algorithm. We calculated the mean values and standard
deviations of the results. Figure 8 shows the classification results of different graph models. It compares
the overall classification results with different training size samples in each class. The training samples
percentages were 0.2–10%, 0.2–6%, and 0.05–3% for Indian Pines image, Pavia University scene,
and Salinas image, respectively.
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Figure 8. HSIs classification accuracy with varying labeled ratio.

In most cases, our graph model SURPCA2,1 consistently achieves the best results, which are robust
to the label percentage variations. With increasing size of the training sample, OA generally increases
in all methods, showing a similar trend. When the labeled ratio is fixed, the SURPCA2,1 method is
usually superior to others. Similarly, the three classification criteria are increased with the increasing
training samples simultaneously.

Note that, our proposed graph realize higher classification results, even with a low label ratio. The
other comparison algorithms are especially not as robust as the SURPCA2,1 graph with low label ratio.
In particular, we can see that our graph model perform relatively better, and the difference between
other comparison methods is larger when the labeling rate is smaller. Therefore, due to the high cost
and difficulty of labeled samples, our proposed graph is much more robust and suitable for real-world
hyperspectral images.



Sensors 2019, 19, 479 20 of 28

4.3.2. Noise Robustness

We evaluated the robustness to noise of the SURPCA2,1 graph on the three hyperspectral images.
We added zero-mean Gaussian noise with a signal-to-noise ratio (SNR) of 20 dB to each band. Figure 9
shows an example noise image of three randomly selected bands in the Indian Pines image, which is
similar to the other two hyperspectral images.

(a) Clean image (b) Noisy image with SNR = 20 dB

Figure 9. False-color clean and noisy images of the Indian Pines image.

We evaluated different graphs’ performance in the noisy situation. Each algorithm ran ten times
independently, with re-sampling of training samples. We calculated the mean and standard deviation
results. The labeled sampling ratios were 4%, 3%, and 0.4%, respectively, as described in Table 5.
The bold numbers represent the best results for various graphs. Figures 10, 11, and A3 display
classification maps of the three noise hyperspectral images correlated with OA values (randomly
selected from our experiments above). It is observed that the results in the figures were random for
each method.

From the results of these different graph models, we can see that our graph is robust to noise and
the sample size of the labeled set. In a noisy environment, our method is relatively less degraded and
more robust. With few labeled samples, the SURPCA2,1 graph is more forceful than the other graphs
due to the l2,1-norm robust principal component analysis noise robustness. Moreover, the SURPCA2,1

graph performs very well for all three experimental hyperspectral images.

Table 5. Classification results with Gaussian noise on three HSIs.

Images RPCA2,1 RPCA PCA IFRF Origin

Indian Pines OA 0.9004 ± 0.0103 0.8615 ± 0.0137 0.8736 ± 0.0067 0.86261 ± 0.0937 0.5008 ± 0.006

image AA 0.9198 ± 0.0179 0.8481 ± 0.0261 0.8573 ± 0.024 0.8367 ± 0.0231 0.4530 ± 0.0256
Kappa 0.8863 ± 0.011 0.8426 ± 0.0143 0.8561 ± 0.0257 0.8434 ± 0.00763 0.4230 ± 0.0069

University of OA 0.9261 ± 0.0041 0.9156 ± 0.004 0.9116 ± 0.0057 0.9182 ± 0.0035 0.6721 ± 0.0079

Pavia image AA 0.9212 ± 0.0054 0.9085 ± 0.0066 0.9055 ± 0.0107 0.9105 ± 0.0077 0.6162 ± 0.0088
Kappa 0.9012 ± 0.0055 0.8871 ± 0.0055 0.8815 ± 0.0078 0.8906 ± 0.0048 0.5527 ± 0.0097

OA 0.9329 ± 0.0078 0.911 ± 0.0062 0.9125 ± 0.0072 0.9095 ± 0.0108 0.6658 ± 0.0101
Salinas image AA 0.9523 ± 0.0051 0.9268 ± 0.0054 0.9294 ± 0.0089 0.9247 ± 0.0102 0.7088 ± 0.0098

Kappa 0.9253 ± 0.0086 0.901 ± 0.0069 0.9027 ± 0.008 0.8994 ± 0.012 0.625 ± 0.0106
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(a) OA (0.9055) (b) OA (0.8736) (c) OA (0.8725) (d)OA (0.8656) (e) OA (0.5104)

Figure 10. Noisy Indian Pines image classification results: (a) RPCA2,1; (b) RPCA; (c) PCA; (d) IFRF;
and (e) Origin. OA, overall accuracy.

(a) OA (0.9303) (b)OA (0.9185) (c) OA (0.9102) (d)OA (0.9125) (e) OA = 0.6762

Figure 11. Noisy Pavia University scene classification results: (a) RPCA2,1; (b) RPCA; (c) PCA; (d) IFRF;
and (e) Origin. OA, overall accuracy.

4.4. Parameters of SURPCA2,1 Model

We evaluated the SURPCA2,1 graph’s parameters superpixel number m and the reduced
dimensions of SDA. We conducted ten independent runs per algorithm and calculated the mean
values and standard deviations of the results. Table 6 and Figure 12 show the performance of different
superpixel number m and the reduced dimensions, respectively. For these three hyperspectral images,
the labeled ratio was about 4%, 3%, and 0.4%, respectively. The superpixel segmentation numbers are
shown in Table 6 for the three hyperspectral images.

Table 6. SURPCA2,1 graph’s classification accuracy with different segmentation numbers.

Images No. m of Superpixels OA AA Kappa Time (s)

Indian Pines 104 0.9633 ± 0.0072 0.9507 ± 0.027 0.9581 ± 0.0091 12.43

image 226 0.9703 ± 0.006 0.9687 ± 0.032 0.9661 ± 0.0062 17.96
329 0.9721 ± 0.0053 0.9657 ± 0.0254 0.9682 ± 0.0069 21.80

195 0.9697 ± 0.0035 0.9473 ± 0.0061 0.9598 ± 0.0047 75.15
University of 386 0.9711 ± 0.0043 0.9564 ± 0.0084 0.9616 ± 0.0058 78.33
Pavia image 594 0.9753 ± 0.0026 0.9614 ± 0.0046 0.9672 ± 0.0035 81.20

813 0.975 ± 0.0018 0.9596 ± 0.0053 0.9668 ± 0.0024 85.97

Salinas image
187 0.9666 ± 0.0059 0.9743 ± 0.0064 0.9629 ± 0.0065 87.71
389 0.978 ± 0.0042 0.9813 ± 0.003 0.9755 ± 0.0047 92.96
593 0.9823 ± 0.0037 0.9826 ± 0.003 0.9804 ± 0.0041 98.91

In general, the classification results are not greatly affected by the number of superpixel
segmentations, indicating that our graph is robust to the number of superpixel segmentations. It
is observed that the increase in superpixel numbers simultaneously accelerated the running time
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considerably. However, the impact is relatively small when the number of samples is large. Therefore,
we could use relatively small superpixel numbers in actual situations for the purpose of efficiency with
minimal overall loss of classification accuracy.
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Figure 12. Classification accuracy of HSIs with different reduced dimensions.

We can observe that the reduction dimension is robust in Figure 12. It will reach steady high
accuracy at a relatively low dimension such as 10 or 15.

5. Discussion

The hyperspectral images’ classification plays a pivotal role in HSIs’ application. In the present
work, we propose a novel graph construction model for HSIs’ semi-supervised learning, SLIC
superpixel-based l2,1-norm robust principal component analysis. Our goal is to improve HSIs’
classification results through useful graph model. The experimental results show that SURPCA2,1 is a
competitive graph model for hyperspectral images’ classification.

Tables 2, 3, and A1 show that SURPCA2,1 is an effective graph model that achieves the highest
classification accuracy. Even with simple classifiers and few labeled samples, the performance is
excellent. In most cases, the graph model SURPCA2,1 obtains the highest classification results,
which indicates that the SURPCA2,1 graph is a good graph construction model and can notably
enhance the hyperspectral images’ classification performance. In some cases, other graph models (e.g.,
RPCA and PCA) may perform well in some categories, but they are not as robust as our graph in all
categories. This is because the structural information cannot be well represented from the definition
of l1-norm, while the l2,1-norm RPCA2,1 produces sparsity based on columns (or rows). The SLIC
superpixel segmentation method considers the spatial correlation of pixels in hyperspectral images.
For an HSI, the correlation of the adjacent pixels is usually very high since their spectral features
are approximately in the same subspace [41]. By extracting a low-rank matrix in each homogeneous
region, we can reveal the low-dimensional structure of pixels and enhance the classification results.
Consequently, the SURPCA2,1 graph model is a superior hyperspectral image’s feature graph which
significantly improves the performance of HSIs’ classification.

We analyzed the robustness to variations in the labeled samples ratio and noisy situations. Figure 8
shows that the SURPCA2,1 graph model provides the best results, which are robust to the varying label
percentage. Figure 8 also shows that the proposed graph achieves high classification accuracy even
at meager label rates, while other graphs may not be as robust as the SURPCA2,1 graph, particularly
when the label rate is low. Therefore, since labeling data is a costly and difficult task, our SURPCA2,1

model is more suitable and robust for real-world applications. From these results of different graph
models, we can see that our graph is robust to the sample ratio of the labeled set as well as the noisy
environments. Upon adding noise, the performance of the SURPCA2,1 graph does not see a large
decrease. However, for the comparative graphs, the overall accuracy drops much more than that of
SURPCA2,1. In addition to the India Pines image, we could see the same results from the other two
hyperspectral images. This benefits from the robustness of the l2,1-norm robust principal component
analysis to sparse noise, whereas RPCA and PCA may be sensitive to sparse noise. Therefore, the
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SURPCA2,1 graph is robust to noisy environments and the labeled sample ratio, which indicates that it
is highly competitive in practical situations.

We evaluated the performance of parameters with different superpixel segmentations number
and reduction dimensions for the SDA method. In Table 6, we can see that the classification results are
not greatly affected by the number of superpixel segmentations, indicating that our graph is robust
to the number of superpixel segmentations. Therefore, we could use a relatively small number of
superpixels in actual situations for the purpose of efficiency, with barely any classification accuracy
loss. Moreover, in Figure 12, we can see that the classification results are robust after the dimension
reached a certain numerical value. It reaches a high accuracy at a relatively low dimension (e.g., 10 or
15). Overall, our proposed SURPCA2,1 graph is very much robust and shows excellent performance in
the classification of HSIs.

6. Conclusions

In this paper, we present a novel graph for HSI feature extraction, referred to as SLIC
superpixel-based l2,1-norm based robust principal component analysis. The SLIC superpixel
segmentation method considers the spatial correlation of pixels in HSIs. The l2,1-norm robust principal
component analysis is used to extract the low-rank structure of all pixels in each homogeneous area,
which captures the spectral correlation of the hyperspectral images. Therefore, the classification
performance of the SURPCA2,1 graph is much better than the compared methods RPCA, PCA, etc.
Experiments on real-world HSIs indicated that the SURPCA2,1 graph is a robust and efficient graph
construction model.
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Appendix A
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Figure A1. Salinas dataset: (a) false-color image; (b) segmentation map; and (c,d) ground truth image
and reference data.
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Table A1. Salinas image classification results.

Method RPCA2,1 RPCA PCA IFRF Origion RPCA2,1 RPCA PCA IFRF Origin

Classifier NN SVM

C1 1 0.9999 1 0.932 0.9726 1 1 1 1 0.9982
C2 0.9994 0.9929 0.9952 0.9651 0.9796 0.9926 0.9959 0.9969 0.9789 0.9913
C3 0.9969 0.997 0.9949 0.9501 0.8262 0.9990 0.9984 0.9986 0.9982 0.9652
C4 0.9633 0.916 0.9081 0.8496 0.9703 0.9745 0.9718 0.9715 0.9542 0.9685
C5 0.9903 0.966 0.983 0.9592 0.9581 0.9997 0.9991 0.9986 0.9990 0.9001
C6 1 1 1 0.9952 0.9958 0.9997 0.9997 0.9998 0.9916 0.9997
C7 0.9971 0.9881 0.9901 0.9692 0.9202 0.9991 0.9975 0.9986 0.9900 0.9989
C8 0.9882 0.9666 0.9714 0.8995 0.6584 0.9958 0.9925 0.9927 0.9881 0.7304
C9 0.9999 0.9947 0.9976 0.9932 0.9408 0.9998 0.9995 0.9995 0.9979 0.9592

C10 0.9969 0.9905 0.9946 0.9681 0.8393 0.9957 0.9888 0.9931 0.9886 0.9283
C11 0.9961 0.982 0.9926 0.9548 0.851 1 0.9994 0.9989 0.9866 0.951
C12 0.9563 0.9481 0.9631 0.9259 0.8886 0.9907 0.9786 0.9819 0.9903 0.8949
C13 0.9394 0.8897 0.9354 0.7101 0.763 0.9999 0.9982 0.993 0.9406 0.8367
C14 0.9865 0.9845 0.9725 0.9791 0.9145 0.9759 0.9835 0.9688 0.9837 0.864
C15 0.9195 0.8994 0.8874 0.7298 0.5459 0.9980 0.9966 0.9983 0.9771 0.6202
C16 1 0.9998 0.9994 0.9944 0.9398 0.9996 0.9993 0.9999 0.9911 0.9955

OA 0.9809 0.9668 0.9692 0.9653 0.8185 0.9964 0.9947 0.9951 0.9867 0.866
AA 0.9831 0.9697 0.9741 0.9705 0.8727 0.995 0.9937 0.9931 0.9847 0.9126

Kappa 0.9787 0.963 0.9657 0.9614 0.7976 0.996 0.9941 0.9945 0.9852 0.8506

(a) OA (0.9833) (b) OA (0.9626) (c) OA (0.9683) (d)OA (0.9611) (e) OA (0.8288)

Figure A2. Salinas image Classification results: (a) RPCA2,1; (b) RPCA; (c) PCA; (d) IFRF; and (e)
Origin. OA, overall accuracy.
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(a) OA (0.9303) (b) OA (0.8961) (c) OA (0.9129) (d)OA (0.9108) (e) OA (0.6768)

Figure A3. Noisy Salinas image classification results: (a) RPCA2,1; (b) RPCA; (c) PCA; (d) IFRF; and
(e) Origin. OA, overall accuracy.
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