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Abstract: Treating diseases at their earliest stages significantly increases the chance of survival
while decreasing the cost of treatment. Therefore, compared to traditional blood testing methods
it is the goal of medical diagnostics to deliver a technique that can rapidly predict and if required
non-invasively monitor illnesses such as lung cancer, diabetes, melanoma and breast cancer at their
very earliest stages, when the chance of recovery is significantly higher. To date human breath analysis
is a promising candidate for fulfilling this need. Here, we highlight the latest key achievements
on nanostructured chemiresistive sensors for disease diagnosis by human breath with focus on the
multi-scale engineering of both composition and nano-micro scale morphology. We critically assess
and compare state-of-the-art devices with the intention to provide direction for the next generation of
chemiresistive nanostructured sensors.

Keywords: chemiresistive sensors; exhaled breath; diagnosis of diseases; metal-oxide Semiconductors;
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1. Introduction

Metal oxide semiconductor-based chemiresistive sensors have recently attracted significant
attention for a wide variety of applications, including food processing [1,2], environmental
monitoring [3,4], the agriculture industry [5], and medical diagnosis [6,7]. Among these applications,
human disease detection through analyzing patient’s breath has attracted enormous attention in the
past decade due to its key advantages over traditional diagnosis methods, including its non-invasive
nature and real time analysis [6,8–10]. Human breath consists of oxygen, nitrogen, carbon dioxide, nitric
oxide, ammonia, water vapor in addition to more than 1000 volatile trace species with concentrations
ranging from several particles per trillion (ppt) to several particles per million (ppm) including
ammonia (833 ppb), acetone (477 ppb), ethanol (112 ppb), acetaldehyde (22 ppb) and propanol
(18 ppb) [11,12]. The concentration of endogenous compounds, including inorganic gases (e.g., NO,
CO) and volatile organic compounds (VOCs) (e.g., ethane, pentane, ammonia, acetone, ethanol), can be
altered in the breath of patients with specific pathologies and, thus, can be utilized as breath markers
for diseases [6,13,14]. For example, acetone, H2S, NH3, NO, and toluene can be used to evaluate
diabetes, halitosis, kidney malfunction, asthma, and lung cancer, respectively [15,16]. These VOCs in
exhaled breath act as the target for chemiresistive sensors and with accurate detection can be used as a
diagnosis tool for related diseases

Several promising studies have been conducted on the fabrication of highly sensitive
chemiresistive type exhaled breath sensors using simple and low-cost metal oxide semiconductors such
as SnO2, MoO3, WO3, and NiO that can detect a wide variety of gases with high sensitivity [7,14,17–19].
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The primary mechanism of metal oxide semiconductor-based gas sensors regardless of p-type or n-type
is centered on reactions at the surface with the target analyte (Figure 1a,b). Initially the surface oxygen
species are homogenous producing a continuous internal electron depletion and high resistance;
however, when exposed to gas containing target analytes reactions at the surface neutralize these
oxygen species lowering the resistance [12,20,21]. For an n-type semiconductor where the majority
carrier is an electron, the adsorption of O2 on the surface results in electrons being trapped from the
semiconductor conduction band (CB) (Figure 1a,c). This creates an electron depleted layer from the
surface and within the semiconductor Debye length (δ) (Figure 1a) leading to a rise in the n-type
semiconductor sensor resistance (Figure 1c). In the case of exposure to reducing gas, such as EtOH,
the electrons generated from the oxidation reaction (Equation 1) are sent back to the CB resulting in a
releasing of trapped electrons, increasing the electron mobility and reducing the device resistance.
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The following sensing surface reaction could be suggested for EtOH: 

Figure 1. (a,b) Schematic of sensing mechanism (oxygen ions adsorption and desorption) for C2H5OH
detection on the surface of tin oxide ultrafine particles in dry air and at 300 ◦C [1]. Reproduced with
permission [1], Copyright 1982, AIP publishing. (c) Schematic of resistance change upon exposure
to the target gas (reducing gas) for both n-type (left) and p-type (right) metal oxide semiconductor
sensors. (d) ZnO film resistance as a function of the temperature in the absent and presence of O2

molecules [2] Reproduced with permission [2], Copyright 2015, Wiley Online Library. (e) Sensing
responses of reduced graphene oxide/polyethyleneimine bi-layered sensor to 5000 ppm CO2 exposed
to both dry air and pure nitrogen [3].
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The following sensing surface reaction could be suggested for EtOH:

C2H5OH(g) + O−
(ad) ↔ CH3CHO(g) + H2O(g/ad) + e− (1)

where the EtOH in the gas phase, (g), reacts with the adsorbed (ad) oxygen ions on the metal
oxide surface.

In contrast, the sensor’s conductivity in a p-type semiconductor is dominated by the presence
of extrinsic holes. In a p-type semiconductor material, the majority charge carriers are the positive
holes, resulting in an opposite effect with an increase in the resistance when it is exposed to a reducing
gas [22].

In fact, the conductivity of these semiconductor-based sensors is mainly controlled by the
adsorption and desorption of O2 molecules [12,20,21]. This can be confirmed by measuring the
resistance of a ZnO film in the presence and absent of oxygen (Figure 1d). If only exposed to pure
nitrogen gas, the resistance of the sensor only decreases by ~2 times when increasing the sensor
temperature from 150 to 240 ◦C [20]. In contrast, adding the O2 molecules into the gas sensing
system increased the film resistance by 300 times from 0.298 to 87 MΩ [20]. This indicates that the
conductivity of the ZnO film is mainly controlled by adsorption and desorption of O2 molecules
on the surface (Figure 1d). Similar results obtained by Zhou et al. [23] with their reduced graphene
oxide sensor demonstrated a significantly higher sensitivity to the CO2 gas in air rather than in
N2 (Figure 1e). This indicates the vital role oxygen plays in the sensing mechanism of metal oxide
semiconductor-based devices.

The gas adoption mechanism and consequent resistance change in a metal oxide semiconductor
gas sensor mainly involves three major functions: receptor function, transducer function and utility
factor (Figure 2) [24,25]. The receptor function is mainly attributed to the sensitivity and selectivity
of the device and how each component responds to the surrounding environment including oxygen
and the other gases [26]. In this stage, the amount of oxygen adsorbed on the surface leading to the
depletion of the surface mainly governs the sensing capabilities of the device, which depends on the
structure specific surface area (SSA), particularly on the particle size (dp) of the sensing structure [26].
If dp >> 2δ, the sensing mechanism is determined by transferring electrons at the particle’s grain
boundary resulting in a low sensitivity (Figure 2) [12,20]. If dp > 2δ, a large portion of the bulk
participates in the sensing mechanism leading to a moderate sensitivity (Figure 2a) [12,20]. In contrary,
if dp ≤ 2δ the entire particle is electron depleted with no mobile charge carrier, leading to significantly
high resistance with very low baseline currents [12,20].

The transducer function, as the second major, is an interparticle issue related to how the surface
phenomenon is transformed into a change in electrical resistance of the sensor [27], and how the
response from each particle is represented by that of the whole device (Figure 2b). The chemical
interaction of the semiconductor surface creates an electrical signal in the transducer function, which
is mainly dominated by the surface potential and potential barriers formed between grains, trapping
states in grain boundaries and defect states in the semiconductor structure [12,28,29]. Schottky barriers
between two grains impede electrons transferring across the boundary [29]. Therefore, the boundaries
between grains act as transducers when the resistance change by the gas adsorption is amplified [29].
Several studies have shown the importance of optimizing the intergrain boundary for enhancing the
transduction of the surface response [29,30].

Lastly, the utility factor (Figure 2c) is related to the morphological structure of the metal oxide
semiconductor and consequently the diffusion and reaction of target gas through the structure pores [26,31].
The utility factor determines how the sensing performance is affected by the device structure, with
the film porosity as the most important parameter in achieving the highest utility factor [20]. In a
very porous structure, the target gas particles penetrate into the lowest layers of film resulting in an
effective resistance variation of the sensing device (Figure 2c) [20]. However, the utility factor might be
meaningless for monolayer structures such as MoS2 as the material structure is atomically thin and
the gas adsorption is not associated to the diffusion through the material [26]. For such 2D structured
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sensors, the utility factor is already maximized, and the highest performance of the device should be
achieved by choosing proper receptors and enhancing the interaction between target gas and sensing
material [26].Sensors 2018, 18, x FOR PEER REVIEW  4 of 16 
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2. Doped Metal-Oxide Semiconductor Sensors

A barrier for the implementation of metal oxide semiconductors is their slow kinetics both in
response to target analytes and recovery [27]. However recent progress in the synthesis of novel
nanostructures allowing for superior surface area, pore size and distribution can be used to circumvent
this issue [10,13,32,33]. Several studies have reported the sensitivity enhancement of the metal
oxide semiconductor-based gas sensors through processing or adding noble metal impurities [34].
By functionalizing the large surface of the sensor with catalysts such as Pt, Rh, Ag, Si and Pd many
studies have shown remarkable enhancement to their kinetics [14,15,34,35]. In fact, doping enhances
the sensing performance of metal oxide semiconductor-based gas sensors by modifying their micro-
nanostructure and changing their activation energy and/or band gap [19,33]. Figure 3a an example of
the gas sensing mechanism for doped ZnO thin films highlights how this mechanism is affected when
exposed to NH3 gas [36].

In addition to the sensitivity enhancement and response/recovery kinetics, addition of dopants
or impurities might also improve the device selectivity as each material could be selective to a specific
target gas [37]. Additionally, the stability of fabricated metal oxide devices can be greatly increased by
doping with other metals [35]. For instance, the thermal stability of the metal oxide semiconductor
device could be improved by the solid solutions formation between metal oxide and its dopant.



Sensors 2019, 19, 462 5 of 17

Tricoli et al. [35] demonstrated a SnO2 sensor with enhanced sensitivity and stability from optimal Si
content by changing the percentage of SiO2 in the synthesized SnO2 films. Figure 3b illustrates the
morphological nanostructure and sensing mechanism for the SnO2 sensor before and after adding
SiO2. Initially, pure SnO2 sintered at 600 ◦C produces elongated crystals of more than seven times
Debye length (δ) [35]. These structures (Figure 3bi) are disadvantageous for sensing as they form an
un-depleted conduction channel (closed-neck morphology). During sensing, only moderate sensitivity
to the target gas is expected as this morphology causes the injection of carriers to mostly affect
the conductivity of the depleted region close to the surface (Figure 3bi). The second nanostructure
(Figure 3bii) is formed with 1–4 wt % SiO2 contents causing the crystal to form small necks between
the primary particles (Figure 3bii). The depleted inter-crystal boundaries of this second nanostructure
enhance the injection of electrons, reducing the total resistance and giving this structure the highest
sensitivity. Finally, at 15 wt % SiO2 contents (Figure 3biii), the large dielectric SiO2 regions separate the
SnO2 crystals resulting in electrically isolated nanostructures and the poorest sensitivity [35].
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Figure 3. (a) Schematic diagram of gas sensing mechanism of undoped ZnO and co-doped ZnO thin
film exposed to NH3 gas [36]. Reproduced with permission [36], Copyright 2015, Elsevier. (b) TEM
images and schematic of morphological change in SnO2 nanoparticles (i) before and after (ii) 1–4wt.%
and (iii) 4–15wt.% SiO2 doping [35]. Reproduced with permission [35], Copyright 2008, Wiley Online
Library. (c) Schematic and SEM image of metal oxide sensor deposited on Al2O3 substrate with
interdigitated Au electrodes [38]. (d) Schematic of the breath analysis experiment with the breath
flow controlled by the mask and kept constant by the PTR-MS pump [14]. (e) 10 mol% Si-doped
WO3 film resistance upon exposure to different concentrations of acetone from 20 to 80 ppb, at 400 °C
and 90%RH [38]. (f) Si:WO3 sensor resistance change to short pulses of three tests conducted by
different healthy volunteers with similar breath acetone concentration [14]. (g) Acetone concentration
measured by the Si:WO3 sensor (thick solid line) and acetone (thin solid line) and isoprene (dotted
line) concentrations measured by PTRMS during breathing of a volunteer [14]. Reproduced with
permission [38], Copyright 2010, ACS Publications. Reproduced with permission [14], Copyright
2012, Elsevier.
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In another approach, a flame-deposited portable sensor was developed using a flame spray
pyrolysis (FSP) reactor. The nanostructured porous device consisted of in situ annealed Si-doped
ε-WO3 nanoparticles which were deposited on the surface of water-cooled Al2O3 substrates with
interdigitated electrodes (Figure 3ci and ciii) [38]. The resulting ultraporous nanostructured gas
sensor (Figure 3cii), allowed rapid diffusion of the target gas as well as discharging sensing reaction
products [38]. The fabricated sensor demonstrated a significantly high response to low concentrations
of acetone (response of 0.1 to 20 ppb) (Figure 3e), comparable to the more complex standard methods
such as selected-ion flow-tube mass spectrometry (SIFT-MS). This simple detector with its precise and
sensitive detection of ultralow acetone concentrations has the potential to be used directly, for medical
diagnostic applications such as diabetes monitoring/detection [38]. In addition, after flushing with
humid air, the baseline is rapidly recovered, which is vital for real time applications [38].

In a similar study, Righettoni et al. [14] performed real breath measurements (Figure 3d) using
a respiratory flow controlled mask connected to both Si:WO3 sensors and a high-sensitivity proton
transfer reaction mass spectrometer (PTR-MS). Figure 3d shows the schematic of the experimental
set-up during a breath analysis test. During tidal breathing the acetone and isopreene concentration
in the exhaled breath of a healthy test volunteer is measured by both the Si:WO3 sensor (thick solid
line) and PTR-MS. As presented in Figure 3f, the Si:WO3 resistance decreases sharply(∼3 min) and
then recovers to the initial value after breath flow stopped (∼8 min) (Figure 3f). The sensor response
corresponded to an acetone concentration of about 970 ppb (Figure 3g) on average at 3–8 minutes,
which is well in line with the PTR-MS that measured an acetone concentration of 980 ppb (thin solid
line in Figure 3g). However in addition the fabricated ultraporous Si:WO3 sensor had a higher signal
to noise ratio compared to the PTR-MS (60 and 9, respectively) [14].

3. Composite Metal Oxide Semiconductor Sensors

Thanks to their high sensitivity, low fabrication cost, and long-lasting operational life, metal oxide
semiconductor-based sensors have been widely researched over the past decade [6,39,40]. However,
low conductivity, poor selectivity and required high operating temperature are some common
shortfalls of metal oxide semiconductor devices [27,41]. Recently, graphene/metal oxide semiconductor
composites have attracted significant attention as alternatives for functionalizing chemical sensors due
to their high electrical conductivity and faster response dynamic. Numerous studies have reported the
benefits of reduced graphene oxide (rGO)-WO3 nanoparticles [42], graphene-SnO2 nanorods [43] and
graphene oxide (GO)-ZnO nanoparticles [44] in detecting various gases including NH3, H2S, and NO2.

Recently, Choi et al. [15] reported a new nanostructured material made of WO3 hemitubes
improved with thin graphite (GR) or GO layers. Figure 4a,c show the fabrication process for the
very high surface area WO3 hemitubes using a nonwoven polymeric fiber template network. Initially,
they synthesized the polymeric fiber template through electrospinning of a polyvinylpyrollidone
(PVP)/poly(methyl methacrylate) (PMMA) composite (Figure 4a,b) [15,16]. Then, WO3 films where
deposited onto the electrospun PVP/PMMA nanofibers by Radio Frequency (RF) sputtering method.
A high temperature calcination (500 ◦C) resulted in decomposition of nanofibers template, and
fabrication of hollow WO3 hemitube structures (Figure 4c,d). Lastly, a homogenous mixing method
was used to functionalize the graphene-based materials onto the WO3 hemitubes (Figure 4f–h) [15,16].

As shown in Figure 4e, the electron depleted layers generated on the surface of pure WO3

hemitubes resulted in the suppressed charge transport through continuous hemitubes [15,16]. However,
for the hetero-interface between WO3 hemitube and graphene (Figure 4f), the charge transport is
significantly enhanced leading to faster response dynamics. This can be explained by the band structure
of the device at the heterojunction structure, which is presented in Figure 4i. Given the respective work
functions, transferring electrons from the WO3 hemitubes to the GR/GO becomes possible, leading
to a depletion layer formation (Figure 4i, bottom) [15]. Then, upon exposure to the reducing gas, GR
and GO reduce the electron concentration at the WO3 hemitubes surface creating larger conductivity
changes for these fabricated composite sensors [15]. The sensor response, defined as (Rair/Rgas) is
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assessed at different temperatures from 200 to 350 ◦C with 85−95% relative humidity (RH) upon
exposure to acetone (Figure 4j) and H2S (Figure 4k), which are well known biomarkers for diabetes
and halitosis, respectively [15].
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Figure 4. Schematic illustration and SEM images of fabricated WO3 hemitubes (a,b) before and
(c,d) after calcination at 500 °C for 1 h. [4,5] (e) Homojunction between WO3 hemitubes and (f) a
graphene-based material and a WO3 hemitube. SEM image of GR-WO3 hemitube composite at (g) low
and (h) high magnification. Band structure model for GR/GO and WO3 hemitubes relative to the
vacuum level. Sensing responses of fabricated WO3 hemitubes upon exposure to (j) acetone and (k)
H2S with different concentrations from 1 to 5 ppm at 300 °C. [4] Reproduced with permission [4],
Copyright 2014, ACS Publications. Reproduced with permission [5], Copyright 2013, ACS Publications.

In order to detect such diseases through analyzing exhaled breath, highly sensitive detection is
required as there is <1 ppm of acetone difference between healthy patients (0.9 ppm) and diabetic
patients (1.8 ppm). Similarly, at least 1 ppm of H2S should be detected for diagnosing halitosis, which
is at the edge of the minimum concentration required for humans to detect the characteristic odor from
the exhaled breath of halitosis patients [15].

As presented in Figure 4j, the maximum response to acetone, 6.96 at 5 ppm, was achieved by the
0.1 wt % GR-WO3 sensors at 300 ◦C, demonstrating a 6.45-fold enhancement compared to that of single
phase WO3 device (1.08 at 5 ppm), whereas 0.1 wt % GO-WO3 device demonstrated a response of
3.25 which was 3 times higher than single phase device. (Figure 4j). In fact, the WO3 functionalization
with GR and GO has significantly enhanced the sensitivity of the metal oxide semiconductor sensor to
acetone (1.08 at 5 ppm). In the case of H2S detection, the pure WO3 device showed a sensor response
of 4.98 for 5 ppm of H2S, while functionalization with 0.1 wt % GR resulted in sensor response of
19.66 which was four times higher than pure WO3 device (Figure 4k). As shown graphene-based
additives along with thermal aging play a significant role in the sensing properties and performance
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of new fabricated composite materials for the diagnosis of diabetes and halitosis by exhaled breath
analysis [15].

In another approach, Zhou et al. [45] used functionalized graphene sheets (FGS) as molecular
templates to deposit a uniform and dense layer of 3 nm thick Cu2O nanocrystals. Figure 5a shows
the schematic illustration of Cu2O-FGS nanocomposite fabrication, demonstrating copper acetate
(Cu(Ac)2) precursor uniformly adsorbed onto the FGS surface [45]. First, the Cu(OH)2 is nucleated
from Cu(Ac)2 at room temperature, and later is transformed to Cu2O under high temperature and
vapor pressure (Figure 5a). During this process, the FGS function in controlling the nucleation and
eliminating unfavorable aggregation [45].
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Figure 5. (a) Schematic illustration of Cu2O-FGS through an in-situ process. (b) SEM and TEM
images of Cu2O-FGS, covering gold interdigitated electrodes. (c) Dynamic sensing response of
Cu2O-FGS sensor upon exposure to H2S gas at different concentrations of 5 to 100 ppb. (d) The
device sensitivity towards H2S (5 ppb), NH3 (25 ppm), H2 (25 ppm), CH4 (25 ppm) and C2H5OH
(25 ppm) [6]. Reproduced with permission [6], Copyright 2013, RSC Publishing.

The SEM image of fabricated Cu2O-FGS on Si/SiO2 substrate with gold interdigitated electrodes
is presented in Figure 5b. It can be clearly seen that single Cu2O nanocrystals are well separated from
each other with no clear aggregation of Cu2O nanocrystals on the FGS surface [45]. The fabricated
Cu2O-FGS nanocomposites demonstrated higher stability against oxidation in ambient atmosphere
compared to the bulk Cu2O device, due to their ultrafine size effect as well as interfacial effects between
Cu2O nanocrystals and FGS. Upon exposure to H2S gas, the sensor demonstrated a fast, sensitive
and reversible response at room temperature to significantly low concentration of gas ranging from
5 to 100 ppb as displayed in Figure 5c. This response is remarkably higher than the recent results
reported in the literature so far for CuO/Cu2O sensors [45,46]. The Cu2O nanocrystals grown on
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the FGS provide more active sites for the adsorption of target gases. In addition, the FGS enhances
transferring electrons more efficiently by acting as a conducting network, leading to a significantly high
sensitivity and electron conductivity in the fabricated device [45]. Furthermore, the device selectivity
was investigated upon exposure to several gases including H2S (5ppb), NH3 (25 ppm), H2 (25 ppm),
CH4 (25 ppm) and C2H5OH (25 ppm) (Figure 5d). As it can be seen in Figure 5d, the device sensitivity
to 25 ppm of NH3 gas is almost five times lower than that of 5 ppb of H2S, suggesting that Cu2O-FGS
sensors have immense potential as medical diagnostic devices [45].

4. P-N Heterojunction Metal Oxide Semiconductor Sensors

In the past decades, several nanostructured devices have been developed to overcome the
limitations of metal oxide semiconductor-based devices, including noble metal doping, surface
functionalization and fabrication of core-shell structures [7,16,35,38,39]. Among them, p-n nanoscale
heterojunction nanomaterials have been synthesized as great platforms for nanostructured gas
sensors [7,15]. In these nanostructured devices, a nanoscale heterojunction is shaped at the core-shell
boundary, resulting in a built-in electric field at the p-n interface which plays a vital role in the sensing
properties of the fabricated device [39,47,48]. In fact, the built-in electric field between the nanoscale
p- and n-type areas leads to the rapid separation of the charge carriers resulting in significantly faster
response dynamic [39,47].

Several researchers have reported the key role of heterogeneous catalyst in enhancing the sensing
capability and response dynamics of semiconductor-based gas sensors [48–50]. Tian et al. [49]
synthesized a NiO/ZnO p-n heterostructure gas sensor using a hydrothermal method, featuring
a diode-like behavior able to detect ethanol concentrations of 4 to 10 ppm with fast response dynamics
(6 and 22 s response and recovery time, respectively) at 200°C. In another approach, Shin et al. [50]
reported the morphological evolution of hierarchical electrospun SnO2 fibers, composed of wrinkled
thin SnO2 nanotubes, synthesized by microphase separation between tin and polymer precursors
and changing the electrospinning flow rate (Figure 6a–c). The phase separation between the tin and
polymer precursors, which are influenced by the electrospinning flow rate control (low (Figure 6a),
intermediate (Figure 6b) and fast (Figure 6c)), can modify the morphologies of the SnO2 fibers [50].
As presented in Figure 6c, the surface of the wrinkled SnO2 tube’s thin-walls are extensively covered
with open pores after fast flow rate electrospinning, resulting in 5 times higher gas response (6.12 at
3 ppm) compared to that of densely packed fibers (Figure 6g,h). This unique morphology featured
a significant increase in the accessibility of the entire device to the target gas with all sensing layers
accessible [50].

Furthermore, the fibers were functionalized by catalytic Pt nanoparticles to evaluate their sensing
performance toward acetone (Figure 6d). As illustrated in Figure 6i, the response and recovery
times of the Pt-decorated fibers are remarkably shortened (15 s) compared to the non Pt-decorated
specimens (112 s) [50]. As presented in Figure 6d, the multilayered thin-wall assembled SnO2 fibers
with large holes between layers allows the uniform deposition of oxidized Pt nanoparticles. This leads
to an extended electron depleted region for the SnO2 fibers, producing nanoscale heterojunctions of
PtO/SnO2 which are the source of the fast response and recovery speed [50]. A similar enhancement
mechanism was also reported for a metal oxide semiconductor-based UV photodetector, consisting of
a surface with a ultraporous network of electron depleted n-type ZnO nanoparticles coated by densely
packed p-type NiO clusters which featured a 20 times faster UV response dynamic compared to the
pure metal oxide device [39]. A built-in electric field created at the NiO/ZnO interface (Figure 6f)
resulted in a larger upward surface band bending (SBB) (Figure 6e) and even lower dark-currents
(Figure 6e) than pure ZnO [39,47]. Under UV light illumination with photon energies exceeding the
ZnO band gap, photogenerated holes can rapidly migrate in the adjacent p-type domain, leading to
a prolonged electron lifetime and thus increased photo-current [39,47]. Once the UV illumination is
terminated, the excited electron–holes can recombine at the NiO/ZnO interface resulting in a rapid
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decay of the photo-current as this solid-state process does not require the re-adsorption of O2 molecules
(Figure 6e,f) [39].Sensors 2018, 18, x FOR PEER REVIEW  10 of 16 
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Figure 6. SEM images and schematic illustrations of morphological evolution of as-spun and calcined
SnO2 fibers prepared at (a) 5 µL·min−1, (b) 15 µL·min–1 and (c) 25 µL·min−1 flow rates, and (d)
Pt-decorated thin-wall assembled SnO2 fibers. [50] (e) Schematic of photodetection mechanism for
pure ZnO and NiO/ZnO heterojunction device. The grey and yellow areas represent electron depleted
and conducting regions, respectively. (f) Schematic of electron-hole separation in the NiO/ZnO
heterojunction device. [39] (g) The cyclic acetone response of the sensor at different concentrations, with
respect to time. The acetone response of (h) pure SnO2 fibers with 5 and 25 µL·min−1 flow rate and (i)
modified fibers with 5, 10 and 20 wt.% Pt decoration [50]. Reproduced with permission [50], Copyright
2013, Wiley Online Library. Reproduced with permission [39], Copyright 2017, RSC Publishing.

5. Arrays of Metal Oxide Semiconductor Sensors

As mentioned before, a major drawback for metal oxide chemiresistive sensors is the lack of selectivity
to the target analyte in the presence of interfering gases. However, this problem could be tackled by
arranging a group of sensors into arrays rather than using a single sensor device [10,18,51]. Chemical
sensor arrays have been demonstrated to be highly effective devices to distinguish analytes [52,53].
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Additionally, sensor arrays have already been applied for diagnosing, renal disease, lung cancer and
diabetes [10,18,51,54]. In the sensor array model each sensor reacts distinctively to the target analyte
which allows an intensity pattern matrix to be produced. This matrix can then be processed by an
algorithm to identify and quantify the target analyte. This type of sensor architecture opens up the
possibility for one device to be sensitive to multiple targets [18,55].

Moon et al. [18] developed an electronic nose using arrays of highly selective and sensitive metal
oxide thin films, enhancing sensitive detection of several gases including NO, NH3 and H2S, in an
80% RH (similar to the composition of exhaled breath) for detection of asthma, kidney disorder and
halitosis respectively. Using e-beam in a glancing angle deposition (GAD), they fabricated 3 × 3 arrays
of chemiresistive sensors consisting of different nanostructured thin films (Figure 7a–d) including WO3,
SnO2 and In2O3. Here, the oxygen molecules are adsorbed onto the semiconductor surface creating
negatively charged species, leading to the formation of an electron depleted layer (Figure 7f,i) [18].
For the Au-functionalized thin films, a 3 nm Au film was deposited on the surface usinge-beam
deposition, leading to an enhanced selectivity due to the catalytic properties of deposited nanoparticles
and chemical sensitization via the spillover effect (Figure 7g,j) [18]. Furthermore, fabricated porous
villi-like nanostructures (VLNs) with 37% porosity demonstrated an enhanced gas sensing through
effective diffusion and adsorption of target gases (Figure 7h). This higher porosity resulted in a higher
utility factor and as explained by the double Schottky barrier model an enlarged resistance variation
(Figure 7k) [18].
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biomarkers, and later, they used four of these VOCs (~145 ppb ethylbenzene, ~67 ppb 4-methyl-
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Figure 7. (a) Photograph of the signal processing circuits and the integrated chemiresistive electronic
nose. (b) optical microscope images of the fabricated device with (c) a single chip containing an active
layer on Pt interdigitated electrodes. (d) schematic illustration of the fabricated device consisting of an
array of sensors. (e) Response patterns of the fabricated device to 8 different gases. FE-SEM images of
(f) thin films, (g) Au functionalized thin films and (h) villi-like nanostructures with (i–k) the schematic
illustration of sensing mechanism. (l) Color-coded response of the fabricated electronic nose to H2S,
NH3, acetone and NO gases. (m) PCA plot showing thin films + Au functionalized thin films +VLNs
responses to 8 gases in 80% RH [7]. Reproduced with permission [7], Copyright 2016, ACS Publications.

The real-time response of each sensor at 168 °C and 80% RH was recorded individually to evaluate
the sensing properties of the fabricated device. As presented in Figure 7e, the sensors response was
significantly low for gases composed of robust bonds between carbons (including acetone, benzene
and ethanol) [18]. Similarly, CO2 is a chemically stable gas due to its centrosymmetric structure leading
to very low response from chemiresistive sensors. In contrast, the sensors response to both H2S
(2 ppm) and NH3 (10 ppm) was considerably high at the relatively low temperature of 168 ◦C, which is
attributed to the spillover effect and dissociation of the oxygen resulting in active sites [18]. The color
scaled response amplitudes of the array in differentiating target gases mapped in Figure 7l highlight
this selectivity [18].

The sensing results of the fabricated arrays of sensors were investigated by principal component
analysis (PCA) to evaluate the chemiresistive electronic nose selectivity. The result highlighted
a distinguishable detection of the targeted gases NH3, NO, and H2S (Figure 7m), using both the
Au-functionalized thin films and the VLNs [18]. This excellent sensing performance in distinguishing
chemical gases in an 80% RH and relatively low temperature demonstrated the fabricated arrays
of sensors as a promising candidate for monitoring health problems such as kidney disorders and
asthma using human breath [18]. By combining the benefits of organic specificity with inorganic
chemiresistive materials, Peng et al. [10] fabricated an array of nine sensors made of gold nanoparticles,
capable of rapidly distinguishing the breath of lung cancer patients from healthy individuals in
RH of 80%. The sensors were fabricated by depositing 5 nm gold nanoparticles on interdigitated
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gold electrodes (Figure 8a,b) which were subsequently functionalized by different organic materials
including decanethiol, dodecanethiol, 2-ethylhexanethiol and 1-butanethiol [10]. In the first phase of
their work, they identified 42 VOCs in exhaled breath representing lung cancer biomarkers, and later,
they used four of these VOCs (~145 ppb ethylbenzene, ~67 ppb 4-methyl-octane, ~24 ppb undecane,
and ~20 ppb 2,3,4-trimethyl-hexane) to optimize their fabricated sensor arrays [10]. Similar to previous
research [18], the sensors were tested individually and their response to the target biomarkers were
firstly examined, resulting in a rapid and fully reversible response (Figure 8c) to a wide variety of
biomarker concentrations, with a detection limit of 1–5 ppb [10]. Later, the obtained response of the
array of sensors was analyzed using the PCA method resulting in a clear discrimination with no
overlap between the healthy and lung cancer patterns (Figure 8d) [10]. As it is presented in Figure 8d,
no overlaps were observed between the simulated lung cancer breath and healthy breath mixtures,
using the fabricated gold nanoparticles based nine-sensor arrays. The simulated data was produced
from sampling of real exhaled breath samples by GC-MS. A mixture of representative VOCs was
then produced by a computer-controlled automated flow system having a similar composition to
those extracted earlier by the GC-MS. Although smaller in both cases the clusters of simulated breath
samples strongly correlate with and separate both the real lung cancer and healthy breath samples
indicating the robustness of the simulation approach as well as justification of the choice for the four
out of the 42 most influential identified biomarkers [10].
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Figure 8. (a) SEM image of the device made of Au nanoparticles deposited on Si substrate with
interdigitated gold electrodes. (b) TEM image of the deposited Au nanoparticles (dark dots) and the
capping organic molecules (bright medium between the adjacent dark dots). (c) Sensing response of
2-mercaptobenzoxazole–gold nanoparticles (red diamonds) and tert-dodecanethiol–gold nano-particles
(black triangles) upon exposure to headspace of healthy breath (filled symbols) and lung cancer breath
(open symbols), as representative examples for sensors having negative responses. (d) PCA of the
dataset of real and simulated human breath for lung cancer and healthy people [10]. Reproduced with
permission [10], Copyright 2009, Springer Nature. (e) Schematic illustration of sensing the fabricated
device consists of multiple sensors exposed to human breath. The sensors are strained in multiple
bending steps leading to unique responses to the targeting VOCs. (f) Single sensor analysis results,
providing the separation ability of each individual sensor [56]. Reproduced with permission [56],
Copyright 2015, ACS Publications.
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In a similar approach, Kahn et al. [56] fabricated a flexible array of sensors based on molecularly
modified gold nanoparticles (Figure 8e), capable of selectively detecting ppb level VOCs representative
of ovarian cancer in exhaled breath, with up to 82% accuracy. An array of 10 sensors was fabricated
using different ligands, film thicknesses and sintering times, and then exposed to seven VOCs
representative of ovarian cancer, while recording the sensors’ electrical resistance. Among different
ligands, chlorobenzenemethanethiol (CBMT) demonstrated a significantly higher selectivity, and thus,
was further evaluated to identify the optimal film thickness optical density (OD) [56]. Figure 8f presents
the results obtained from analyzing a single sensor providing the sensors sensitivity, specificity and
accuracy. It is observed that a 0.2 OD CBMT sensor alone could provide comparable separation with
that obtained by utilizing an extensive variety of several sensors [56]. A promising proof of concept that
could eventually develop into a system capable of extracting the data required for real breath analysis.

6. Summary and Outlook

Non-invasive detection of diseases by analyzing human breath is a fast, low-cost and a simple
alternative to blood analysis. Using semiconducting metal oxide gas sensors capable of analyzing
human breath for medical applications have recently attracted great attention because of their high
sensitivity, simple device fabrication, and great miniaturization possibility. Despite several challenges
such as sensor’s selectivity, slow dynamic response and high operating temperature significant effort
and careful investigation of different types of metal oxide semiconductor-based sensors including
doped, composite and p-n heterojunction devices is proceeding with a focus on identifying the
optimum nanostructure architecture and morphology. Regardless chemiresistive sensors based on
metal oxide semiconductors are showing promising early results in the diagnostics of numerous
diseases such as lung and breast cancers, asthma and diabetes. However, comprehensive work remains
to be carried out regarding current and future technologies for diseases diagnosis using chemiresistive
gas sensors.
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