
sensors

Article

Dynamic Hand Gesture Recognition Using 3DCNN
and LSTM with FSM Context-Aware Model

Noorkholis Luthfil Hakim 1 , Timothy K. Shih 1,*, Sandeli Priyanwada Kasthuri Arachchi 1,
Wisnu Aditya 1, Yi-Cheng Chen 2 and Chih-Yang Lin 3

1 Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001,
Taiwan; koliskol@gmail.com (N.L.H.); sandelik@gmail.com (S.P.K.A.); wisnuadity@gmail.com (W.A.)

2 Department of Information Management, National Central University, Taoyuan 32001, Taiwan;
ycchen@mgt.ncu.edu.tw

3 Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan;
andrewlin@saturn.yzu.edu.tw

* Correspondence: tshih@g.ncu.edu.tw or timothykshih@gmail.com

Received: 16 September 2019; Accepted: 6 December 2019; Published: 9 December 2019
����������
�������

Abstract: With the recent growth of Smart TV technology, the demand for unique and beneficial
applications motivates the study of a unique gesture-based system for a smart TV-like environment.
Combining movie recommendation, social media platform, call a friend application, weather updates,
chatting app, and tourism platform into a single system regulated by natural-like gesture controller
is proposed to allow the ease of use and natural interaction. Gesture recognition problem solving
was designed through 24 gestures of 13 static and 11 dynamic gestures that suit to the environment.
Dataset of a sequence of RGB and depth images were collected, preprocessed, and trained in the
proposed deep learning architecture. Combination of three-dimensional Convolutional Neural
Network (3DCNN) followed by Long Short-Term Memory (LSTM) model was used to extract the
spatio-temporal features. At the end of the classification, Finite State Machine (FSM) communicates
the model to control the class decision results based on application context. The result suggested the
combination data of depth and RGB to hold 97.8% of accuracy rate on eight selected gestures, while
the FSM has improved the recognition rate from 89% to 91% in a real-time performance.

Keywords: hand gesture recognition; deep learning; multimodal system; context-aware

1. Introduction

Gestures are one of the most natural ways of physical body movement, which can involve fingers,
hands, head, face, or body to interact with the environment and convey meaningful information.
Besides, gesture recognition is the way of the machine to classify or translate the gestures produced
by a human into some meaningful commands. However, when communicating with the computer,
hand gestures are the most common and expressive way of interacting more naturally among the other
gestures. In recent years, hand gesture recognition has inspired new technologies in the computer vision
and pattern recognition fields, such as Virtual reality [1,2] and Smart TV or interactive system [3,4].
Significant progress of this field has been accomplished in many applications, i.e., sign language
recognition [5,6], robot control [7,8], virtual musical instrument performance [9,10].

Albeit the progressive efforts, fundamental problems in real-time usage persist, such as slow and
expensive computation. Previous studies have been proposed to answer the challenges employing
different methods such as devices-related method and glove based approach [11,12]. Even though
most of such glove-based systems focusing on sensors, these external sensors enable to observe the
user’s hand always. To address this drawback, a glove-based concept which utilizes the data gloves

Sensors 2019, 19, 5429; doi:10.3390/s19245429 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2090-3608
https://orcid.org/0000-0002-0401-8473
http://dx.doi.org/10.3390/s19245429
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/24/5429?type=check_update&version=2

Sensors 2019, 19, 5429 2 of 19

for human-computer interaction has proposed [13]. Besides the study [14] evaluate the performance
of a wearable gesture recognition system that captures hand, finger and arm. Apart from devices
and glove based methods, there are several handcrafted feature methods [15,16] and deep learning
based methods [17,18] as well. Among them, deep learning model has deemed to solve the recognition
and classification problems efficiently and accurately, yet the implementation in real-time application
situations are limited. Hence, this study aims to introduce a hand gesture recognition system that
works on a real-time application situation for Smart-TV like environment.

The proposed work combines 3D convolution neural network (3DCNN) followed by long
short-term memory (LSTM) as a feature extraction model. Multimodal data, RGB and Depth data are
incorporated as the input model. The Finite State Machine (FSM) control is used to restrict some gesture
flows and to limit the recognition classes. Usage of small classes tends to showcase higher accuracy to
that of big classes. The reuse of gestures for multiple commands in one application depends on the
context of each application itself. Within the system, the global side of the hand gesture recognition
is explored. Hindered by the range of action, instead of using finger feature for classification, the
whole handshape as data input is implemented. Attention is focused on the hand by removing the
background and unnecessary pixels. This approach allows the system to catch up in any variety of
situation, e.g., crowded places, and may speed up the model computation.

In summary, this study considers the multiple sequences of input data and thus, the problem
of solving the gesture recognition with sequence data is presented. Then it shows how to train only
using a small set of the dataset in the deep learning-based model and the way of creating a small-size
model that able to run smoothly in a real-time system and situation. In order to show the robustness
of the proposed model, two kinds of applications were built. The first application is utilized to test
the model accuracy, which consists of a simple interface showing the recognition result in a real-time
situation. The second application is the complete application with the standard interface consist of 6
sub-applications. FSM control is implemented in the latter application to allow reusing the gesture
according to the context of each sub-application. Twenty-four isolated gestures containing 13 dynamic
and 11 static gestures are introduced to support the testing system. Twenty individuals’ data with
five different environments and varying lighting conditions were collected as the dataset for training,
validating and testing purposes. The performance of the dataset of eight selected gestures with different
settings deduces accuracy higher than 90% in offline and real-time testing.

The rest of the paper is organized as follows. Section 2 reviews related work on gesture recognition
problems and Section 3 explains the proposed method in detail and its combination with the FSM
model. Next Section 4 discusses the experimental results and Section 5 concludes the work with
future directions.

2. Related Work

Researches on gesture recognition problem have been growing in recent years. Started with the
devices-based or glove-based techniques that capable of recognizing the gestures but suffer in the cost
of production and a real-time situation, the works evolved to low-cost devices vision-based method,
e.g., camera. The approach relies on the image and video processing technology to recognize the
gestures translation. In the term of feature level, they can be divided into several levels: global hand
feature level, finger feature level, 3D feature, skeleton feature, and trajectory of motion. Combining two
or more features have been implemented by previous studies to enhance the accuracy result. Ren et
al. [19] utilized distance matrix called FEMD (Finger-Earth Movers Distance) to extract the finger level
features. Besides, further improvement of this work using the K-curvature algorithm was able to locate
the finger positions [20]. The work of Li [21] suggested the Graham Scan algorithm for generating the
convex hulls of finger detection. While owning many advantages, finger level is difficult to extract and
often lead to reducing the speed of the system with the tradeoff on higher accuracy [22]. The trajectory
level of features also works well on solving the gesture recognition problem in the term of Dynamic
gesture recognition. The approaches, such as FSM [23], DTW [24], and HMM [25] are popular among

Sensors 2019, 19, 5429 3 of 19

the many methods. Since these methodologies witness the gesture in terms of trajectory, promoting
the simplicity and robust approaches, but some gestures are unrecognizable in the temporal level of
features. To overcome this issue, recognize gestures using the hand-crafted feature extraction method
were proposed [26,27]. However, they are yet suffered from the lighting condition problem that may
lead to reducing recognition accuracy. With the arrival of depth devices, e.g., Kinect or Intel Real Sense
camera, such problems are not trivial anymore. The works [28–31] were successfully implementing
RGB-D input combination to recognize gestures.

The aforementioned works are generally called hand-crafted features extraction or traditional
method. While those methods are robust, but they are challenging to generalize the model for many
cases. Some deep learning based approaches have been irrupted to achieve better results and mostly
outperforming the “handcrafted” state of the art methods, to bridge such [32–34]. Inspired by such
models, this study adopts long short-term memory (LSTM) model to solve the problem of long
and complicated sequence in dynamic gestures problem. LSTM has become an important part of
deep learning models for image sequence modeling for human action/gesture recognition [35,36].
The enhanced methods, such as Bidirectional RNN [37], hierarchical RNN [38], and Differential RNN
(D-RNN) [39] were proven in recognizing the human actions and gesture recognition problems. Besides,
the Convolutional Neural Network (CNN) in image classification problems have been successfully
implemented in hand gesture recognition problems [40,41]. The proposed data augmentation strategies
prevent CNN from overfitting when training the datasets containing limited diversity in sequence
data. In some cases, using only temporal or spatial features are not enough to solve the hand
gesture recognition problem. Thus, work using two-stream inputs, or fusion between spatial and
temporal-based method are used. Two-stream convolutional network [42] learns spatial and temporal
features separately. In addition, Long-term Recurrent Convolutional Networks (LRCN) model is
capable of extracting such features. Moreover, 3DCNN which extract spatiotemporal features is
superior in such tasks, since it uses the strong point of CNN on classify images and combine them
with temporal features. However, it is limited to learn the long-term temporal information essential
for hand gesture recognition. The work of Molchanov et al. [43] proposed the combination of using
3DCNN and RNN, fully connected spatiotemporal features transferred into RNN. Nevertheless, the
spatial correlation information was lost in the RNN stage. Thus, this study proposed a new work to
combine the 3DCNN and LSTM to solve the gesture recognition problem.

Gestures can also be considered as a finite sequence of states in the spatio-temporal model space
in the FSM method. Several methods to recognize human hand gestures using an FSM model-based
approach have discussed in previous studies [44–46]. Under the study of Hong et al. [46], each gesture
has defined to be an ordered sequence of states using spatial clustering and temporal alignment.
The spatial information is learned from the training images of gestures. The information acts as input
to build FSMs corresponding model for each gesture. The FSM is used to recognize gestures from
an unknown input sequence. In [45], FSM motion profile model was built, that has five states, start
(S), up (U), down (D), left (L) and right (L) command corresponded to each gesture. The continuous
spatio-temporal motion gestures are collected to build such models. The data then segmented
into subsequences along with a single direction correspondent to each state. The system is highly
reconfigurable, and no training concept is required. The model serves as input to a robot programming
language for generating machine-level instructions in order to mimic the intended operation of the
corresponding gesture.

These works show that the Finite State Machine is one of the sophisticated methods that has been
used for gesture recognition. One of it uses to model the trajectory of movements, for example, hand
or finger to recognize the gestures [23,46]. These works give us the general idea if restriction or control
on gestures in each state according to the model in the FSM combined with the deep learning approach
of classification is approachable.

Sensors 2019, 19, 5429 4 of 19

3. Proposed Model

For the dynamic gesture recognition process, it is challenging to learn both spatial and temporal
features with handcrafted feature extraction method, as mentioned by Wan et al. [47]. To address this
challenge, we proposed a model, as seen in Figure 1. The proposed architecture consists of several
processes such as data collection, data preprocessing, training, and testing model to achieve our
purpose. Under this section, we explain all these processes of our proposed system in detail.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 19

3. Proposed Model

For the dynamic gesture recognition process, it is challenging to learn both spatial and temporal
features with handcrafted feature extraction method, as mentioned by Wan et al. [47]. To address this
challenge, we proposed a model, as seen in Figure 1. The proposed architecture consists of several
processes such as data collection, data preprocessing, training, and testing model to achieve our
purpose. Under this section, we explain all these processes of our proposed system in detail.

Figure 1. The overall architecture of the proposed system.

3.1. Data Collection

Ground truth creation is a fundamental issue in deep learning-based classification problems.
Because of the absence of the standard gestures dataset suitable for a Smart-TV environment, self-
defined gestures dataset was introduced. To create the dataset, we recorded the gestures from 20
individuals. All of these participants are right-handed and to reduce the bias and enhance the dataset,
the user needs to follow several protocols. Before record gestures, the users divided into five groups,
which include four people in each. Each recorded one gesture sequence of a particular user consists
of a three-second length dynamic gesture which approximately contains 120 frames. The user needs
to perform each gesture six times. It is not necessary always start the hand in the rest or in neutral
position (hand down). When gestures are performing six times, each user needs to act differently,
changing the speed and the position of the hand, in each attempt. Besides, the camera position, place
and lighting conditions are different among each group.

Originally 2880 videos recorded from 20 users when performing 24 gestures six times and
sample images representing 24 gesture types are shown in Figure 2. As presents Figure 2a,b shows
the 13 static and 11 dynamic gestures, respectively. However, we noticed some corrupted videos
while creating the hand gesture dataset by manually filtering. To do a better classification, we
removed corrupted videos before doing the pre-processing. The corrupted data is not only from
specific persons, and hence those data consist of different users’ recordings. Therefore, our finalized
hand gesture dataset consists of 2162 sequences (or videos) from 20 individuals.

Figure 1. The overall architecture of the proposed system.

3.1. Data Collection

Ground truth creation is a fundamental issue in deep learning-based classification problems.
Because of the absence of the standard gestures dataset suitable for a Smart-TV environment, self-defined
gestures dataset was introduced. To create the dataset, we recorded the gestures from 20 individuals.
All of these participants are right-handed and to reduce the bias and enhance the dataset, the user
needs to follow several protocols. Before record gestures, the users divided into five groups, which
include four people in each. Each recorded one gesture sequence of a particular user consists of a
three-second length dynamic gesture which approximately contains 120 frames. The user needs to
perform each gesture six times. It is not necessary always start the hand in the rest or in neutral position
(hand down). When gestures are performing six times, each user needs to act differently, changing the
speed and the position of the hand, in each attempt. Besides, the camera position, place and lighting
conditions are different among each group.

Originally 2880 videos recorded from 20 users when performing 24 gestures six times and sample
images representing 24 gesture types are shown in Figure 2. As presents Figure 2a,b shows the 13 static
and 11 dynamic gestures, respectively. However, we noticed some corrupted videos while creating the
hand gesture dataset by manually filtering. To do a better classification, we removed corrupted videos
before doing the pre-processing. The corrupted data is not only from specific persons, and hence those
data consist of different users’ recordings. Therefore, our finalized hand gesture dataset consists of
2162 sequences (or videos) from 20 individuals.

A simple data collection tool is implemented to speed up the data collecting process and the
collected data consist of sequences of gestures performed by real human actions. In addition, the
gestures are recorded in five different environments: room with white background in dim light, a
room with bright light and noisy background, outside the room (but still inside a building) near a
window with bright light from the sun, outside the room far from the window with the soft sunlight,
and inside the room that similar to home environment situation. The Real Sense SR300 depth camera
as the primary tool for recording data was used to input the modality data into the proposed model.
The recorded modality data include the RGB and Depth data. Since hand was considered as the
main part of the gesture, part of the user’s body, including face and hand, was recorded. During the
preprocessing step, the hand was extracted from the body as input to the model.

Sensors 2019, 19, 5429 5 of 19

Sensors 2019, 19, x FOR PEER REVIEW 5 of 19

(a)

(b)
Figure 2. The 24 gestures designed and collected for Smart-TV like environment. For sample gesture
videos of all gesture classes, please refer to our website available in http://video.minelab.tw/gesture/.
(a) Thirteen static gestures; (b) Eleven dynamic gestures that visualize the directions of hand
movements.

A simple data collection tool is implemented to speed up the data collecting process and the
collected data consist of sequences of gestures performed by real human actions. In addition, the
gestures are recorded in five different environments: room with white background in dim light, a
room with bright light and noisy background, outside the room (but still inside a building) near a
window with bright light from the sun, outside the room far from the window with the soft sunlight,
and inside the room that similar to home environment situation. The Real Sense SR300 depth camera
as the primary tool for recording data was used to input the modality data into the proposed model.
The recorded modality data include the RGB and Depth data. Since hand was considered as the main

Figure 2. The 24 gestures designed and collected for Smart-TV like environment. For sample gesture
videos of all gesture classes, please refer to our website available in http://video.minelab.tw/gesture/.
(a) Thirteen static gestures; (b) Eleven dynamic gestures that visualize the directions of hand movements.

3.2. Data Preprocessing

Data collected in the recording section tend to have noise and unnecessary pixels. Therefore,
cleaning data is an essential task to create accurate ground truth data. During the hand gesture
recognition, the focus was given on the movement of the hand instead of other objects. Thus, the
hand Region of Interest (ROI) was extracted from the given original pixel input. The model aims to
focus its attention in the hand pixel instead of the other unnecessary points either from RGB image or

http://video.minelab.tw/gesture/

Sensors 2019, 19, 5429 6 of 19

Depth images. Under the experimental and discussion section, usage of the entire pixels for the input
suggests the less effective way on gesture recognition problem in a real-time situation.

To extract the hand, given the whole RGB image Ir, and depth image Id, fixed distance dt to remove
the long distance background and minimum distance min of Id as the range filter was defined. Let Irb
be the RGB image and Idb be Depth image, after background removal. Based on the range [min, dt] the
average distance of a point dav in Idb can be calculated as follows:

dav =

∑n
i Ii

db
n

, where, Ii
db > minand Ii

db < dt (1)

Moving further, dav is used as a max filter to obtain Irb ’ and Idb ’ (e.g., keep hands only) by the
conditions below.

I′db =

{
0, if Ii

db > dav,

Ii
db, Otherwise

, where i = 1, . . . , (w× h) of Idb (2)

I′rb =

{
0, if Ii

rb > dav,

Ii
rb, Otherwise

, where i = 1, . . . , (w× h) of Irb (3)

To keep the model attention to focus more on the hand with the detection of starting-ending points
of the hand gesture, the predefined trigger box, Bt was used and crop the both Irb’ and Idb’ according
to the width (wbt) and height (hbt) of the Bt, by the equation below to get the Icr

rb and Icr
db image.

Icr
rb = crop

(
I′rb, wbt, hbt

)
(4)

Icr
db = crop

(
I′db, wbt, hbt

)
(5)

Additional skin color filter added to remove more noise using the method by Kovac et al. [48]

Ih = Skincolor
(
Icr
rb

)
, Ih = [IRGB

h , IDepth
h], (6)

where (R, G, B) is classified as skin if: R > 95 and G > 40 and B > 20 and max{R,G,B}−min{R,G,B} > 15
and |R−G| > 15 and R > G and R > B.

Given the RGB image IRGB
h after skin color process, contour extraction is performed on the

image using the chain code of Open CV library to get the middle position of the hand. Prior to that,
the Gaussian blur, dilation erosion, and edge detection were applied to create the hand image even
clear. By using this middle position of the contour of the hand, the hand ROI Bh(Ih) was set to get
the size area and position of the hand. Then, these two parameters are used as the starting-ending
parameter decision to detect the necessary sequence to process. If starting detected, the system begins
to collect the sequence of Ih images consist of RGB data IRGB

h and Depth data IDepth
h in the form of SQ(Ih).

The preprocessing step of hand extraction based on the average depth threshold is seen in Figure 3.
Since dynamic hand gesture recognition is a sequence related problem, each person has different

speed and starting point when performing gestures. Therefore, each image was considered and the
number of sequences was aligned. Unnecessary gestures in the sequence were removed to allow faster
processing. When a person performs a gesture, there are three main actions: the preparation, the
nucleus, and the retraction. To align the sequence, first detect the preparation event of the user by
tracking the middle position of the contour of the hand hmid until it touches the trigger box when
performing the gesture. In order to get the starting gesture event or preparation event, the human
habit of raising the hand around his face position when performed a gesture was used. Therefore,
when setting up the trigger box around the face position, the preparation action of the gesture can be
detected correctly.

Sensors 2019, 19, 5429 7 of 19

Sensors 2019, 19, x FOR PEER REVIEW 7 of 19

Figure 3. The preprocessing step of hand extraction based on the average depth threshold.

Since dynamic hand gesture recognition is a sequence related problem, each person has different
speed and starting point when performing gestures. Therefore, each image was considered and the
number of sequences was aligned. Unnecessary gestures in the sequence were removed to allow
faster processing. When a person performs a gesture, there are three main actions: the preparation,
the nucleus, and the retraction. To align the sequence, first detect the preparation event of the user
by tracking the middle position of the contour of the hand ℎ௠௜ௗ until it touches the trigger box when
performing the gesture. In order to get the starting gesture event or preparation event, the human
habit of raising the hand around his face position when performed a gesture was used. Therefore,
when setting up the trigger box around the face position, the preparation action of the gesture can be
detected correctly.

The captured of 32 frames after the preparation event was carried out as the nucleus and
retraction action of the gesture were processed for training, validating and testing the model. Thirty-
two frames of sequences have opted since, in the sample, a user tends to perform an average of 32
frames after the preparation action.

3.3. Data Sequence Alignment and Augmentation

Normalizing a gesture sequence is a fundamental step in this study. Different users may perform
a gesture in a different speed, while neural network input should be the same. Two conditions seldom
raised in collecting sequences of gestures. One is the length of the sequence 𝐹𝐿 is lower than the
predefined fixed length 𝐹𝑆, which we set as 32 frames. Another problem is the value of 𝐹𝐿 should
be higher than 𝐹𝑆 value. 𝐹𝐿 is the frame length of each gesture after detecting the starting and
ending by the previous method. To solve the sequences alignment problem, two methods were
applied: padding (i.e., 𝑝𝑑൫𝑆𝑄(𝐼௛)൯) and down-sampling (i. e. , 𝑑𝑠൫𝑆𝑄(𝐼௛)൯) as defining bellow.

 𝑆𝑄((𝐼௛))ᇱ = ⎩⎪⎨
⎪⎧𝑝𝑑 ቀ൫𝑆𝑄(𝐼௛)൯ ቁ , 𝐹𝐿 < 𝐹𝑆൫𝑆𝑄(𝐼௛)൯, 𝐹𝐿 = 𝐹𝑆 𝑑𝑠 ቀ൫𝑆𝑄(𝐼௛)൯ ቁ , 𝐹𝐿 > 𝐹𝑆 (7)

Padding infers additional image and depth data on the given sequence 𝑆𝑄(𝐼௛) by the last frame
data (𝐼௛)ி௅ until 𝐹𝐿 = 𝐹𝑆 . As for the down-sampling, Equation (8) was adopted to get the index
number of data that can be used through 𝐹𝐿, to 𝐹𝑆 ratio. Given one gesture sequence 𝑆𝑄(𝐼௛) the
index of data (𝐼௛)௞ where 𝑘 = 1, … , 𝐹𝑆 from (𝐼௛)௜ where 𝑖 = 1, … , 𝐹𝐿 are calculated by the
following Equation. (𝐼௛)௞ = 𝐹𝐿𝐹𝑆 ∗ 𝑖, 𝑆𝑄((𝐼௛))ᇱ = {(𝐼௛)ଵ, (𝐼௛)ଶ, … , (𝐼௛)ிௌ } (8)

Figure 3. The preprocessing step of hand extraction based on the average depth threshold.

The captured of 32 frames after the preparation event was carried out as the nucleus and retraction
action of the gesture were processed for training, validating and testing the model. Thirty-two frames
of sequences have opted since, in the sample, a user tends to perform an average of 32 frames after the
preparation action.

3.3. Data Sequence Alignment and Augmentation

Normalizing a gesture sequence is a fundamental step in this study. Different users may perform
a gesture in a different speed, while neural network input should be the same. Two conditions seldom
raised in collecting sequences of gestures. One is the length of the sequence FL is lower than the
predefined fixed length FS, which we set as 32 frames. Another problem is the value of FL should be
higher than FS value. FL is the frame length of each gesture after detecting the starting and ending by
the previous method. To solve the sequences alignment problem, two methods were applied: padding
(i.e., pd(SQ(Ih))) and down-sampling (i.e., ds(SQ(Ih))) as defining bellow.

SQ((Ih))
′ =


pd((SQ(Ih))), FL < FS
(SQ(Ih)), FL = FS
ds((SQ(Ih))), FL > FS

(7)

Padding infers additional image and depth data on the given sequence SQ(Ih) by the last frame
data (Ih)FL until FL = FS . As for the down-sampling, Equation (8) was adopted to get the index
number of data that can be used through FL, to FS ratio. Given one gesture sequence SQ(Ih) the index of
data (Ih)k where k = 1, . . . , FS from (Ih)i where i = 1, . . . , FL are calculated by the following Equation.

(Ih)k =
FL
FS
∗ i, SQ((Ih))

′ =
{
(Ih)1, (Ih)2, . . . , (Ih)FS

}
(8)

Besides from aligned the sequence, variation in the scaling, rotating, and translating RGB and
depth data was added for augmenting the dataset and enhance the data generalization. Since gesture
recognition requires fast recognition, rescaling the original image size into 50 × 50 pixel was performed.
This number works well in the training and testing real-time in the term of speed.

3.4. Spatio-Temporal Feature Learning

In recent time, artificial intelligence in the form of deep learning has been reported to enhance
the traditional method in hand gesture recognition problems successfully. Many researchers used
the well-known CNN model, which consists of a one-frame-classification method to solve the static
gesture recognition problem. However, during this study, the use of the spatial feature that becomes

Sensors 2019, 19, 5429 8 of 19

the speciality of CNN is not enough since the quality of the image might be distorted by the distance of
the camera and rescaling of lower pixels to speed up the recognition process. Hence, only using the
shape of the hand will not able to recognize the gesture properly. The combination of spatial-temporal
features was deemed the best solution, especially the dynamic gesture recognition problems.

In this work, an enhanced dimension of the CNN named 3DCNN was implemented. This method
was able to extract the temporal features by keeping maintaining the spatial features of the images and
has been used in action recognition and video classification field. One of the representatives of this
algorithm is C3D. While this algorithm is capable of extracting the short-term temporal features from
the data sequence, it only extracts the data in a short-term way. This infers the inability of 3DCNN to
memorize the longer sequences very well.

Since most of the gestures tend to have 32–50 frame per gesture, this 3DCNN model might not
able to learn it better. Thus, the need for another network to learn long-term temporal features is
necessary. Combination of the 3DCNN algorithm with the LSTM network was proposed to help to
learn the long-time temporal features. The LSTM is capable of learning long-term dependencies with
its sophisticated structure, including input, output and forget gates that control the long-term learning
of sequence patterns. These gates regulate by sigmoid function, which learns during the training
process from where it is open and close. Below 9 to 14 equations explain the operations performed in
LSTM unit.

it = σ(xtwxi + ht−1whi + ct−1wci + wibais), (9)

ft = σ
(
xtwx f + ht−1wh f + ct−1wc f + w f bais

)
, (10)

zt = tanh(xtwxz + ht−1whz + wzbais), (11)

ct = zt ⊗ it + ct−1 ⊗ ft , (12)

ot = σ(xtwxo + ht−1who + ct−1wco + wobais), (13)

ht = ot ⊗ tanh(ct), (14)

where, it , ft , ot , zt represent the input gate, forget gate, output gate, and cell gate respectively. ct and
ht are memory and output activation at time t. The Equations (10), (11), (13) and (14) are the formulas
for forget, cell, output gates and hidden state.

3.5. Multimodal Architecture

As shown in Figure 4, considering the above-discussed advantages of combining CNN and LSTM
networks, the proposed multimodal architecture consist of 3DCNN layers, one stack LSTM layer and,
a fully connected layer followed by the softmax layer. Batch normalization was utilized to allow the
model to use much higher learning rates and less concerned about the initialization to accelerate the
training process. The kernel size of each Conv3D layer is 3 × 3 × 3, the stride and padding are sizes of
1 × 1 × 1. The feature maps consist of four filter sizes such as 32, 64, 64 and 128, and double them up
within each layer to increase the depth. Each Conv3D layer is followed by a batch normalization layer,
a ReLU layer and a 3D Max Pooling layer with a pool size of 3 × 3 × 3. Features are extracted from the
3DCNN architecture then fed into the one stack of LSTM with 256 sizes of the unit. Several dropout
layers were added in every section with the value of 0.5 and then computed the output probability
result using the softmax layer.

Sensors 2019, 19, 5429 9 of 19

Sensors 2019, 19, x FOR PEER REVIEW 9 of 19

and double them up within each layer to increase the depth. Each Conv3D layer is followed by a
batch normalization layer, a ReLU layer and a 3D Max Pooling layer with a pool size of 3 × 3 × 3.
Features are extracted from the 3DCNN architecture then fed into the one stack of LSTM with 256
sizes of the unit. Several dropout layers were added in every section with the value of 0.5 and then
computed the output probability result using the softmax layer.

Figure 4. The proposed 3DCNN + LSTM architecture. The middle part of the figure shows the model’s
general architecture and both bottom and top represent how the 3DCNN layer implemented and the
way of LSTM unit works with the gesture sequence, respectively.

Using both depth and RGB as the input data might produce a better result rather than only using
one stream input. Thus the multimodal model versions of the 3DCNN + LSTM are proposed. There
are three kinds of multimodal types according to their fusion levels. The first way is called the early
fusion model and this type only needs one stream of the model since they combine both input RGB
and depth data into channels as shown in Figure 5a. Given 𝐼௜ RGB color image with three-channel
and 𝐷௜ depth distance data with one channel, the new fusion input is the new image 𝐼𝐷௜ with four-
channel combinations. This way of fusion connects both RGB and depth data in a pixel-wise form.
But, before putting the depth data into the 4th channel of 𝐼𝐷௜ the normalization is necessary.

Since each person’s gestures in the dataset have a different distance to the camera, the
normalization helps to generalize this difference. In the case of this work, normalize the depth data
into the space of 0–255 color space is the best way. The second way is to combine the RGB and depth
data by the middle fusion form as in Figure 5b. In this form, extraction of the feature of the image
sequences was performed until the end of the 3DCNN layer in two separate way, then combine with
the last layer before the LSTM layer. To fusion the features, there are several options. Concatenate,

Figure 4. The proposed 3DCNN + LSTM architecture. The middle part of the figure shows the model’s
general architecture and both bottom and top represent how the 3DCNN layer implemented and the
way of LSTM unit works with the gesture sequence, respectively.

Using both depth and RGB as the input data might produce a better result rather than only using
one stream input. Thus the multimodal model versions of the 3DCNN + LSTM are proposed. There
are three kinds of multimodal types according to their fusion levels. The first way is called the early
fusion model and this type only needs one stream of the model since they combine both input RGB
and depth data into channels as shown in Figure 5a. Given Ii RGB color image with three-channel and
Di depth distance data with one channel, the new fusion input is the new image IDi with four-channel
combinations. This way of fusion connects both RGB and depth data in a pixel-wise form. But, before
putting the depth data into the 4th channel of IDi the normalization is necessary.

Since each person’s gestures in the dataset have a different distance to the camera, the normalization
helps to generalize this difference. In the case of this work, normalize the depth data into the space
of 0–255 color space is the best way. The second way is to combine the RGB and depth data by the
middle fusion form as in Figure 5b. In this form, extraction of the feature of the image sequences was
performed until the end of the 3DCNN layer in two separate way, then combine with the last layer
before the LSTM layer. To fusion the features, there are several options. Concatenate, multiply, add,
average, and subtract are the solution to fusion the features. In case of hand to hand only depth and
RGB data were used for the proposed dataset, using multiply result the best compare to each other
fusion method.

Sensors 2019, 19, 5429 10 of 19

Sensors 2019, 19, x FOR PEER REVIEW 10 of 19

multiply, add, average, and subtract are the solution to fusion the features. In case of hand to hand
only depth and RGB data were used for the proposed dataset, using multiply result the best compare
to each other fusion method.

The 3rd fusion method is called the late fusion and, the architecture of the model is visualized
in Figure 5c. The process of the combination is slightly similar to the middle fusion mechanism.
Instead of combining the last layer of 3DCNN, the discrepancy lies on fusion at the end of the LSTM
layer before doing the softmax. Thus both RGB and depth data will be trained in two separate models.
The advantage of this fusion model is that different architecture parameters for different data input
are permissible since it has a different model. Even though all of these fusion mechanisms train and
test in the same parameters, this late fusion multimodal train slower than others. The comparison of
all models discusses under Section 4.

(a) (b)
(c)

Figure 5. The proposed multimodal model architecture of 3DCNN + LSTM: (a) Early fusion
multimodal; (b) Middle fusion multimodal; (c) Late fusion multimodal.

3.6. Context-Aware Neural Network

One way to enhance the recognition rate in the real-time system is to let the model recognize
smaller gesture class. In the system of real-time application, recognition class was limited in every
context of the application. Hence, we can define this model as a Context-Aware recognition control
system. In each context of an application, there are several sub-actions of a gesture that allows being
performed or not. For example, in each application in one system, only five or fewer gestures were
set to recognize. Not only this could promote the ease of the user to remember the gesture; it may
enhance the recognition rate of the gesture recognition model. To do so, we use Finite State Machine
(FSM) as a controller machine that can communicate with the Deep learning model by giving the
restricted to the softmax decision probability by manipulating the weight in the last layer.

Generally, softmax uses as the output function of the last layer. The output of softmax is
important because the purpose of the last layer is to turn the probabilistic score that sum to one. The
softmax layer produced these probabilities that can be understood by humans from the given logits
scores into values. When the input number of classes to the model is varying, it is indeed to modify
weights of softmax accordingly since the output probabilities sum to one [49]. Within our context-
aware network, each state function selects different gestures, and the state machine controls the
context. First, the system in the current context or state communicates with FSM to get to know which
gesture should be ignored or not. Then we apply the pre-defined weights to the last layer’s node that
connects to the class which is ignored by the FSM. Therefore, only correct gestures are accepted, and
the FSM can move to the next state.

Figure 5. The proposed multimodal model architecture of 3DCNN + LSTM: (a) Early fusion multimodal;
(b) Middle fusion multimodal; (c) Late fusion multimodal.

The 3rd fusion method is called the late fusion and, the architecture of the model is visualized in
Figure 5c. The process of the combination is slightly similar to the middle fusion mechanism. Instead
of combining the last layer of 3DCNN, the discrepancy lies on fusion at the end of the LSTM layer
before doing the softmax. Thus both RGB and depth data will be trained in two separate models.
The advantage of this fusion model is that different architecture parameters for different data input are
permissible since it has a different model. Even though all of these fusion mechanisms train and test
in the same parameters, this late fusion multimodal train slower than others. The comparison of all
models discusses under Section 4.

3.6. Context-Aware Neural Network

One way to enhance the recognition rate in the real-time system is to let the model recognize
smaller gesture class. In the system of real-time application, recognition class was limited in every
context of the application. Hence, we can define this model as a Context-Aware recognition control
system. In each context of an application, there are several sub-actions of a gesture that allows being
performed or not. For example, in each application in one system, only five or fewer gestures were set
to recognize. Not only this could promote the ease of the user to remember the gesture; it may enhance
the recognition rate of the gesture recognition model. To do so, we use Finite State Machine (FSM) as a
controller machine that can communicate with the Deep learning model by giving the restricted to the
softmax decision probability by manipulating the weight in the last layer.

Generally, softmax uses as the output function of the last layer. The output of softmax is important
because the purpose of the last layer is to turn the probabilistic score that sum to one. The softmax
layer produced these probabilities that can be understood by humans from the given logits scores into
values. When the input number of classes to the model is varying, it is indeed to modify weights of
softmax accordingly since the output probabilities sum to one [49]. Within our context-aware network,
each state function selects different gestures, and the state machine controls the context. First, the
system in the current context or state communicates with FSM to get to know which gesture should
be ignored or not. Then we apply the pre-defined weights to the last layer’s node that connects to
the class which is ignored by the FSM. Therefore, only correct gestures are accepted, and the FSM can
move to the next state.

3.7. FSM Controller Model

Let GRM be a Gesture Recognition Machine. GRM Takes current Camera Input, cix ∈ CI and a
current state si ∈ S, and output a classification result of the gesture g j ∈ G. Where G =

{
g1, g2, . . . , gn

}
and S =

{
s1, . . . si, si+1, . . . , s j, s j+1, . . . , sk, sk+1, . . . , sx

}
, sx is the exit state. The space of states S is

Sensors 2019, 19, 5429 11 of 19

divided into several subsets GRM : CI X S → G. For example GRM(cix, s12) → g8 (i.e., the machine
takes a current camera input cix, in state s12, the recognized gesture is g8).

Let the FSM be a Finite State Machine that controls the context of gesture recognition system.
The parameter of FSM are:

FSM = (S, G, q0, qx, F), where,
S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ . . . ∪ Sx =

{
s1, . . . si, si+1, . . . , s j, s j+1, . . . , sk, sk+1, . . . , sx

}
(i.e., S is divided)

G =
{
g1, g2, g3, . . . , gn

}
(i.e., n gestures)

q0: s1 (i.e., initial sate) and qx: sx (i.e., exit state)
F = S× G→ S (e.g., F

(
si, g j

)
→ s j), the context dependent in next state function.

Figure 6 gives a clear explanation of the FSM control section. For testing purpose, in our system,
we have six kinds of applications: YouTube (Watch Movie) app, Facebook (Social media) app, Phone
call app, Weather app, Chat room app, and Tourism app. Each application has a different set of FSM
and a set of gestures to be used. Figure 7 is the example of one of the FSM system which is Watch Movie.

Figure 6. The scheme work of the FSM model controller with GRM (Gesture Recognition Machine).

Sensors 2019, 19, x FOR PEER REVIEW 11 of 19

3.7. FSM Controller Model

Let 𝐺𝑅𝑀 be a Gesture Recognition Machine. 𝐺𝑅𝑀 Takes current Camera Input, 𝑐𝑖௫  𝐶𝐼 and a
current state 𝑠௜  𝑆 , and output a classification result of the gesture 𝑔௝  𝐺 . Where 𝐺 = {𝑔ଵ, 𝑔ଶ, … , 𝑔௡} and 𝑆 = {𝑠ଵ, … 𝑠௜, 𝑠௜ାଵ, … , 𝑠௝, 𝑠௝ାଵ, … , 𝑠௞, 𝑠௞ାଵ, … , 𝑠௫}, 𝑠௫ is the exit state. The space of
states 𝑆 is divided into several subsets 𝐺𝑅𝑀: 𝐶𝐼 𝑋 𝑆  𝐺. For example 𝐺𝑅𝑀(𝑐𝑖௫, 𝑠ଵଶ)  𝑔଼ (i.e., the
machine takes a current camera input 𝑐𝑖௫, in state 𝑠ଵଶ, the recognized gesture is 𝑔଼).

Let the FSM be a Finite State Machine that controls the context of gesture recognition system.
The parameter of FSM are: 𝐹𝑆𝑀 = (𝑆, 𝐺, 𝑞଴, 𝑞௫, 𝐹), where, 𝑆 = 𝑆ଵ ∪ 𝑆ଶ ∪ 𝑆ଷ ∪ 𝑆ସ ∪ … ∪ 𝑆௫ = ൛ 𝑠ଵ, … 𝑠௜, 𝑠௜ାଵ, … , 𝑠௝, 𝑠௝ାଵ, … , 𝑠௞, 𝑠௞ାଵ, … , 𝑠௫ൟ (i.e., S is
divided) 𝐺 = {𝑔ଵ, 𝑔ଶ, 𝑔ଷ, … , 𝑔௡} (i.e., 𝑛 gestures) 𝑞଴: 𝑠ଵ (i.e., initial sate) and 𝑞௫: 𝑠௫ (i.e., exit state) 𝐹 = 𝑆 × 𝐺 → 𝑆 (e.g., 𝐹൫𝑠௜, 𝑔௝ ൯ → 𝑠௝), the context dependent in next state function.

Figure 6 gives a clear explanation of the FSM control section. For testing purpose, in our system,
we have six kinds of applications: YouTube (Watch Movie) app, Facebook (Social media) app, Phone
call app, Weather app, Chat room app, and Tourism app. Each application has a different set of FSM
and a set of gestures to be used. Figure 7 is the example of one of the FSM system which is Watch
Movie.

Figure 6. The scheme work of the FSM model controller with GRM (Gesture Recognition Machine).

Figure 7. The FSM controller model of watch movie application.

During the weight manipulating process, first, the FSM in the specific state returns the gesture
that needs to focus on and to ignore. For example, the FSM model in Figure 7, six contexts represented

Figure 7. The FSM controller model of watch movie application.

During the weight manipulating process, first, the FSM in the specific state returns the gesture
that needs to focus on and to ignore. For example, the FSM model in Figure 7, six contexts represented
by the node. For each node, there is a specific sub action or gesture restricted by the FSM. Thus, when
playing with the video state, the gestures only able to use are “play/pause” and “back/close/end.”
Figure 8 shows the illustration of how the context-aware works on gesture selection.

Sensors 2019, 19, 5429 12 of 19

Sensors 2019, 19, x FOR PEER REVIEW 12 of 19

by the node. For each node, there is a specific sub action or gesture restricted by the FSM. Thus, when
playing with the video state, the gestures only able to use are “play/pause” and “back/close/end.”
Figure 8 shows the illustration of how the context-aware works on gesture selection.

Figure 8. The Context-aware example of two contexts in the watch movie FSM model.

Manipulating on the weight of the last model layer was taken into consideration to ignore
another gesture using the predefined weight limiter on those gestures. By doing so, the softmax layer
will only focus on the rest of the gestures and show the result only those gesture that marked, as seen
in Figure 9.

3.8. Training and Validating Strategies

For training and testing, 70% and 30% of data respectively used from our dataset and testing
were done under two methods. The first method is offline testing, which uses three individuals’ data
that not included in the train or validation set. The second is real-time testing that we suggest to an
unknown user to test our application by performing some gestures.

The proposed model was implemented on the Tensor-flow platform and trained the model using
ten mini-batches, until 50 epoch. Besides, we used Batch normalization to make the training process
easier and faster, and the Adam and adaptive moment optimization with the parameters such as
learning rate = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1 × 10−8, and decay = 0.0. The machine that
the model trained was with the spec of Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 32 GB of RAM,
24 GB of GPU NVIDIA GeForce GTX 1080.

Figure 8. The Context-aware example of two contexts in the watch movie FSM model.

Manipulating on the weight of the last model layer was taken into consideration to ignore another
gesture using the predefined weight limiter on those gestures. By doing so, the softmax layer will only
focus on the rest of the gestures and show the result only those gesture that marked, as seen in Figure 9.

3.8. Training and Validating Strategies

For training and testing, 70% and 30% of data respectively used from our dataset and testing
were done under two methods. The first method is offline testing, which uses three individuals’ data
that not included in the train or validation set. The second is real-time testing that we suggest to an
unknown user to test our application by performing some gestures.

The proposed model was implemented on the Tensor-flow platform and trained the model using
ten mini-batches, until 50 epoch. Besides, we used Batch normalization to make the training process
easier and faster, and the Adam and adaptive moment optimization with the parameters such as
learning rate = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1 × 10−8, and decay = 0.0. The machine
that the model trained was with the spec of Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 32 GB of
RAM, 24 GB of GPU NVIDIA GeForce GTX 1080.

Sensors 2019, 19, x FOR PEER REVIEW 12 of 19

by the node. For each node, there is a specific sub action or gesture restricted by the FSM. Thus, when
playing with the video state, the gestures only able to use are “play/pause” and “back/close/end.”
Figure 8 shows the illustration of how the context-aware works on gesture selection.

Figure 8. The Context-aware example of two contexts in the watch movie FSM model.

Manipulating on the weight of the last model layer was taken into consideration to ignore
another gesture using the predefined weight limiter on those gestures. By doing so, the softmax layer
will only focus on the rest of the gestures and show the result only those gesture that marked, as seen
in Figure 9.

3.8. Training and Validating Strategies

For training and testing, 70% and 30% of data respectively used from our dataset and testing
were done under two methods. The first method is offline testing, which uses three individuals’ data
that not included in the train or validation set. The second is real-time testing that we suggest to an
unknown user to test our application by performing some gestures.

The proposed model was implemented on the Tensor-flow platform and trained the model using
ten mini-batches, until 50 epoch. Besides, we used Batch normalization to make the training process
easier and faster, and the Adam and adaptive moment optimization with the parameters such as
learning rate = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1 × 10−8, and decay = 0.0. The machine that
the model trained was with the spec of Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 32 GB of RAM,
24 GB of GPU NVIDIA GeForce GTX 1080.

Figure 9. Example of FSM control of the deep learning model in softmax layer.

4. Experimental Result and Discussion

In order to test the proposed system in a real application, 8 gestures were selected from the 24
gestures dataset that collected previously. Those gestures selected based on the convenience uses in

Sensors 2019, 19, 5429 13 of 19

the application. The 8 gestures included 3 static and 5 dynamic gestures and Figure 9 represents the
sample gesture types. The gestures as seen in Figure 10 are “like”, “play/Pause”, “stop” “click” “scroll
up” “scroll down” “right swipe” and “left Swipe”.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 19

Figure 9. Example of FSM control of the deep learning model in softmax layer.

4. Experimental Result and Discussion

In order to test the proposed system in a real application, 8 gestures were selected from the 24
gestures dataset that collected previously. Those gestures selected based on the convenience uses in
the application. The 8 gestures included 3 static and 5 dynamic gestures and Figure 9 represents the
sample gesture types. The gestures as seen in Figure 10 are “like”, “play/Pause”, “stop” “click” “scroll
up” “scroll down” “right swipe” and “left Swipe”.

Figure 10. Eight gestures used in the real-time system. It includes three static and five dynamic
gestures.

4.1. Experimental Setup

Several experiments were conducted to test the model’s robustness. The first experiment is to
check the importance of using hand focus attention on the input data to the proposed architecture.
Using the same dataset, training and testing the model from several kinds of input data were carried
out. In this section, the model in one stream input mode was tested. The input data types that we
were the original RGB data without preprocessing and augmentation, RGB data with background
subtraction on it and the RGB data that only focus to the hand. The second experiment is to compare
the multimodal model with the one stream input model. Comparison between RGB data result of the
first experiment and the second one was executed since the first experiment only conducts on one
stream. To combine the proposed model’s different input streams, the late, middle and early fusion
methods applied. The last experiment is the real-time experiment on two applications. One
application has a simple interface without the FSM control, while the second application is in a
complete application with a complex interface and FSM control inside it. People were asked to try
the system, perform some gestures, and do some task in the application.

4.2. Comparison of Input Data Result

Figure 10. Eight gestures used in the real-time system. It includes three static and five dynamic gestures.

4.1. Experimental Setup

Several experiments were conducted to test the model’s robustness. The first experiment is to
check the importance of using hand focus attention on the input data to the proposed architecture.
Using the same dataset, training and testing the model from several kinds of input data were carried
out. In this section, the model in one stream input mode was tested. The input data types that we
were the original RGB data without preprocessing and augmentation, RGB data with background
subtraction on it and the RGB data that only focus to the hand. The second experiment is to compare the
multimodal model with the one stream input model. Comparison between RGB data result of the first
experiment and the second one was executed since the first experiment only conducts on one stream.
To combine the proposed model’s different input streams, the late, middle and early fusion methods
applied. The last experiment is the real-time experiment on two applications. One application has a
simple interface without the FSM control, while the second application is in a complete application
with a complex interface and FSM control inside it. People were asked to try the system, perform some
gestures, and do some task in the application.

4.2. Comparison of Input Data Result

The first experiment meant to show the advantages of removal of the unnecessary pixels, such
as background and focusing on one body part. As a result, in this case, the hand could increase the
accuracy rate of hand gesture recognition. On top of that, alignment the hand sequence by detecting
the preparation step of the hand gesture could also improve it as well. Table 1 shows the model
trained using RGB images without any background removal and sequence alignment, and the results
demonstrated that the average model accuracy falls to 73% under this setup. The second setup is based

Sensors 2019, 19, 5429 14 of 19

on the RGB with background subtraction and sequence alignment without focusing on the hand only.
The half body was assigned with a black color background as the input. The result shows that a 90%
accuracy rate of recognition was attained. The result demonstrated that removing the unnecessary
part and detecting the hand preparation step as the sequence alignment improves the result a lot. Even
though the result seems promising, when using in the real-time situation, the recognition rate falls
below 70%, especially when a new person is using it. The reason is that the model learns the other part
of the body as well, such as the face. Thus, during the third setup, we only used the hand information
as the input data, including the sequence alignment. The result shows that a 94% accuracy rate on
the test data without the data augmentation. Afterwards, the model was tested using depth data and
the experimental result illustrates that only using depth data with only considering the hand cannot
overcome the RGB setup data. The reason is that the designed gesture did not have a significant
difference within the depth space. In the RGB space, the model could represent the shape clearly,
comparing to the depth.

Table 1. The proposed model performance comparison with different input data setups.

No Input Setup Accuracy

1 3DCNN + LSTM + RAW RGB data without sequence alignment 73%
2 3DCNN + LSTM + RGB data with background removal + body + sequence alignment 90%
3 3DCNN + LSTM + RGB data only focusing on hand + sequence alignment 95.8%
4 3DCNN + LSTM + Depth data only focusing on hand + sequence alignment 94.4%

During this study, the data augmentation is done by scale, rotation and change the brightness
of the dataset and the last setup is to proof the data augmentation’s advantage when increasing the
accuracy rate. Within the data augmentation process, the amount of gestures increases from 2162 to
6486 sequences of the gestures. Figure 11a,b respectively show the training and validating accuracies
and losses of our late fusion 3DCNN+LSTM model using RGB and depth data focusing on hand as the
input with the augmented dataset. The results demonstrated that with our dataset, the model could
reach the training and validation accuracy of 99.4% and 99.2% respectively.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 19

The first experiment meant to show the advantages of removal of the unnecessary pixels, such
as background and focusing on one body part. As a result, in this case, the hand could increase the
accuracy rate of hand gesture recognition. On top of that, alignment the hand sequence by detecting
the preparation step of the hand gesture could also improve it as well. Table 1 shows the model
trained using RGB images without any background removal and sequence alignment, and the results
demonstrated that the average model accuracy falls to 73% under this setup. The second setup is
based on the RGB with background subtraction and sequence alignment without focusing on the
hand only. The half body was assigned with a black color background as the input. The result shows
that a 90% accuracy rate of recognition was attained. The result demonstrated that removing the
unnecessary part and detecting the hand preparation step as the sequence alignment improves the
result a lot. Even though the result seems promising, when using in the real-time situation, the
recognition rate falls below 70%, especially when a new person is using it. The reason is that the
model learns the other part of the body as well, such as the face. Thus, during the third setup, we
only used the hand information as the input data, including the sequence alignment. The result shows
that a 94% accuracy rate on the test data without the data augmentation. Afterwards, the model was
tested using depth data and the experimental result illustrates that only using depth data with only
considering the hand cannot overcome the RGB setup data. The reason is that the designed gesture
did not have a significant difference within the depth space. In the RGB space, the model could
represent the shape clearly, comparing to the depth.

During this study, the data augmentation is done by scale, rotation and change the brightness
of the dataset and the last setup is to proof the data augmentation’s advantage when increasing the
accuracy rate. Within the data augmentation process, the amount of gestures increases from 2162 to
6486 sequences of the gestures. Figure 11a,b respectively show the training and validating accuracies
and losses of our late fusion 3DCNN+LSTM model using RGB and depth data focusing on hand as
the input with the augmented dataset. The results demonstrated that with our dataset, the model
could reach the training and validation accuracy of 99.4% and 99.2% respectively.

Table 1. The proposed model performance comparison with different input data setups.

No Input Setup Accuracy
1 3DCNN + LSTM + RAW RGB data without sequence alignment 73%

2
3DCNN + LSTM + RGB data with background removal + body + sequence
alignment 90%

3 3DCNN + LSTM + RGB data only focusing on hand + sequence alignment 95.8%
4 3DCNN + LSTM + Depth data only focusing on hand + sequence alignment 94.4%

(a) (b)

Figure 11. The performances of the late fusion 3DCNN+LSTM model with 8 gestures used in the
system: (a) the model accuracy with the number of epochs; (b) the model loss against the number of
epochs.

Figure 11. The performances of the late fusion 3DCNN+LSTM model with 8 gestures used in the
system: (a) the model accuracy with the number of epochs; (b) the model loss against the number
of epochs.

4.3. Comparison of Multimodal Input Data Result

The next experiment is to test the robustness of the proposed model with different fusion
benchmarks discussed under Section 3.5. Among the several conducted experiments, the first used the
late fusion technique with the depth and RGB input. From the previous experiment, the best result of

Sensors 2019, 19, 5429 15 of 19

the model is using the hand-focusing input data with sequence alignment. Thus, the same setup was
re-applied for RGB and hand focusing depth data. However, the second and third experiments also
used the same setup but with early and middle fusion methods combining depth and RGB. The results
illustrated in Table 2 shows that using late fusion method could achieve better performance compared
to other fusion methods.

Table 2. Performance comparison of proposed 3DCNN+LSTM model with different fusion methods.

No Input Setup Accuracy Rate

1 Early Fusion + Depth + RGB hand only 95.8%
2 Middle Fusion + Depth + RGB hand only 95.1%
3 Late Fusion + Depth + RGB hand only 97.6%

4.4. Real-Time Experimental Result

As illustrates in Table 3, during the Real-Time testing, average accuracy has down from 97.6% to
89%. We instructed seven people to perform under two types of conditions. The first condition is to let
the user perform gestures one by one, and the user needs to perform each gesture 10 times. Under
this condition, the user could perform well with 95% accuracy. The second condition is to let the user
perform the gesture by him/herself in a sequence manner, and in this case, the accuracy started to go
down to 93%. The reason to decrease accuracy is that the user has forgotten the next movement when
transitioning from one gesture to another. The third real-time testing condition is to let the user use
the real application. While using this application, the result down to 89% accuracy. These problems
are due to several factors. Some user may felt uneasy and nervous when performing the gesture.
In application, the user cannot witness him/her self or his/her hand movement. Furthermore, they
did not memorize the gesture movement precisely, due to limited practice time of 5 min. The other
problem may due to the FPS (Frame per Second) getting lower in the application since it contains many
complicated functions. However, when tested using real complex application with FSM controller, the
real-time testing accuracy increased from 89% to 91% because when a user performs awkward and no
confidence. The FSM model could narrow the class to the smaller class according to the context, in this
case, is the current application state.

Table 3. Comparison of the average accuracies of real-time testing with the proposed multimodal.

No Input Setup Accuracy

1 Using simple application with simple command gesture—Test 1 95%
2 Using simple application with sequence command gesture—Test 2 93%
3 Using real complex application with no FSM controller—Test 3 89%
4 Using real complex application with FSM controller—Test 4 91%

4.5. Real-Time System

As mentioned earlier, to show the usability of our proposed method, the Real-time application
system called the IC4You was built. The system is implemented with the gesture recognition system
as the core of the interface controller. The IC4You system has been performed in several events
within Taiwan, and already tested by various users. The demo event was conducted successfully
and received much positive feedback to improve the system in future. Figure 12 visualizes the
way of the system working in Real-Time with a smart TV-like environment. The project website
available at http://video.minelab.tw/gesture/ provides how users perform gestures with a live demo of
real-time testing.

http://video.minelab.tw/gesture/

Sensors 2019, 19, 5429 16 of 19

Sensors 2019, 19, x FOR PEER REVIEW 16 of 19

(a) (b)

Figure 12. Showing the implementation of the proposed model in the Real-Time system: (a) People
performing gestures to control the system; (b) The example content of the system. The following link
is the system in action (http://video.minelab.tw/gesture/).

5. Conclusions and Future Work

This paper presents the work to solve the gesture recognition problem on real-time application
situation by combining RGB and depth modalities as the input for the deep learning model. The
combination of 3DCNN and LSTM model could extract the spatio-temporal features of the gesture
sequence, especially with the dynamic gesture recognition. In the term of using it in a real-time
application, adding the FSM controller model could narrow the gesture classification search on the
model into a smaller one that could ease the model work and enhance the accuracy result. Dataset
collection of 24 gestures were designed associated with a smart TV-like environment to test the
proposed model. As for the application’s real-time testing, eight gestures were to examine the
robustness of our work. The result suggests if the FSM controller may enhance the accuracy result in
real-time applications. For the future work, transfer learning is proposed by training the model with
large datasets such as the Sports-1M dataset or ChaLearn gesture dataset in order to enhance the
accuracy result. Also, we plan to report the comparison result with other similar work, only in terms
of gesture recognition. Another possible future direction is adding the function for gesture
modification for the user utilizing transfer learning. Moreover, the discussion of selection and
usability design of the gestures, especially for Smart-TV environment, plan to conduct and report in
the future as well.

Author Contributions: Conceptualization, N.L.H.; Data curation, N.L.H., Wisnu Aditya., S.P.K.A.;
Methodology, N.L.H.; Software, W.A.; Validation, S.P.K.A., and T.K.S.; Writing—original draft preparation,
N.L.H.; Writing—review and editing, N.L.H. and S.P.K.A., Visualization, W.A.; Supervision, T.K.S.; Project
administration, T.K.S.; Funding acquisition, T.K.S., Y.-C.C. and C.-Y.L.

Funding: The Consortium is funded by the MINISTRY OF SCIENCE AND TECHNOLOGY (MOST); grant
number MOST 108-2634-F-008-002.

Acknowledgments: We thank the research project “A Deep Learning-Based Gesture Interface and Value-Added
Location Services” sponsored by the Ministry of Science and Technology, Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grant, H.; Lai, C.-K. Simulation modeling with artificial reality technology (SMART): An integration of
virtual reality and simulation modeling. In Proceedings of the 1998 Winter Simulation Conference,
Washington, DC, USA, 13–16 December 1998; pp. 437–441.

2. Guo, Z. Research of hand positioning and gesture recognition based on binocular vision. In Proceedings of
the 2011 IEEE International Symposium on VR Innovation, Singapore, 19–20 March 2011; pp. 311–315.

3. Lee, S.-H.; Sohn, M.-K.; Kim, D.-J.; Kim, B.; Kim, H. Smart TV interaction system using face and hand
gesture recognition. In Proceedings of the 2013 IEEE International Conference on Consumer Electronics
(ICCE), Las Vegas, NV, USA, 11–14 January 2013; pp. 173–174.

Figure 12. Showing the implementation of the proposed model in the Real-Time system: (a) People
performing gestures to control the system; (b) The example content of the system. The following link is
the system in action (http://video.minelab.tw/gesture/).

5. Conclusions and Future Work

This paper presents the work to solve the gesture recognition problem on real-time application
situation by combining RGB and depth modalities as the input for the deep learning model.
The combination of 3DCNN and LSTM model could extract the spatio-temporal features of the
gesture sequence, especially with the dynamic gesture recognition. In the term of using it in a
real-time application, adding the FSM controller model could narrow the gesture classification search
on the model into a smaller one that could ease the model work and enhance the accuracy result.
Dataset collection of 24 gestures were designed associated with a smart TV-like environment to test
the proposed model. As for the application’s real-time testing, eight gestures were to examine the
robustness of our work. The result suggests if the FSM controller may enhance the accuracy result
in real-time applications. For the future work, transfer learning is proposed by training the model
with large datasets such as the Sports-1M dataset or ChaLearn gesture dataset in order to enhance the
accuracy result. Also, we plan to report the comparison result with other similar work, only in terms of
gesture recognition. Another possible future direction is adding the function for gesture modification
for the user utilizing transfer learning. Moreover, the discussion of selection and usability design of
the gestures, especially for Smart-TV environment, plan to conduct and report in the future as well.

Author Contributions: Conceptualization, N.L.H.; Data curation, N.L.H., Wisnu Aditya., S.P.K.A.; Methodology,
N.L.H.; Software, W.A.; Validation, S.P.K.A., and T.K.S.; Writing—original draft preparation, N.L.H.;
Writing—review and editing, N.L.H. and S.P.K.A., Visualization, W.A.; Supervision, T.K.S.; Project administration,
T.K.S.; Funding acquisition, T.K.S., Y.-C.C. and C.-Y.L.

Funding: The Consortium is funded by the MINISTRY OF SCIENCE AND TECHNOLOGY (MOST); grant
number MOST 108-2634-F-008-002.

Acknowledgments: We thank the research project “A Deep Learning-Based Gesture Interface and Value-Added
Location Services” sponsored by the Ministry of Science and Technology, Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grant, H.; Lai, C.-K. Simulation modeling with artificial reality technology (SMART): An integration of virtual
reality and simulation modeling. In Proceedings of the 1998 Winter Simulation Conference, Washington, DC,
USA, 13–16 December 1998; pp. 437–441.

2. Guo, Z. Research of hand positioning and gesture recognition based on binocular vision. In Proceedings of
the 2011 IEEE International Symposium on VR Innovation, Singapore, 19–20 March 2011; pp. 311–315.

3. Lee, S.-H.; Sohn, M.-K.; Kim, D.-J.; Kim, B.; Kim, H. Smart TV interaction system using face and hand gesture
recognition. In Proceedings of the 2013 IEEE International Conference on Consumer Electronics (ICCE), Las
Vegas, NV, USA, 11–14 January 2013; pp. 173–174.

http://video.minelab.tw/gesture/

Sensors 2019, 19, 5429 17 of 19

4. Dong, H.; Danesh, A.; Figueroa, N.; El Saddik, A. An elicitation study on gesture preferences and memorability
toward a practical hand-gesture vocabulary for smart televisions. IEEE Access 2015, 3, 543–555. [CrossRef]

5. Huang, J.; Zhou, W.; Li, H.; Li, W. Sign language recognition using 3d convolutional neural networks. In
Proceedings of the 2015 IEEE International Conference on Multimedia and Expo (ICME), Turin, Italy, 29
June–3 July 2015; pp. 1–6.

6. Cui, R.; Liu, H.; Zhang, C. Recurrent convolutional neural networks for continuous sign language recognition
by staged optimization. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7361–7369.

7. Liu, H.; Wang, L. Gesture recognition for human-robot collaboration: A review. Int. J. Ind. Ergon. 2018, 68,
355–367. [CrossRef]

8. Xu, D.; Wu, X.; Chen, Y.-L.; Xu, Y. Online dynamic gesture recognition for human robot interaction. J. Intell.
Robot. Syst. 2015, 77, 583–596. [CrossRef]

9. Hakim, N.L.; Sun, S.-W.; Hsu, M.-H.; Shih, T.K.; Wu, S.-J. Virtual guitar: Using real-time finger tracking for
musical instruments. Int. J. Comput. Sci. Eng. 2019, 18, 438–450. [CrossRef]

10. Dawar, N.; Kehtarnavaz, N. Real-time continuous detection and recognition of subject-specific smart TV
gestures via fusion of depth and inertial sensing. IEEE Access 2018, 6, 7019–7028. [CrossRef]

11. Sturman, D.J.; Zeltzer, D. A survey of glove-based input. IEEE Comput. Graph. Appl. 1994, 14, 30–39.
[CrossRef]

12. Wang, R.Y.; Popović, J. Real-time hand-tracking with a color glove. ACM Trans. Graph. 2009, 28, 63.
[CrossRef]

13. Mummadi, C.; Leo, F.; Verma, K.; Kasireddy, S.; Scholl, P.; Kempfle, J.; Laerhoven, K. Real-Time and
Embedded Detection of Hand Gestures with an IMU-Based Glove. Informatics 2018, 5, 28. [CrossRef]

14. Georgi, M.; Amma, C.; Schultz, T. Recognizing Hand and Finger Gestures with IMU based Motion and EMG
based Muscle Activity Sensing. In Proceedings of the 2015 International Joint Conference on Biomedical
Engineering Systems and Technologies, Lisbon, Portugal, 12–15 January 2015; pp. 99–108.

15. Arachchi, S.K.; Hakim, N.L.; Hsu, H.-H.; Klimenko, S.V.; Shih, T.K. Real-time static and dynamic gesture
recognition using mixed space features for 3D virtual world’s interactions. In Proceedings of the 2018 32nd
International Conference on Advanced Information Networking and Applications Workshops (WAINA),
Cracow, Poland, 16–18 May 2018; pp. 627–632.

16. Cheng, H.; Yang, L.; Liu, Z. Survey on 3D hand gesture recognition. IEEE Trans. Circuits Syst. Video Technol.
2015, 26, 1659–1673. [CrossRef]

17. Oyedotun, O.K.; Khashman, A. Deep learning in vision-based static hand gesture recognition. Neural Comput.
Appl. 2017, 28, 3941–3951. [CrossRef]

18. Molchanov, P.; Gupta, S.; Kim, K.; Kautz, J. Hand gesture recognition with 3D convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston,
MA, USA, 7–12 June 2015; pp. 1–7.

19. Ren, Z.; Meng, J.; Yuan, J.; Zhang, Z. Robust hand gesture recognition with kinect sensor. In Proceedings of
the 19th ACM International Conference on Multimedia, Scottsdale, AZ, USA, 28 November–1 December
2011; pp. 759–760.

20. Ren, Z.; Yuan, J.; Meng, J.; Zhang, Z. Robust part-based hand gesture recognition using kinect sensor. IEEE
Trans. Multimed. 2013, 15, 1110–1120. [CrossRef]

21. Li, Y. Hand gesture recognition using Kinect. In Proceedings of the 2012 IEEE International Conference on
Computer Science and Automation Engineering, Beijing, China, 22–24 June 2012; pp. 196–199.

22. Melax, S.; Keselman, L.; Orsten, S. Dynamics based 3D skeletal hand tracking. In Proceedings of the Graphics
Interface 2013, Regina, SK, Canada, 29–31 May 2013; pp. 63–70.

23. Kılıboz, N.Ç.; Güdükbay, U. A hand gesture recognition technique for human-computer interaction. J. Vis.
Commun. Image Represent. 2015, 28, 97–104. [CrossRef]

24. Plouffe, G.; Cretu, A.-M. Static and dynamic hand gesture recognition in depth data using dynamic time
warping. IEEE Trans. Instrum. Meas. 2015, 65, 305–316. [CrossRef]

25. Wu, Y.-K.; Wang, H.-C.; Chang, L.-C.; Li, K.-C. Using HMMs and depth information for signer-independent
sign language recognition. In Multi-Disciplinary Trends in Artificial Intelligence; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 79–86.

http://dx.doi.org/10.1109/ACCESS.2015.2432679
http://dx.doi.org/10.1016/j.ergon.2017.02.004
http://dx.doi.org/10.1007/s10846-014-0039-4
http://dx.doi.org/10.1504/IJCSE.2019.099081
http://dx.doi.org/10.1109/ACCESS.2017.2788558
http://dx.doi.org/10.1109/38.250916
http://dx.doi.org/10.1145/1531326.1531369
http://dx.doi.org/10.3390/informatics5020028
http://dx.doi.org/10.1109/TCSVT.2015.2469551
http://dx.doi.org/10.1007/s00521-016-2294-8
http://dx.doi.org/10.1109/TMM.2013.2246148
http://dx.doi.org/10.1016/j.jvcir.2015.01.015
http://dx.doi.org/10.1109/TIM.2015.2498560

Sensors 2019, 19, 5429 18 of 19

26. Chen, Q.; Georganas, N.D.; Petriu, E.M. Real-time vision-based hand gesture recognition using haar-like
features. In Proceedings of the 2007 IEEE Instrumentation & Measurement Technology Conference IMTC
2007, Warsaw, Poland, 1–3 May 2007; pp. 1–6.

27. Wachs, J.P.; Kölsch, M.; Stern, H.; Edan, Y. Vision-based hand-gesture applications. Commun. ACM 2011, 54,
60–71. [CrossRef]

28. Ren, Z.; Meng, J.; Yuan, J. Depth camera based hand gesture recognition and its applications in
human-computer-interaction. In Proceedings of the 2011 8th International Conference on Information,
Communications & Signal Processing, Singapore, 13–16 December 2011; pp. 1–5.

29. Yang, C.; Jang, Y.; Beh, J.; Han, D.; Ko, H. Gesture recognition using depth-based hand tracking for contactless
controller application. In Proceedings of the 2012 IEEE International Conference on Consumer Electronics
(ICCE), Las Vegas, NV, USA, 13–16 January 2012; pp. 297–298.

30. Zhang, C.; Tian, Y. Histogram of 3D facets: A depth descriptor for human action and hand gesture recognition.
Comput. Vis. Image Underst. 2015, 139, 29–39. [CrossRef]

31. Escobedo, E.; Camara, G. A new approach for dynamic gesture recognition using skeleton trajectory
representation and histograms of cumulative magnitudes. In Proceedings of the 2016 29th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI), Sao Paulo, Brazil, 4–7 October 2016; pp. 209–216.

32. Simonyan, K.; Zisserman, A. Two-stream convolutional networks for action recognition in videos. In
Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC,
Canada, 8–13 December 2014; pp. 568–576.

33. Wang, L.; Qiao, Y.; Tang, X. Action recognition with trajectory-pooled deep-convolutional descriptors. In
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 4305–4314.

34. Feichtenhofer, C.; Pinz, A.; Wildes, R. Spatiotemporal residual networks for video action recognition. In
Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona,
Spain, 5–10 December 2016; pp. 3468–3476.

35. Shahroudy, A.; Liu, J.; Ng, T.-T.; Wang, G. Ntu rgb+ d: A large scale dataset for 3d human activity analysis.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27–30 June 2016; pp. 1010–1019.

36. Singh, B.; Marks, T.K.; Jones, M.; Tuzel, O.; Shao, M. A multi-stream bi-directional recurrent neural network
for fine-grained action detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1961–1970.

37. Pigou, L.; Van Den Oord, A.; Dieleman, S.; Van Herreweghe, M.; Dambre, J. Beyond temporal pooling:
Recurrence and temporal convolutions for gesture recognition in video. Int. J. Comput. Vis. 2018, 126,
430–439. [CrossRef]

38. Du, Y.; Wang, W.; Wang, L. Hierarchical recurrent neural network for skeleton based action recognition. In
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1110–1118.

39. Veeriah, V.; Zhuang, N.; Qi, G.-J. Differential recurrent neural networks for action recognition. In Proceedings
of the 2015 IEEE International Conference on Computer Vision (ICCV’15), Santiago, Chile, 7–13 December
2015; pp. 4041–4049.

40. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
Commun. ACM 2017, 60, 84–90. [CrossRef]

41. Pigou, L.; Dieleman, S.; Kindermans, P.-J.; Schrauwen, B. Sign Language Recognition Using Convolutional Neural
Networks; Springer: Berlin/Heidelberg, Germany, 2014; pp. 572–578.

42. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d
convolutional networks. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7–13 December 2015; pp. 4489–4497.

43. Molchanov, P.; Yang, X.; Gupta, S.; Kim, K.; Tyree, S.; Kautz, J. Online detection and classification of dynamic
hand gestures with recurrent 3d convolutional neural network. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4207–4215.

44. Davis, J.; Shah, M. Visual gesture recognition. IEE Proc. Vis. Image Signal Process 1994, 141, 101–106.
[CrossRef]

http://dx.doi.org/10.1145/1897816.1897838
http://dx.doi.org/10.1016/j.cviu.2015.05.010
http://dx.doi.org/10.1007/s11263-016-0957-7
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1049/ip-vis:19941058

Sensors 2019, 19, 5429 19 of 19

45. Yeasin, M.; Chaudhuri, S. Visual understanding of dynamic hand gestures. Pattern Recognit. 2000, 33,
1805–1817. [CrossRef]

46. Hong, P.; Turk, M.; Huang, T.S. Gesture modeling and recognition using finite state machines. In Proceedings
of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France,
28–30 March 2000; pp. 410–415.

47. Wan, J.; Zhao, Y.; Zhou, S.; Guyon, I.; Escalera, S.; Li, S.Z. Chalearn looking at people RGB-D isolated and
continuous datasets for gesture recognition. In Proceedings of the 2006 IEEE Conference on Computer Vision
and Pattern Recognition Workshops, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 56–64.

48. Kovac, J.; Peer, P.; Solina, F. Human skin color clustering for face detection. In Proceedings of the IEEE
Region 8 EUROCON 2003, Computer as a Tool, Ljubljana, Slovenia, 22–24 September 2003.

49. Data Science Bootcamp. Available online: https://medium.com/data-science-bootcamp/understand-the-
softmax-function-in-minutes-f3a59641e86d (accessed on 8 November 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0031-3203(99)00175-2
https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d
https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Model
	Data Collection
	Data Preprocessing
	Data Sequence Alignment and Augmentation
	Spatio-Temporal Feature Learning
	Multimodal Architecture
	Context-Aware Neural Network
	FSM Controller Model
	Training and Validating Strategies

	Experimental Result and Discussion
	Experimental Setup
	Comparison of Input Data Result
	Comparison of Multimodal Input Data Result
	Real-Time Experimental Result
	Real-Time System

	Conclusions and Future Work
	References

