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Abstract: We proposed a novel kind of absolute capacitive grating displacement measuring system
with both high accuracy and long range in a previous article. The measuring system includes both a
MOVER and a STATOR, the contact surfaces of which are coated by a thin layer of dielectric film
with a low friction coefficient and high hardness. The measuring system works in contact mode to
minimize the gap changes. This paper presents a theoretical analysis of the influence of some factors,
including fabrication errors, installation errors, and environment disturbance, on measurement
signals. The measuring signal model was modified according to the analysis. The signal processing
methods were investigated to improve the signal sensitivity and signal-to-noise ratio (SNR). The
displacement calculation model shows that the design of orthogonal signals can solve the dead-zone
problem. Absolute displacement was obtained by a simple method using two coarse signals and
highly accurate displacement was further obtained while using two fine signals with the help of
absolute information. According to the displacement calculation model and error analysis, the error
in fine calculation functions mainly determines the model’s accuracy and is locally affected by coarse
calculation functions. It was also determined that amplitude differences, non-orthogonality, and
signal offsets are not related to the accuracy of the displacement calculation model. The experiments
were carried out to confirm the abovementioned theoretical analysis. The experimental results show
that the displacement resolution and error in the displacement calculation model reach ±4.8 nm
and ±34 nm, respectively, in the displacement range of 5 mm. The experiments and the theoretical
analyses both indicate that our proposed measuring system has great potential for achieving an
accuracy of tens of nanometers and a range of hundreds of millimeters.

Keywords: absolute displacement measurement; nanometer accuracy; long range; error analysis

1. Introduction

Displacement measurement with nanoscale resolution and accuracy in the range of several
hundred millimeters is crucial in many industrial fields, including semiconductor manufacturing and
ultra-precision machining [1–4]. It is very challenging to achieve both high-accuracy and long-range
displacement measurements [5,6]. Among the various kinds of displacement sensors [7–11], laser
interferometers, grating rulers, and capacitive grating sensors are the most commonly used types
of transducers for displacement measurement, with comparable accuracy over a relatively long
range [12–18]. Laser interferometers have a range of dozens of centimeters, or even several meters, with
an accuracy of greater than ±0.1 ppm [13,19–21]. In addition to their cost and complicated structure,
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they are sensitive to many factors, including beam interference, optical mixing, air temperature and
humidity, and variation in the optical medium [22–24]. They are only suitable for use in well-controlled
environments, such as those in calibration applications, due to these drawbacks [5,17,25,26]. When
compared with laser interferometers, grating rulers are less susceptible to the environment, and they
are universally used in workshop situations that require high accuracy and a long range. The accuracy
of commercial grating rulers is usually about ±1 µm, and it is quite difficult to improve the accuracy
due to the restrictions of nanofabrication [27,28]. Due to the advantages of a simple structure, low cost,
low power consumption, and robustness to the environment [8,29,30], capacitive grating displacement
sensors have been arranged with periodical electrodes to achieve both high precision and a long
range [31–33]. The measurement precision of such area-change-based capacitive grating sensors is very
vulnerable to gap changes [16,26,34]. A contact-type sensor was proposed for reducing errors in gap
change, but it was not able to truly reach the goal of long-range measurement due to the dead-zone
regions that exist in periodic signals where measurement is insensitive to changes in displacement,
which results in a major accuracy problem [35,36]. Another kind of time-grating-based sensor was
reported in which the resolution is not limited by the electrode pitch and gap. However, signal qualities,
including amplitude differences, phase differences, and the offset caused by errors in fabrication and
installation, affect the accuracy of these sensors [17,25,37,38].

Absolute displacement sensors immediately provide absolute position information without
searching for references through motion under the condition of rebooting after a power loss [39,40].
Absolute displacement sensors remove cumulative errors and provide position information more
efficiently when compared with incremental sensors [41]. These characteristics of absolute
displacement sensors are essential to closed-loop feedback control in industrial production. Generally,
laser interferometers obtain the absolute position while using the time-of-flight method or the
multi-wavelength method; however, these methods are very complex [42–44]. Absolute grating rulers
or grating encoders apply binary code patterns that occupy one or more code tracks for obtaining
absolute displacement information [45]; however, these code tracks are difficult to manufacture due
to accuracy requirements [46]. It is also difficult and time-consuming to obtain absolute position
information from grating rulers or grating encoders [47,48]. There are very few reports on the methods
for capacitive grating linear displacement sensors, and the precision of the periodic size of electrodes
according to calculation principles greatly influences the accuracy of an absolute displacement
measurement [49,50].

Previously, we proposed an absolute capacitive grating displacement measuring system with both
high accuracy and long range that includes a MOVER and a STATOR [16]. A thin layer of dielectric
film with a low friction coefficient is coated on the contact surfaces of the MOVER and the STATOR.
The measuring system works in the contact mode to minimize the gap changes, and the measurement
accuracy hardly suffers from the non-uniformity in the gap when the MOVER moves relative to the
STATOR. A simple and novel method for obtaining the absolute displacement was introduced into the
measuring system, and this method ensures that the measuring system’s accuracy is almost unaffected
by errors in the fabrication and installation. Dead-zone regions are first pointed out and two orthogonal
periodic signals are then selectively and alternately used to solve the problem.

In this paper, a signal model is constructed based on measuring principles and further modified
by taking the influences of fabrication errors, installation errors, and environment disturbances into
account. The signal processing methods are investigated to improve the signal sensitivity and resolution.
A displacement calculation model is established to obtain the absolute displacement with high accuracy
and provide theoretical support to an error analysis. The error analysis of the displacement calculation
model identified the major sources of error in the calculation model and provided information that was
used to increase the model’s accuracy. The error in the displacement calculation model is unrelated
to signal amplitude difference, non-orthogonality, and signal offset, according to the displacement
calculation model and the error analysis. The final section describes the experiments and analyses that
were carried out.
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2. Basic Measuring Principle

Figure 1a shows the overall structure of the proposed displacement measuring system, which
includes a MOVER and a STATOR [16]. The MOVER and the STATOR both consist of periodically
arranged electrodes that were covered with a thin layer of dielectric film with a low friction coefficient
(Figure 1a,c). The MOVER moves relative to the STATOR in the contact mode along the X direction.
There are four rows of metal electrodes on the MOVER: two rows labeled as Mc with only one electrode
in each row and another two rows of metal electrodes labeled as Mf with n (n = 3) electrodes in each
row. The width and length of the electrodes in Mf are W f g and L f g, respectively, and the interval
between two adjacent electrodes is also W f g. The width and length of the electrodes in Mc are Wcg

and Lcg, respectively. All of these electrodes on the MOVER are connected together. On the STATOR,
the four grating-pattern groups of electrodes that are labeled A, B, C, and D in the middle two rows
perform fine measurements, and the four grating-pattern groups of electrodes labeled E, F, G, and H in
the bilateral two rows perform coarse measurements to provide absolute displacement information.
The electrode width is W f , the electrode length is L f , and the interval between two adjacent electrodes
is I f , as shown in Figure 1b. The two rows of electrodes are offset by a distance of W f g/2, and W f g is
equal to (W f + I f ). The four grating-pattern groups A, B, C, and D in combination with the electrodes
in Mf form the variable capacitor groups (VCGs), labeled CA, CB, CC, and CD, respectively, and these
four VCGs are used to perform fine measurements. As shown in Figure 1d, the electrode width is
Wc, the electrode length is Lc, and the interval between two adjacent electrodes is Ic. There is also a
difference in the distance of Wcg/2 between the two rows of coarse electrodes, and Wcg is equal to
(Wc + Ic). The four grating-pattern groups E, F, G, and H in combination with the electrodes in Mc also
form the variable capacitor groups (VCGs), labeled CE, CF, CG, and CH, respectively, and these four
VCGs are used to perform coarse measurements.

For an ideal parallel-plate capacitor, the gap between two electrode plates, the overlapping area
of the two plates, and the dielectric properties of the insulator between the plates determine the
capacitance. As is shown in Figure 1, according to C = εS/d, CA(x) is described as:

CA(x) =


nε
d

(
W f − x

)
L f + C0

A, x ∈
[
0, W f

)
C0

A, x ∈
[
W f , W f g

)
nε
d

(
x−W f − I f

)
L f + C0

A, x ∈
[
W f g, 2W f g − I f

)
nε
d W f L f + C0

A, x ∈
[
2W f g − I f , 2W f g

] (1)

where ε is the permittivity of the dielectric materials between the metal electrodes on the MOVER
and the STATOR, d is the distance between the metal electrodes on the MOVER and the STATOR, n
is the number of electrodes Mf in each row on the MOVER, and x is the relative displacement of the
MOVER and the STATOR in the X direction. The constant C0

A is introduced into Equation (1) due to
the parasitic capacitance.

To simplify Equation (1), it can be rewritten as:

CA(x) = C f (x) + a (2)

where

C f (x) =



−2A f
W f

x + A f

−A f
2A f
W f

x−A f

(
3 +

2I f
W f

)
A f

(3)

a = A f + C0
A. (4)
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Figure 1. Schematic of the displacement measuring system. (a) Overall structure of the displacement
measuring system; (b) top view of fine displacement measurement; (c) section view of the displacement
measuring system; and, (d) top view of coarse displacement measurement.

In Equations (3) and (4), A f =
nεW f L f

2d is the amplitude of the functions for the fine measurement.
In fact, C f (x) is a periodic function within the displacement range L, whose period is T f = 2W f g,
corresponding to the period of the electrode arrangement for the fine measurement.

For a more general form, Equation (2) can be further formulated as

CA(x) = C f
(
x + φ f

)
+ a (5)

where φ f is the initial phase of displacement, which means that the displacement starts at a certain
location.

The function CB(x) can be derived in the same way. The difference in the location of grating-pattern
group A and grating-pattern group B is W f g, thus:

CB(x) = C f
(
x + W f g + φ f

)
+ b = −C f

(
x + φ f

)
+ b (6)

where b = A f + C0
B. C0

B is the parasitic capacitance. Its value might be a little different from that of C0
A.

Similarly, functions CC(x) and CD(x) can be derived, as follows: CC(x) = +C f
(
x− T f /4 + φ f

)
+ c

CD(x) = −C f
(
x− T f /4 + φ f

)
+ d

(7)
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where c = A f + C0
C, d = A f + C0

D
The structure’s design makes sure that the functions CE(x)~CH(x) for the coarse measurement have

no more than a single cycle, which ensures the uniqueness of measurements within the displacement
measurement range L. When CE(x)~CH(x) have just one cycle, whose period is Tc = L, they can be
expressed as: 

CE(x) = +Cc(x + φc) + e
CF(x) = −Cc(x + φc) + f
CG(x) = +Cc(x + Tc/4 + φc) + g
CH(x) = −Cc(x + Tc/4 + φc) + h

(8)

where e = Ac + C0
E, f = Ac + C0

F, g = Ac + C0
G, h = Ac + C0

H, and

Cc(x) =


−

2Ac
Wc

x + Ac

−Ac
2Ac
Wc

x−AC
(
3 + 2Ic

Wc

)
Ac

. (9)

In Equation (9), Ac =
εWcLc

2d is the amplitude of the functions for the coarse measurement and φc is
the initial phase of displacement, which is related to the arrangement of the electrodes and the starting
position of the displacement.

Figure 1b shows the schematic curves of functions CA(x)~CD(x) for the fine measurement, and
Figure 1d shows the schematic curves of functions CE(x)~CH(x) for the coarse measurement. It can be
seen that the two curves in each pair CA(x) and CB(x), CC(x) and CD(x), CE(x) and CF(x), and CG(x)
and CH(x) have the opposite phase. This demonstrates that C f

(
x + φ f

)
and C f

(
x− T f /4 + φ f

)
are

orthogonal to each other and Cc(x + φc) and Cc(x− Tc/4 + φc) are orthogonal to each other.

3. Modification of the Measurement Signal Model

In practical applications, the capacitance signal values that are generated by the measuring system
slightly deviate from the theoretical values due to such factors as fabrication errors, installation errors,
and environmental disturbances. In Figure 2, we illustrate some different types of fabrication errors
(Figure 2a–c) and installation errors (Figure 2d,e). Figure 2a shows errors in the dimensions and position
of electrodes. These fabrication errors may be caused by the limitations to the processing methods
and the equipment’s accuracy. Position error e1 will change the signal orthogonality. Position error e2

expresses the non-uniformity in the spacing between two adjacent electrodes; this error influences
the periodic consistency of signals. An error in the size of electrodes is denoted e3; this error will
lead to variation in the amplitude with a change in the displacement of a periodic capacitance signal.
Although the dielectric film surfaces of the MOVER and the STATOR will always keep in contact when
they slide, gap d will slightly vary because of such factors, including non-uniformity in the dielectric
film’s thickness and deformation of the substrate. The thickness of the dielectric film that is coated on
an electrode might not be uniform due to limitations to the processing methods, and Figure 2b shows
such a case. Figure 2c shows the deformation of the substrate that might be caused by internal stress
or an external mechanical force. Variation in gap d will result in not only a change in amplitude in
the same periodic signal but also differences in the amplitude among different signals, which will
also make the signals nonlinear. Figure 2d shows that there is a rotation angle between the MOVER
and the STATOR, and an installation error can result in a difference in amplitude and a phase error in
different measurement signals. Figure 2e illustrates the misalignment error between the MOVER and
the STATOR. This installation error can be avoided by making the length L f g of the electrodes on the
MOVER larger than the length L f of those on the STATOR. Besides fabrication errors and installation
errors, environmental disturbances, such as mechanical vibrations and electromagnetic interference,
can also have an impact on measurement signals.
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Figure 2. Illustrations of different types of fabrication and installation errors. (a) Errors in the
dimensions and position of electrodes; (b) non-uniformity in the dielectric film’s thickness; (c) substrate
deformation; (d) rotation error between the MOVER and the STATOR; and, (e) a misalignment error
between the MOVER and the STATOR.

The above analyses show that fabrication errors, installation errors, and environmental
disturbances bring about the problems of changes in amplitude, non-orthogonality, nonlinearity,
and noise in the measurement signals. Thus, the model of measurement signals can be modified, as
follows:

C′p = Cαp fp + N , p = A, B, . . . , H. (10)

In Equation (10), Cαp (p = A, B, . . .H) are the measurement signal functions that were modified
with non-orthogonality. fA~ fH, which are called scaling coefficient functions, were introduced to
modify the signal model due to changes in the amplitude and signal nonlinearity. N is the noise that
was added to the measuring signal model and it represents Nm

f + N f (p = A, B, C, D) or Nm
c + Nc

(p = E, F, G, H). Nm
f and Nm

c are high frequency noises that were introduced into the signals for the
fine measurements and the coarse measurements due to mechanical vibrations and interference from
electromagnetic signals, respectively. N f and Nc are the white noises that were also added to the signals
for the fine measurements and the coarse measurements, respectively [51]. Figure 3 illustrates the
simulated curves of the signal functions before and after modification (further information regarding
the modified signal model can be found in the supplementary materials).
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4. Signal Processing Method

In general, displacement resolution can be expressed as:

δ = ∆x
∆y/σN

= ∆x/η
(11)

where η = ∆y/σN is defined as the signal resolution, ∆y is defined as the maximum variable signal,
∆x is the change in displacement corresponding to ∆y, and σN is the standard deviation of noise N.
For the measuring signal model C′A~C′D, we have ∆x = ∆x f = W f and ∆y = ∆C f = 2A f . For the
measuring signal model C′E~C′H, we have ∆x = ∆xc = Wc and ∆y = ∆Cc = 2Ac.

Signal processing methods were investigated to reduce noise (σN) and increase sensitivity (∆y/∆x)
and resolution (δ or η). Sensitivity (∆y/∆x) can also be expressed as the maximum variable signal ∆y,
because ∆x is a constant. Three signal processing methods, namely the differential method, the ratio
method, and the differential–ratio method, were analyzed, based on the modified measurement signal
model established above (Equation (10)). Table 1 presents the definitions for the signal processing
methods, and Figure 4 shows the simulated curves of fine signals and coarse signals. For each
method, we discuss the maximum variable signal, noise, and displacement resolution in detail (more
information can be found in the supplementary materials).
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Table 1. Definitions for signal processing methods.

Differential Method Ratio Method Differential–Ratio Method

Fine Signals

 yd
f 1 = C′A −C′B

yd
f 2 = C′C −C′D

 yr
f 1 = C′A/C′B

yr
f 2 = C′C/C′D

 ydr
f 1 =

C′A−C′B
C′A+C′B

ydr
f 2 =

C′C−C′D
C′C+C′D

Coarse Signals
{

yd
c1 = C′E −C′F

yd
c2 = C′G −C′H

{
yr

c1 = C′E/C′F
yr

c2 = C′G/C′H

 ydr
c1 =

C′E−C′F
C′E+C′F

ydr
c2 =

C′G−C′H
C′G+C′H

Table 2 compares the simulation results from the three signal processing methods. Signal
processing significantly improved the signal resolutions of both fine signals and coarse signals. The
signal resolutions from the differential method are much higher than those from the other two methods.
The signal resolutions of fine signals that were processed with the ratio method being six to seven
times worse than those that were processed with the differential method. The signal resolutions of
coarse signals that were processed with the ratio method are three to four times worse than those
that were processed with the differential method. The signal resolutions from the ratio method and
the differential–ratio method are in the same order of magnitude. As demonstrated in Figure 4b, the
simulated curves that are based on the ratio method are obviously distorted and they have lost their
original characteristics. The signal resolutions were recalculated with Nm

f = 0 and Nm
c = 0, and those

from the differential and differential–ratio methods were almost the same (Table 3).

Table 2. The maximum variable signal (∆y), signal noise (σN), and signal resolution (η) from different
signal processing methods by numerical simulation 1.

∆y σN η ∆y σN η

Fine

CA ∼ CD 4.0000 4.1 × 10−3 976

Coarse

CE ∼ CH 5.0000 6.5 × 10−3 770
yd

f 1 8.0000 4.7 × 10−4 17,112 yd
c1 10.0000 1.8 × 10−3 5650

yd
f 2 8.0000 4.8 × 10−4 16,754 yd

c2 10.0000 1.7 × 10−3 5739
yr

f 1 1.6762 6.4 × 10−4 2609 yr
c1 2.3586 1.8 × 10−3 1292

yr
f 2 1.6427 5.8 × 10−4 2820 yr

c2 2.2294 7.4 × 10−4 3013
ydr

f 1 0.7273 2.0 × 10−4 3579 ydr
c1 0.9709 4.7 × 10−4 2066

ydr
f 2 0.6838 1.8 × 10−4 3912 ydr

c2 0.7246 2.7 × 10−4 2734

1 The parameters ∆y, σN , and η are dimensionless.

Table 3. Signal resolutions from the differential and differential–ratio methods when Nm
f = 0 and

Nm
c = 0.

Method ηyf1
ηyf2

ηyc1
ηyc2

Differential 17,116 16,896 5612 5644
Differential–Ratio 16,180 16,244 5308 5324

5. Displacement Calculation Model

In Figure 4, there are regions where the signals are insensitive to changes in displacement at the
peaks and troughs of both fine signals and coarse signals, and these regions, which are called dead
zones, cannot be used to measure the displacement. The two fine signal curves are orthogonal to each
other and the two coarse signal curves are also orthogonal. By selectively and alternately using the
two orthogonal signal curves, the dead-zone regions can be avoided when measuring displacement.
Our displacement calculation model includes a coarse calculation model and a fine calculation model.
Displacement, as calculated by the coarse calculation model, provides absolute position information.
With the assistance of the absolute position information, the fine calculation model can be used to
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calculate high-precision displacement through two fine signals. The displacement calculation model
can be given as:

x = f
(
yc1, yc2, y f 1, y f 2

)
. (12)

We take the simulated curves of the coarse signals from the differential method as an example
to aid the analysis. As illustrated in Figure 5, parameters y0, yH, and yL were determined to help
segment the coarse signal curves and build a coarse signal calculation model [16]. Point A and point
B are the intersection points of the two coarse signal curves, as shown in Figure 5a. The y = y0

reference line was selected under the condition of yc2(x = 0) ≤ y0 ≤ yc2(x = L). The y = yL reference
line was selected in the case of max

{
min(yc1), min(yc2)

}
< yL < yc2(x = xA). The y = yH reference

line was chosen according to yc2(x = xB) < yH < min
{
max(yc1), max(yc2)

}
. The coarse signal curves

were divided into five linear parts and then used to calculate the coarse signal displacement: DD’,
EH, JK, NO, and RQ. We adopted an interval of overlap between the two adjacent linear parts to
ensure that the calculation was reliable; one of the overlaps is marked in Figure 5a. As shown in
Figure 5b, with yc1 ≥ yH and yc2 ≤ y0, the linear part DD’ of yc2 was fitted into function f c

1 (yc1, yc2) to
calculate the coarse displacement (xc). Under the condition of yL ≤ yc1 < yH and yc2 < 0, the linear
part EH of yc1 was fitted into function f c

2 (yc1, yc2) to compute the coarse displacement, as shown in
Figure 5c. As demonstrated in Figure 5d, with yc1 < yL, the linear part JK of yc2 was fitted into function
f c
3 (yc1, yc2) to determine the coarse displacement. As illustrated in Figure 5e, under the condition of

yL ≤ yc1 < yH and yc2 > 0, the linear part NO of yc1 was fitted into function f c
4 (yc1, yc2) to identify the

coarse displacement. As demonstrated in Figure 5f, when yc1 ≥ yH and yc2 ≥ y0, the linear part RQ of
yc2 was fitted into function f c

5 (yc1, yc2) to resolve the coarse displacement.
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Figure 5. Schematic diagrams of the coarse calculation model. (a) the selection of y0, yH, and yL; (b) the
schematic diagram of the signal fitting interval DD’; (c) the schematic diagram of the signal fitting
interval EH; (d) the schematic diagram of the signal fitting interval JK; (e) the schematic diagram of the
signal fitting interval NO; and, (f) the schematic diagram of the signal fitting interval RQ.
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According to the above analyses, the coarse calculation model can be described. as follows:

xc =



f c
1 (yc1, yc2) yc1 ≥ yH and yc2 ≤ y0

f c
2 (yc1, yc2) yL ≤ yc1 < yH and yc2 < 0

f c
3 (yc1, yc2) yc1 < yL

f c
4 (yc1, yc2) yL ≤ yc1 < yH and yc2 > 0

f c
5 (yc1, yc2) yc1 ≥ yH and yc2 ≥ 0

. (13)

Although the five intervals DD’, EH, JK, NO, and RQ of the coarse signal curves are linear in
theory, there remains slight nonlinearity due to many factors. Thus, in Equation (13), f c

i (yc1, yc2)(i =

1, 2, 3, 4, 5) was fitted to the polynomial function and the degrees of the polynomial were adjusted
according to the fitting residuals. The total number of functions in the coarse calculation model was
five in this case and this number might be higher or lower if the phase of the coarse signals is different
or there is less than a single cycle in the coarse signals.

As shown in Figure 6, the fine signal curves of 1.5Tf in length were selected to help establish
the fine calculation model. Each cycle of the fine signal curves was evenly divided into four parts,
including two linear parts for measurement and two nonlinear parts with dead-zone regions to be
avoided [16]. The linear part of signal curve y f 1 in interval AB is expressed by polynomial function

labeled f f
1

(
y f 1, y f 2

)
. The linear part of signal curve y f 2 in interval BC is expressed by a polynomial

function, labeled f f
2

(
y f 1, y f 2

)
, and so on. Except for the first linear part and the last linear part, the

interval length of linear part is T f /4. The fine calculation model is described as:

x f = f f
n

(
y f 1, y f 2

)
, n = 1, 2, . . . (14)

where n is the identification number, which is obtained by:

n = d
xc + T f /4− x0

T f /4
e. (15)

In Equation (15), symbol d e is an up-rounding operator and x0 is a constant that represents
the initial phase of displacement of the fine signal curves. According to Equations (12)–(15), the
displacement calculation model is expressed, as follows:

x = f
(
yc1, yc2, y f 1, y f 2

)
= f f

d
f c
i (yc1,yc2)+T f /4−x0

T f /4 e

(
y f 1, y f 2

)
. (16)

In Equation (16), when yc1 ≥ yH and yc2 ≤ y0, i = 1; when yL ≤ yc1 < yH and yc2 < 0, i = 2; when
yc1 < yL, i = 3; when yL ≤ yc1 < yH and yc2 > 0, i = 4; and, when yc1 ≥ yH and yc2 ≥ y0, i = 5.
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6. Analysis of Error in the Displacement Calculation Model

In this section, we analyze the error in the displacement calculation model. Here, ‘error’ refers to
the difference between the displacement calculated while using the displacement calculation model
and the displacement from a reference calibration system. Such a kind of errors is also called mapping
error [5]. These errors are systematic errors of the capacitive displacement measuring system itself,
and some of these errors can be compensated for by means of corrections. Within the displacement
range, for any displacement position x0, we have the corresponding signals y0

f 1, y0
f 2, y0

c1, and y0
c2, and

the identification number n0. According to Equations (13)–(15), the coarse displacement, identification
number, and fine displacement can be calculated, respectively, as follows:

x0
ccal

= f c
i

(
y0

c1, y0
c2

)
(17)

n0
cal = d

x0
ccal

+ T f /4− x0

T f /4
e (18)

x0
fcal

= f f
n0

cal

(
y0

f 1, y0
f 2

)
. (19)

The final error in the displacement calculation model is

∆ = x0
− x0

fcal
. (20)

According to Equation (18), the possible values of
(
n0
− n0

cal

)
are –1, 0, or 1 because the coarse

displacement error is ∆x0
c = x0

− x0
ccal

. When the value of (n0
− n0

cal) equals 0, we have ∆ = x0
−

f f
n0

(
y0

f 1, y0
f 2

)
. In this case, signal y0

f 1 is only in the linear part of the curve yd
f 1 and the fine displacement

is calculated by the fine calculation function f f
n0

(
y f 1, y f 2

)
(Figure 7b). Thus, the final error ∆ is

determined by the function f f
n0

(
y f 1, y f 2

)
and the error component that is caused by nonlinearity can

be compensated for by properly adjusting the degrees of the fine calculation functions. The result of
the error analysis is the same when the value of (n0

− n0
cal) equals 1 or –1. Figure 7c shows the case of

n0
cal = n0

− 1. In this case, the fine displacement should have been calculated by the fine calculation

function f f
n0

(
y f 1, y f 2

)
while using signal y0

f 1, but it was actually calculated by the fine calculation

function f f
n0−1

(
y0

f 1, y0
f 2

)
using signal y0

f 2 because of the coarse displacement error ∆x0
c . However, the
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final error ∆= x0
− f f

n0−1

(
y0

f 1, y0
f 2

)
will usually be large, because signal y0

f 2 is beyond the interval range

of the function f f
n0−1

(
y f 1, y f 2

)
. At the boundaries of the two adjacent fine calculation functions, the

bigger the coarse error ∆x0
c is, the bigger the final error ∆ might be. To reduce the error ∆, the interval

length can be increased to make sure that signal y0
f 2 is in the “internal” interval of the fine calculation

function f f
n0−1

(
y0

f 1, y0
f 2

)
. After expanding the interval length from T f /4 to T f (1 + 2ε)/4, the coarse

error ∆x0
c should satisfy

∣∣∣∆x0
c

∣∣∣� εT f /4. Figure 6 shows the expanded interval length. However, it is
important to note that ε should be as small as possible to avoid as much nonlinearity as possible in the
fitting section of the fine calculation functions.Sensors 2019, 19, x FOR PEER REVIEW 12 of 21 
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Figure 7. Schematic diagrams of the analysis of error in the displacement calculation model. (a) The
schematic diagram of the signal processed by the differential method; (b) the schematic diagram of the
error analysis under the condition of n0

− n0
cal = 0; and, (c) the schematic diagram of the error analysis

under the condition of n0
− n0

cal = 1.

The error in the displacement calculation model was determined by the error in the fine calculation
functions based on the above analyses. It was found that the model might be locally affected by the
error in the coarse calculation functions. The overall uncertainty in the displacement calculation model
was determined by the maximum error in the fine calculation functions. The coarse displacement
model and the fine displacement model are both composed of several functions, and these functions are
independent of each other. Any two adjacent coarse calculation functions or fine calculation functions
will have overlapping intervals. The characteristics of independence and overlapping intervals of
these functions ensure that the error in the model is not affected by differences in the signal amplitude,
non-orthogonality, and signal offset. Adjusting the degrees of the coarse calculation functions and the
fine calculation functions can compensate for the nonlinearity in signals.
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7. Experiments and Discussions

A prototype was fabricated to verify the sensing principle of the proposed displacement measuring
system. The MOVER and the STATOR of the measuring system were fabricated by a micromachining
method. A kind of wafer glass, called BF33, was selected to be the substrate, and gold was chosen to
be the electrode material that was deposited on the glass substrate. The periodical width of the fine
grating-pattern groups that were located in the center was 400 um with a Wf of 160 um and an If of 40
um. That of the coarse grating-pattern groups on the sides was 9.9 mm with a Wc of 3.96 mm and
an Ic of 0.99 mm. A layer of Si3N4 with a thickness of ∼500 nm was sputtered onto the surfaces of
the electrodes as the dielectric film, due to its excellent properties, such as thermal stability, corrosion
resistance, low density, high hardness, and a low friction coefficient [52–55]. The MOVER was able to
move relative to the STATOR in the contact mode with the dielectric film.

Figure 8 shows the results of an adhesion strength test between the Si3N4 and base material that
was performed while using a Nano-Scratch tester. Adhesion strength was considered to be the normal
critical load when the Si3N4 film started to exfoliate and break away from the base material. It can be
seen from Figure 8a and Table 4 that the adhesion strength between the Si3N4 and the BF33 substrate
is ∼51.48 mN. The value is ∼14.66 mN between the Si3N4 and the gold material, which is shown in
Figure 8b and Table 4. The adhesion strengths meet the use requirements.Sensors 2019, 19, x FOR PEER REVIEW 13 of 21 
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Figure 8. Adhesion strength test between Si3N4 and base material performed using a Nano-Scratch
tester. (a) Adhesion strength between Si3N4 and the BF33 substrate; and, (b) Adhesion strength between
Si3N4 and the gold material.

Table 4. Adhesion strength between Si3N4 and base material (unit: mN).

Base Material 1 2 3 Average Value

BF33 51.79 50.58 52.06 51.48
Au 16.29 15.01 12.68 14.66

As shown in Figure 9, the planarity of the MOVER and the STATOR was obtained while using
a zygo Nexview™ white-light interferometer. The three-dimensional surface morphology of the
STATOR and the MOVER can be seen in the white-light interference map (Figure 9a,c). As illustrated
in Figure 9b, the height difference in the STATOR substrate is only 0.533 um over the span of 17 mm.
In Figure 9d, the height difference in the MOVER substrate is 0.629 um over the span of 13 mm. The
deformation of the substrate might have been caused by the high temperature and internal stress that
occur during the manufacturing process. A very small change in the gap was caused by substrate
deformation when the MOVER moved relative to the STATOR in the contact mode. As mentioned
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above, the scaling coefficient functions were introduced to modify gap changes in the measuring
signal model.
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Figure 9. The planarity of the MOVER and the STATOR was obtained by using a zygo Nexview™
white-light interferometer. (a) Three-dimensional morphology of the STATOR; (b) height difference in
the STATOR substrate; (c) three-dimensional morphology of the MOVER; and, (d) height difference in
the MOVER substrate.

Experiments were carried out to calibrate the displacement measuring system, which helped to
establish the displacement calculation model and test the measuring system’s performance. Figure 10a
illustrates the overall experimental setup; more detail is shown in Figure 10b. The entire experimental
setup was placed on an active vibration isolation platform in a clean room and the room temperature
was maintained at ∼20 ◦C. The STATOR and the MOVER were mounted on mechanical parts to
guide the MOVER to move relative to the STATOR in the contact mode. The pushrod, which was
mounted on a high-accuracy (less than ±100 nm) motorized positioning system, drove the MOVER to
move relative to the STATOR. A HEIDENHAIN-CERTO length gauge with high accuracy (less than
±0.03 µm) was used to calibrate the displacement measuring system. The signal processing unit was
used to measure signals from the displacement measuring system at a maximum sampling rate of
∼3600 Hz. A kind of Capacitance-to-Digital Converter (CDC) in signal processing unit was used to
converts capacitive information into digital signal by counting number of discharging-time increment
of a resistance-capacitance (RC) circuit. The relationship between the measured digital signal value
and displacement was established through calibration parameters. To keep simplicity, some analyses
of experimental results were in the level of measured digital signal values before being converted so
that some physical quantities are dimensionless. Nevertheless, the analyses were capable to provide
sensitive information of displacement measuring system by considering the linear components of the
calibration parameters.
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Figure 10. (a) A photograph of the experimental setup; and, (b) the displacement measuring system
in detail.

Figure 11a shows the experimental signal-displacement curves of the displacement measuring
system with a range of 5 mm. The parasitic capacitance of the four signals for the fine measurement was
∼43,000 units and the amplitude A f was ∼21,000 units. The four signals for the coarse measurement
had a parasitic capacitance of ∼30,000 units and an amplitude Ac of ∼21,500 units. The curves reflect
differences in the signal amplitude among the fine signals or the coarse signals and variations in
the signal amplitude with changes in displacement. Figure 11a also present the non-orthogonality
of signals.
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Figure 11. Experimental signal-displacement curves. (a) Original signal-displacement curves; (b) signal
curves obtained from the differential method; (c) signal curves obtained from the ratio method; (d) signal
curves obtained from the differential–ratio method; and, (e) the error in the displacement calculation
model when using the differential method and the differential–ratio method.
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The same conclusion as in the theoretical analyses can be drawn that only the curves that
were obtained from the ratio method show obvious distortion and lose their original characteristics,
according to the experimental graphs of the fine signals and coarse signals from the three different
signal processing methods (Figure 11b–d). Table 5 lists the maximum variable signal (∆y), signal noise
(σN), and signal resolution (η), which show the differences in the three signal processing methods. The
resolutions of the fine signals are approximately 2–3 times higher than those of the original signals;
however, the resolutions of the coarse signals do not show much improvement. The ratio method still
cannot be applied due to the distortion and bending although the resolutions of the two fine signals
from the ratio method are improved. There is not a large difference between the resolutions of the fine
signals from the differential method and those of the fine signals from the differential–ratio method,
which might account for the low-intensity, high-frequency noise. According to the signal resolutions
in Table 5 and Equation (11), the displacement resolutions from the differential and differential–ratio
methods are approximately 4.8 nm and 5.9 nm, respectively.

Table 5. The maximum variable signal (∆y), signal noise (σN), and signal resolution (η) with different
signal processing methods. 1

Fine

∆y σN η

Coarse

∆y σN η

CA&CB 44,378 4.3 10,441 CE&CF 20,741 3.9 5318
CC&CD 44,454 3.3 13,309 CG&CH 32,342 2.6 12,391

yd
f 1 86,487 2.1 41,381 yd

c1 41,447 3.9 10,654
yd

f 2 86,578 1.9 45,567 yd
c2 64,159 2.5 25,561

yr
f 1 1.4782 4.1 × 10−5 36,498 yr

c1 0.7882 1.2 × 10−4 6853
yr

f 2 1.4815 2.7 × 10−5 55,905 yr
c2 1.5179 4.2 × 10−5 36,487

ydr
f 1 0.6582 1.8 × 10−5 36,770 ydr

c1 0.4521 5.3 × 10−5 8498
ydr

f 2 0.6604 1.9 × 10−5 34,041 ydr
c2 0.6707 3.0 × 10−5 22,062

1 The parameters ∆y, σN , and η are dimensionless.

As seen in Figure 11b or Figure 11d, the amplitudes of the two fine signals or the two coarse
signals slightly change with the displacement, and there is also a small difference in the amplitude
between the two fine signals or the two coarse signals. The two fine signals or two coarse signals are not
orthogonal to each other due to small phase errors, and there also exist offset errors in the fine or coarse
signals. The error in the model is not affected by differences in signal amplitude, non-orthogonality,
and signal offset, as shown in Section 6. Thus, the overall uncertainty in the displacement calculation
model error is less than ±40 nm (Figure 11e).

As illustrated in Figure 12a, the overall uncertainty in the coarse calculation model is ±13.5 um
when the fitting degree is 3 and the overlapping interval ε is 0.1. The overall uncertainty in the fine
calculation model with a degree of 7 and an overlapping interval ε of 0.1 is ±31 nm, which can be seen
in Figure 12b. Figure 12c shows the calculated displacement through the established displacement
calculation model with a coarse degree of 3, a coarse overlapping interval of 0.1, a fine degree of 7, and
a fine overlapping interval of 0.1. The calculated displacement is unique over the whole displacement
range of 5 mm. The overall uncertainty in the displacement calculation model is ±34 nm, which is
slightly larger than that in the fine displacement model (±31 nm), as demonstrated in Figure 12d.

Another displacement calculation model that differed only in fine degree was established using
the same experimental data in order to verify the influence of fine degree on the error in the model.
The uncertainty in the model with a fine degree of 5 is ±60 nm (Figure 12e), nearly twice as much as
that shown in Figure 12d. A displacement calculation model that only differed in the overlapping
interval was also established to determine the effect of overlapping interval on the error in the model.
The overall uncertainty of ±36 nm is slightly larger than that of ±34 nm; however, there are several
local points with very large error (Figure 12f).
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Even when the local maximum error in the coarse calculation model reached ±17 um (Figure 12a),
it did not affect the uncertainty in the displacement calculation model for tens of nanometers (Figure 12d).
The error in the displacement calculation model mainly depends on the error in the fine model and
the error in the coarse calculation model locally affects it. The overall uncertainty in the displacement
calculation model can be improved by properly adjusting the fine degree and the fine overlapping
interval. The fact that the error in the displacement calculation model was a little larger than that in
the fine calculation model might be due to the fact that it is also affected by the error in the coarse
calculation model.Sensors 2019, 19, x FOR PEER REVIEW 17 of 21 
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Figure 12. Results of experiments with the measuring system. (a) The error in the coarse calculation
model with a degree of 3 and an overlapping interval of 0.1; (b) the error in the fine calculation model
with a degree of 7 and an overlapping interval of 0.1; (c) the calculated displacement over the whole
displacement range; (d) the error in the displacement calculation model with a coarse degree of 3, a
coarse overlapping interval of 0.1, a fine degree of 7, and a fine overlapping interval of 0.1; (e) the error
in the displacement calculation model with a coarse degree of 3, a coarse overlapping interval of 0.1, a
fine degree of 5, and a fine overlapping interval of 0.1; and, (f) the error in the displacement calculation
model with a coarse degree of 3, a coarse overlapping interval of 0.1, a fine degree of 7, and a fine
overlapping interval of 0.

8. Conclusions

This work describes a novel displacement measuring system that is based on capacitive grating
and is capable of obtaining absolute position information with both high accuracy and a long range.
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The contact working mode between the MOVER and the STATOR minimizes the gap changes.
The dead-zone problem was solved through the configuration of two orthogonal signals. The two
orthogonal periodic coarse signals are used to provide absolute displacement information while using
a simple method, and the two orthogonal periodic fine signals are further used to obtain a highly
accurate displacement measurement with the help of absolute position information.

Fabrication errors, installation errors, and environment disturbances were analyzed, and the
measurement signal model was modified according to these analyses. Three signal processing methods
were also analyzed, and the results indicate that signal sensitivity and signal resolution can be effectively
improved. An analysis of the error in the displacement calculation model showed that the maximum
error in the fine calculation functions determined the overall displacement uncertainty and it might be
locally affected by the error in the coarse calculation functions. The error in the displacement calculation
model was found to not be affected by the differences in signal amplitude, non-orthogonality, and
signal offset. Adjusting the degrees of the coarse functions and the fine functions can compensate for
signal nonlinearity.

The experimental results are consistent with the results of the abovementioned theoretical analyses.
The experimental results show that the adhesion strengths between Si3N4 and the base material meet
the use requirements. The three-dimensional morphology of the STATOR and the MOVER showed that
the substrate suffered very small deformation. The experiments confirmed the conclusions that were
drawn from the results of the signal processing method and error analyses. A measuring system with
a range of 5 mm was used to show that the displacement resolution and the error in the displacement
calculation model could reach ±4.8 nm and ±34 nm, respectively. The experiments and the theoretical
analyses both indicate that the proposed measuring system has great potential for achieving an accuracy
of tens of nanometers and a range of hundreds of millimeters.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/24/5339/s1,
Figure S1: Accuracy of the entire experimental system, Table S1: Characteristics of the HEIDENHAIN-CERTO
length gauge.
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