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S1. Modification of the Measurement Signal Model 

1.1. Signal Functions Modified with Non-Orthogonality 

As known from basic measuring principles, theoretically, 𝐶 𝑥  and 𝐶 𝑥  are orthogonal to 𝐶 𝑥  and 𝐶 (𝑥) , respectively, and 𝐶 (𝑥)  and 𝐶 (𝑥)  are orthogonal to 𝐶 (𝑥)  and 𝐶 (𝑥) , 
respectively. However, orthogonality can be affected by fabrication errors and installation errors. The 
signal functions for fine measurement and coarse measurement can be, respectively, rewritten as: 

⎩⎪⎨
⎪⎧𝐶 (𝑥) = +𝐶 (𝑥 + 𝜙 + 𝛼 ) + 𝑎𝐶 (𝑥) = −𝐶 (𝑥 + 𝜙 + 𝛼 ) + 𝑏𝐶 (𝑥) = 𝐶 (𝑥)                                𝐶 (𝑥) = 𝐶 (𝑥)                                (s1.1) 

⎩⎨
⎧𝐶 (𝑥) = +𝐶 (𝑥 + 𝜙 + 𝛼 ) + 𝑒𝐶 (𝑥) = −𝐶 (𝑥 + 𝜙 + 𝛼 ) + 𝑓𝐶 (𝑥) = 𝐶 (𝑥)                               𝐶 (𝑥) = 𝐶 (𝑥)                               (s1.2) 

where 𝛼  and 𝛼  are very small constants. 

1.2. Scaling Coefficient Functions 

As described above, scaling coefficient functions were introduced to modify the signal model 
due to changes in amplitude and nonlinearity and can be expressed simply by polynomials. The 
scaling coefficient functions are described as follows: 

𝑓 = 𝑎 𝑥 , 𝑝 = A, B, … , H (s1.3)

In Equation (s1.3), n is the degree of the polynomials, and its value is determined according to 
the specific circumstances. The higher the degree of the polynomials is, the more complicated the 
variation it can express. The scaling coefficient function 𝑓  is limited to 𝑓 − 1 < ξ when 𝑥 ∈ [0, 𝐿], 
where ξ is a very small constant. 

1.3. High-Frequency Noises 

In practical applications, interference from electromagnetic signals and mechanical vibrations 
can lead to high-frequency noises that influence the measuring system’s performance. For 
convenience, four of the same high-frequency noises, labeled 𝑁 , were introduced into the 
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theoretical functions for fine measurement, and another four of the same high-frequency noises, 
labeled 𝑁 , were introduced into the theoretical functions for coarse measurement. High-frequency 
noises have a variety of frequency components and can be described as: 𝑁 = 𝐴 + ∑ 𝐴 𝑠𝑖𝑛 𝑛𝜔 𝑥 + 𝜑𝑁 = 𝐴 + ∑ 𝐴 𝑠𝑖𝑛(𝑛𝜔 𝑥 + 𝜑 ) .  (s1.4)

1.4. White Noises 

In practical applications, white noise is ubiquitous in signals and affects the SNR; thus, it was 
introduced into the measuring signal model. For convenience, four different white noises of the same 
level, all labeled 𝑁 , were introduced into the four theoretical functions for fine measurement. Four 
different white noises of the same level, labeled 𝑁 , were also applied to the other four theoretical 
functions for coarse measurement. Both 𝑁  and 𝑁  were generated by the Gauss white  
noise equation. 

S2. Signal Processing Method  

S2.1. Differential Method 

The differential method is defined as follows: 

⎩⎪⎨
⎪⎧𝑦 = 𝐶 − 𝐶𝑦 = 𝐶 − 𝐶𝑦 = 𝐶 − 𝐶𝑦 = 𝐶 − 𝐶 . (s2.1)

According to Equation (10), Equation (s2.1) can be rewritten as: 

⎩⎪⎨
⎪⎧𝑦 = (𝑓 + 𝑓 )𝐶 𝑥 + 𝜙 + 𝛼 + 𝑎𝑓 − 𝑏𝑓 + 𝑁     𝑦 = (𝑓 + 𝑓 )𝐶 𝑥 − 𝑇 /4 + 𝜙 + 𝑐𝑓 − 𝑑𝑓 + 𝑁𝑦 = (𝑓 + 𝑓 )𝐶 (𝑥 + 𝜙 + 𝛼 ) + 𝑒𝑓 − 𝑓𝑓 + 𝑁       𝑦 = (𝑓 + 𝑓 )𝐶 (𝑥 − 𝑇 /4 + 𝜙 ) + 𝑔𝑓 − ℎ𝑓 + 𝑁   (s2.2)

where 𝑦  and 𝑦  are fine signals, and 𝑦  and 𝑦  are coarse signals. Simulated curves of fine 
signals and coarse signals are shown in Figure 4a. 

In Equation (s2.2), take the expression of 𝑦  as an example for analysis. Because |𝑓 − 1| < ξ, 𝑖 = A, B, that is, 𝑓 ≈ 1, 𝑖 = 𝐴,𝐵, the maximum variable signal of 𝑦  is: ∆𝑦 = 𝑚𝑎𝑥 𝑦 −𝑚𝑖𝑛 𝑦 ≈ 4𝐴 .  (s2.3)

The other expressions of Equation (s2.2) can be analyzed using the same method, so  ∆𝑦 ≈ ∆𝑦 ≈ 4𝐴  and ∆𝑦 ≈ ∆𝑦 ≈ 4𝐴 . From Equation (s2.2), we can also obtain 𝑁 = 𝑁 = N  
and 𝑁 = 𝑁 = 𝑁 . 

The displacement resolution of fine signals and coarse signals is 𝛿 = /𝛿 = /  .  (s2.4)

S2.2. Ratio Method 

The ratio algorithm is defined as follows: 
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⎩⎪⎨
⎪⎧𝑦 = 𝐶 /𝐶𝑦 = 𝐶 /𝐶𝑦 = 𝐶 /𝐶𝑦 = 𝐶 /𝐶 . (s2.5)

According to Equation (10), Equation (s2.5) can be rewritten as: 

⎩⎪⎪
⎨⎪
⎪⎧𝑦 =    𝑦 = //𝑦 = ( )( )       𝑦 = ( / )( / )   

.  (s2.6)

Similarly, 𝑦  and 𝑦  are called fine signals, and 𝑦  and 𝑦  are called coarse signals. 
Simulated curves of fine signals and coarse signals are shown in Figure 4b. 

In Equation (s2.6), take the expression of 𝑦  as an example for analysis. Since  𝑁 + 𝑁 ≪ 𝑓 𝐶 𝑥 + 𝜙 + 𝛼 + 𝑎𝑓  and 𝑁 + 𝑁 ≪ −𝑓 𝐶 𝑥 + 𝜙 + 𝛼 + 𝑏𝑓 , the term 𝑁 + 𝑁  
can be neglected. Besides this, there is 𝑓 ≈ 1, 𝑖 = 𝐴,𝐵, so: 𝑦 ≈ .  (s2.7)

The maximum variable signal of 𝑦  is: ∆𝑦 = 𝑚𝑎𝑥 𝑦 − 𝑚𝑖𝑛 𝑦 ≈ − = ( ) .  (s2.8)

The other expressions of Equation (s2.6) can be analyzed using the same method, so 

⎩⎪⎪
⎨⎪
⎪⎧∆𝑦 ≈ ( )( )( )∆𝑦 ≈ ( )( )( )∆𝑦 ≈ ( )( )( )∆𝑦 ≈ ( )( )( )

.  (s2.9)

The noise in the fine signals and coarse signals cannot be directly obtained from Equation (s2.6). 
However, we can calculate it by taking the following approach: 

⎩⎪⎨
⎪⎧𝑁 = 𝑦 − 𝑦𝑁 = 𝑦 − 𝑦𝑁 = 𝑦 − 𝑦𝑁 = 𝑦 − 𝑦  (s2.10)

where 

⎩⎪⎪
⎨⎪
⎪⎧𝑦 =𝑦 =𝑦 =𝑦 =

.  (s2.11)

The displacement resolution of fine signals and coarse signals is: 
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⎩⎨
⎧𝛿 = ∆ /𝛿 = ∆ /     , i = 1,2. (s2.12)

S2.3. Differential–Ratio Method 

The differential–ratio approach is defined as follows: 

⎩⎪⎪
⎨⎪
⎪⎧𝑦 =𝑦 =  
𝑦 =𝑦 =  

.  (s2.13)

Similarly, 𝑦  and 𝑦  are called fine signals, and 𝑦  and 𝑦  are called coarse signals. 
Simulated curves of fine signals and coarse signals are shown in Figure 4c. 

According to Equation (10), Equation (s2.13) can be rewritten as: 

⎩⎪⎪
⎨⎪
⎪⎧ 𝑦 = ( )( )   𝑦 = ( ) /( ) /𝑦 = ( ) ( )( ) ( )      𝑦 = ( ) ( / )( ) ( / )    

.  (s2.14)

Using the same analytical method as for the ratio approach, we can obtain the maximum variable 
value of fine signals and coarse signals: 

⎩⎪⎪⎨
⎪⎪⎧∆𝑦 ≈∆𝑦 ≈∆𝑦 ≈∆𝑦 ≈

.  (s2.15)

The noise in the fine signals and coarse signals is calculated as follows: 

⎩⎪⎨
⎪⎧𝑁 = 𝑦 − 𝑦𝑁 = 𝑦 − 𝑦𝑁 = 𝑦 − 𝑦𝑁 = 𝑦 − 𝑦   (s2.16)

where 

⎩⎪⎪
⎨⎪
⎪⎧𝑦 =𝑦 =𝑦 =𝑦 =

.  (s2.17)

The displacement resolution of fine signals and coarse signals is: 
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⎩⎨
⎧δ = ∆ /δ = ∆ /  ,  i = 1,2. (s2.18)

S3. Analysis of the Error Components of the Entire Experimental System 

To understand different types of errors, we performed an analysis of the error components of 
the entire experimental system. In the experimental setup, a HEIDENHAIN-CERTO length  
gauge (H.) was used to calibrate the capacitive displacement system (CDS), and the characteristics of 
H. are shown in Table S1. The accuracy of H. is less than ±0.03 μm in a short-range measurement, and 
the repeatability/precision is also less than ±0.03 μm. As shown in Figure S1, there is uncertainty in 
the CDS, which refers to the difference between the H. displacement and the CDS displacement. This 
can be caused by two types of errors: (1) the first type of error is a connection error between the CDS 
and H., which is not a characteristic of the CDS itself; (2) the second type of error is a systematic error 
in the CDS itself, including the error analyzed in Section 6, which can be compensated for. 

The first type of error certainly influences the accuracy of the CDS (Figure S1). However, such 
error is not a characteristic of the CDS itself. The error can be very small if we improve the accuracy 
of the calibration system. This type of error does not fall within the scope of our analysis. The second 
type of error, which is also called displacement calculation model error, is analyzed in Section 6. The 
uncertainty (±40 nm) in the displacement calculation model error was obtained according to the 
difference between the calibrated displacement and the calculated displacement. The uncertainty 
(±40 nm) is not a component of the first type of error. Thus, the uncertainty may be close to that of H. 

Table S1. Characteristics of the HEIDENHAIN-CERTO length gauge. 

System Accuracy 
(19 °C to 21 °C) 

Short-Range 
Accuracy 

Repeatability 
Maximum Position Error 

Per Signal Period 
Grating 
Period 

less than ±0.1 μm; 
less than ±0.05 μm1 

less than 
±0.03 μm 

less than ±0.03 
μm 

less than ±0.02 μm 4 μm 

1 After compensating for linear length error. 

 

Figure S1. Accuracy of the entire experimental system. 

 


