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Abstract: Global navigation satellite systems (GNSSs) are commonly used for navigation and mapping
applications. However, in GNSS-hostile environments, where the GNSS signal is noisy or blocked,
the navigation information provided by a GNSS is inaccurate or unavailable. To overcome these
issues, this study proposed a real-time visual odometry (VO)/GNSS integrated navigation system.
An on-line smoothing method based on the extended Kalman filter (EKF) and the Rauch-Tung-Striebel
(RTS) smoother was proposed. VO error modelling was also proposed to estimate the VO error
and compensate the incoming measurements. Field tests were performed in various GNSS-hostile
environments, including under a tree canopy and an urban area. An analysis of the test results indicates
that with the EKF used for data fusion, the root-mean-square error (RMSE) of the three-dimensional
position is about 80 times lower than that of the VO-only solution. The on-line smoothing and
error modelling made the results more accurate, allowing seamless on-line navigation information.
The efficiency of the proposed methods in terms of cost and accuracy compared to the conventional
inertial navigation system (INS)/GNSS integrated system was demonstrated.
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1. Introduction

Global navigation satellite systems (GNSSs) are commonly applied for positioning and navigation.
The positioning solution is accurate and continuous if direct signals from more than four satellites
are received. However, in GNSS-hostile environments, where signals are reflected and blocked, the
availability and accuracy of GNSS-based vehicle navigation systems are degraded significantly [1].
To overcome this issue, the integration of a GNSS and another navigation system has been proposed.
The most common integration is a GNSS and an inertial navigation system (INS). Even though an
INS/GNSS integrated system can improve navigation capability in GNSS-denied environments, it
depends deeply on the cost of used inertial sensors and the outages in GNSS signals [2]. Inertial
systems of a tactical-grade or higher can compensate to obtain appropriate positioning, accuracy, and
sustainability during long-term GNSS signal unavailability [3]. For instance, in the case of a GNSS
outage lasting one minute, systems with high-grade inertial sensors can achieve a real-time positioning
accuracy of less than three meters. Nevertheless, the use of these sophisticated inertial sensors is
limited for applications such as the primary navigation module for general land vehicles due to their
price and government regulation [1,2]. Low-cost microelectromechanical systems’ (MEMS) inertial
sensors are thus applied as a potential complementary component. However, the positioning error of
integrated systems drifts quickly when GNSS signals are blocked due to the poor performance of these
inertial sensors.
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Visual odometry (VO) using a camera is an alternative or supplemental navigation solution in
GNSS-hostile environments [4,5]. VO estimates the ego-motion of an agent given consecutive images
captured by one or more cameras. The output of VO is the relative translation and rotation of the carrier
platform in the initial camera frame. Compared with wheel odometry, VO is not affected by wheel
slip in uneven terrain or other adverse conditions [6]. VO utilizes low-cost sensors and the frames
captured by a camera can provide a large amount of information that can be used for different purposes,
including navigation [7,8]. However, its performance depends on the illumination of the environment,
the texture of the static scene, and the overlap between consecutive frames [6]. The present study
integrated VO and GNSS to utilize the advantages and overcome the limitations of each system in
stand-alone mode.

According to the literature, the integration of VO and GNSS has been investigated. Dusha and
Mejias [9] introduced a loosely coupled global positioning system (GPS)/VO integration. Their method
was demonstrated using numerical simulations and was evaluated using real flight data. However, they
mainly focused on the observability properties of the GPS/VO filtering instead of optimal estimation
or real-time navigation performance. Moreover, in real experiments, they used a downward-looking
camera, which is different in the context of the forward-facing camera’s popular application in
navigation. Schreiber, Königshof [10] presented a method for integrating GNSS measurements from a
low-cost receiver with a locally accurate visual odometry obtained from an on-board low-cost stereo
camera system. Although their system had robust localization, the achieved accuracy was insufficient
for autonomous driving. Chen, Hu [11] investigated the integration of measurements from a low-cost
GNSS and monocular camera measurements in a simultaneous localization and mapping (SLAM)
system. The proposed system can perform in real time and achieve the absolute position, attitude, and
metric scale of the vehicle. However, this system is mainly based on an ORB-SLAM framework with
optimization-based algorithms, so it is unable to apply smoother in order to improve the accuracy of
navigation performance. The scale is initialized in the beginning instead of being included in the state
for estimation. Furthermore, they experimented with an available KITTI dataset, which ORB-SLAM
system has been successful working with, instead of real experiments with their own configurations.

In this research, we proposed a real-time VO/GNSS integrated navigation system that utilizes
on-line smoothing based on the extended Kalman filter (EKF) and the Rauch-Tung-Striebel (RTS)
smoother. VO error modelling was also proposed to estimate the VO error and compensate the incoming
measurements. The contributions addressed herein are, firstly, that the result of this work contributes to
confirm the advancement of VO/GNSS integration, which can be compared to a conventional INS/GNSS
approach. Secondly, on-line smoothing and error modelling were applied to enhance the performance
that makes the system capable of robust ground vehicle navigation. Finally, the integrated system
was validated through two live sets of data collected in various GNSS-hostile environments (e.g.,
under a tree canopy, urban area), together with a centimeter-accurate reference system, to demonstrate
performance of the proposed system.

The remainder of this paper is organized as follows: Section 2 provides an overview of VO.
Section 3 presents the design of the integrated architecture, the system model, and the measurement
model. Section 4 describes data fusion strategies. The experimental results and discussion are presented
in Section 5. Finally, some concluding remarks and a brief outline for future research are presented in
Section 6.

2. Visual Odometry

2.1. General Concept of VO

VO can be divided into monocular or stereo VO. Monocular VO uses a single camera to derive
ego-motion based on feature matching (or feature tracking) between consecutive images, whereas
stereo VO uses a pair of cameras. Compared to monocular VO, stereo VO is more accurate but
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has a higher computational burden [12]. Therefore, monocular VO is the first choice for real-time
applications [13]. The flowchart of VO is described in Figure 1.
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Figure 1. Flowchart of visual odometry (VO).

2.2. Camera Calibration

Camera calibration is used to determine the camera’s intrinsic and distortion parameters.
The camera’s intrinsic parameters are usually presented in the form of a matrix that includes the
camera’s focal length and principle point. The distortion parameters are usually expressed in terms of
the tangential distortion and the radial distortion coefficients of the lenses. The camera calibration can
be implemented using commercial software or free tools such as Bouget’s Matlab Camera Calibration
Toolbox [14] or OpenCV [15]. Several calibration processes have been proposed [16,17]. In this research,
OpenCV, with a checkerboard pattern, was used for camera calibration.

2.3. Image Acquisition and Undistortion

A sequence of images is obtained from the camera at a certain frame rate. For real-time applications,
the frame rate is critical. It should be small enough to implement in real time, but large enough to have
an overlap for deriving a VO solution. The frame rate is adjusted depending on the size of the image
and the moving speed of the vehicle. For example, for an image size of 808 × 608 pixels and an average
vehicle speed of 2 m/s, the frame rate should be 3 frames per second for real-time applications [18].

The camera lens can distort images. Objects in distorted images look different from the way they
do in reality (e.g., straight lines become curved). The magnitude of distortion increases from the center
to the edges of images and varies with viewpoint. Based on the distortion parameters determined
by camera calibration, a distorted image can be corrected to improve the performance of subsequent
image processing. Figure 2 compares a distorted image and its correction.Sensors 2019, 19, x FOR PEER REVIEW 4 of 15 
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2.4. Feature Matching

To derive a VO solution based on a feature-based method, feature points between consecutive
images must be matched or tracked. This process commonly has two stages. In the first stage,
feature detection is used to find key points that are the most suitable for matching to features in other
images [19]. Various feature detection algorithms have been proposed [20]. According to Fraundorfer
and Scaramuzza [20], point-feature detectors can be divided into two groups, namely corner detectors
and blob detectors. The representatives for corner detectors are FATS, Harris, Shi-Tomasi, Moravec, and
Forstner, whereas SIFT, SURF, and CENSURE are typical algorithms for blob detectors. Each algorithm
has its own advantages and disadvantages. In general, blob detectors are more distinctive and better
localized in scale, but corner detectors are fast to compute and are better localized in image position.
In the second stage, the corresponding feature is looked for in the subsequent images. This process is
called feature matching or tracking. In this research, the SIFT [21] feature matching algorithm was
applied. Most of the SIFT algorithm’s power lies in its robust descriptor, which is stable against changes
in illumination, rotation, and scale. Figure 3 illustrates the feature matching of two images.
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2.5. Motion Estimation

Motion estimation is used to determine camera transformation between the current image and the
previous image. The mathematical principle of motion estimation is based on an epipolar constraint [6].
In Figure 4, a camera undergoes motion from C1 to C2 with rotation R and translation t. Given a
three-dimensional (3D) point X, the projection of X in the image plane at C1 is u and the corresponding
image point at C2 is ν. The epipolar constraint equation is formed as

uTEv = 0 (1)

where E = [t] × R is essential matrix.
Equation (1) can be rewritten in the form:

Ae = 0 (2)

where A represents the components u and v, and e represents the components of E.
To solve Equation (2), eight point correspondences are normally required [22]. Fewer point

correspondences are required if additional constrains are used in the motion condition [6,23].
Equation (2) is solved based on the principle of minimizing the projection error to determine R
and t.

Argmin‖Ae‖ (3)

Note that Equation (2) is satisfied with static points. However, a real scenario may contain a
moving object and erroneous conditions; thus, outlier removal is necessary. The RANSAC algorithm
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is commonly used for this task [24]. After outlier removal using RANSAC, the number of inliers is
determined. A larger number of inliers usually leads to a more reliable solution in motion estimation.
Therefore, in this research, a number of inliers were used to build the error model of VO.Sensors 2019, 19, x FOR PEER REVIEW 5 of 15 
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Equation (2), with condition (3), is solved utilizing singular value decomposition (SVD) to
determine the essential matrix E. Rotation matrix R and translation vector t are then determined [23].

Let E = U
∑

VT be the SVD of E. Then,

[t]
×
= VWΣVT (4)

R = UWTVT (5)

W =


0 1 0
1 0 0
0 0 1

 (6)

where [t]× is the skew matrix of the translation vector t [25].
Given the determined translation vector t and the rotation matrix R, the transformation of the

camera at time k is formed as

Tk =

[
Rp tp

0 1

]
(7)

Then, the pose of the camera at time k can be determined using a concatenated equation:

Ck = Ck−1T (8)

where Ck and Ck−1 are the poses of the camera at times k and k − 1, respectively. The solution of VO is
the pose of the camera, expressed in the initial camera frame. Its error will accumulate over time if no
external constraint is applied.

3. Integration Architecture

3.1. General Architecture Design

In this system, a loosely coupled scheme for VO/GNSS integration was designed. The images
taken by the camera were processed by a VO mechanization to derive the translation and rotation
in camera frame. GNSS provides absolute position as the major measurement update. An EKF was
designed for multi-sensor data fusion and an RTS smoother was applied to provide more accurate
navigation solutions. The integration scheme is shown in Figure 5.
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3.2. Model Design

System and measurement models are needed for fusing data with an estimation tool such as the
EKF [1,3]. In this research, the principle ego-motion of the VO was utilized to create a system model
for the EKF. The measurements from GNSS were used to form measurement models.

The system model was created by error analysis utilizing perturbation methods of VO. The details
of the derivation can be found in the study of Dusha and Mejias [9]. The time-continuous VO error
model is formed as 

δ
.
λ
δ

.
rn
.
ψ

 =


0 01×3 01×3

R̃n
b T̃b 03×3 −λ̃[R̃n

b T̃b]
×

03×1 03×3 03×3



δλ
δrn

ψ


+


1 01×3 01×3

03×1 λ̃R̃n
b 03×3

03×1 03×3 R̃n
b




v
δT̃b

δωb
nb


(9)

where δ
.
λ, δ

.
rn, and

.
ψ are continuous-time derivatives of length scale factor, position, and attitude in

local-level frame (n-frame), respectively. R̃n
b is the estimated rotation matrix from the body frame

(b-frame) to the n-frame. T̃b is an estimated translation expressed in the b-frame. δT̃b and δωb
nb are

translation and rotation errors in the b-frame, respectively.
Equation (9) can be presented in continuous-time system model:

.
x = Fx + Gu (10)

Equation (10) can be transformed into a discrete-time form [1,26]:

xk+1 = Φkxk + wk (11)

where xk = [δλ δrn ψ]T7×1 is the state vector at time (epoch) k, Φk is the discrete-time transition matrix
from epoch k to epoch k + 1, and wk is process noise [27,28].

Measurement model for the EKF is expressed as

zk = Hxk + vk (12)

where H is the design matrix or geometry matrix, zk and vk are measurement and its noise, respectively.
For positional measurement provided by GNSS, the measurement model for the EKF is formed as

z = re
VO − re

GPS = HRn
e xk + εr (13)
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where re
VO and re

GPS are the positional vectors provided by VO and GNSS in the Earth-centered
Earth-fixed frame (e-frame), respectively, and Rn

e is the rotation matrix from the e-frame to the n-frame.

H =
[

0 I1×3 O1×3
]

(14)

H is a measurement-mapping matrix describing the relationship between the measurement vector
and the state vector. εr is the position noise of GNSS measurements.

4. Data Fusion Strategies

4.1. Estimation with Extended Kalman Filter

EKF equations are divided into the following two groups: time prediction and measurement
update. The time prediction equations convert state and covariance from the current epoch state (k) to
the next epoch (k + 1) [27].

x̂−k+1 = Φkx̂+k (15)

P−k+1 = ΦkP+
k ΦT

k + Qk (16)

where (ˆ) denotes estimation and (-) and (+) denote the estimated values after prediction and
update, respectively.

When GNSS measurements are observed, the following measurement update equations are
activated:

Kk = P−k HT
k

(
HkP−k HT

k + Rk
)−1

(17)

x̂+k = x̂−k + Kk
(
zk −Hkx̂−k

)
(18)

P+
k =

(
I −KkHT

k

)
P−k (19)

where Kk is the Kalman gain, Rk is the covariance matrix of GNSS measurements. All noise terms are
considered to be white with known covariance and uncorrelated with each other.

4.2. On-Line Smoothing

In this research, on-line smoothing was applied. The remaining time in each epoch was utilized to
perform smoothing during operation time to increase the capability of the system in terms of accuracy.
Following Chiang, Duong [29], on-line smoothing was originated from an RTS smoother algorithm.
The principle of this algorithm is introduced below.

According to Rauch, Tung [30], smoothing is targeted to estimate probability density function
(PDF) of the states based on all measurements from time k to time N, where k ≤ N:

P(xk, xk+1

∣∣∣zN) = P(xk+1

∣∣∣xk)P(xk|zk)P(zk+1, . . . , zN
∣∣∣xk+1)P(zk) (20)

The RTS smoother finds optimal estimation by applying a maximum likelihood of state vectors
based on aiding measurements vectors:

maxL(xk, xk+1

∣∣∣zN) = maxlogP(xk, xk+1

∣∣∣zN) (21)

where L(xk, xk+1

∣∣∣zN) is the likelihood of xk, xk+1 based on zN.
The estimated and covariance of states are achieved by resolving criteria in Equation (21):

x̂k|N = x̂k + Ck
(
x̂k+1|N − x̂k+1

)
(22)

Pk|N = Pk + Ck
(
Pk+1|N − Pk+1

)
CT

k (23)
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where x̂k|N and Pk|N are smoothed states and covariance at time k based on information up to time
N (k ≤ N), respectively, x̂k and Pk are estimated states and covariance provided by the EKF at time k,
respectively, and Ck is cross covariance, calculated in the following equation:

Ck = PkΦT
k,k+1P−1

k+1 (24)

With on-line smoothing, the processing scheme can be done with real-time data. Figure 6 indicates
the processing principle and error performance of on-line smoothing. The integrated scheme with
on-line smoothing of VO/GNSS is described in Figure 7.
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4.3. Error Modelling with On-Line Smoothing

Error modelling in VO/GNSS integration includes VO noise modelling, the length scale factor,
and heading drift. It is assumed that the estimates from the smoother are better in quality and provide
more output solutions compared to the EKF; therefore, the output from the smoothing solutions in
each smoothing window is used for modelling error.

Qk =
[
εεT

]
(25)

εk = xk|N − x̂−k (26)

where xk|N is the smoothing solution and x̂−k is the prediction of the EKF.
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Qk is the system error model at time k. It is used as the error model for the next estimation step at
time k + 1.

With this scheme, the system error model is updated every updating step of the EKF whenever
the GNSS measurement is available.

In the VO/GNSS integration, the position and the length scale factor of VO are updated continuously
based on GNSS data. However, it is no longer updated because GNSS does not provide an attitude
parameter. Consequently, the position of the system drifts quickly during GNSS outages due to the
drift of the heading, especially during turning. Thus, heading error modelling is used to estimate the
heading error based on on-line smoothing as

∆hk = mean
(
hk|N − h−k

)
(27)

where hk|N is the smoothed heading and h−k is the predicted heading by the EKF at time k. The heading
at time k + 1 is then estimated.

hk+1 = hk + ∆hk/2 (28)

5. Experiment and Discussion

The testing system comprised a monoband camera (Blackfly, Point Grey) with a resolution of 808
× 608 (0.5 MP). GNSS data were provided by a double-frequency GNSS receiver (ProPak V3, NovAtel).
The original GNSS output data rate was 1 Hz (one data record per second); however, for testing, the
GNSS data rate was decreased to 0.05 Hz (one data record every 20 s).

The system for generating reference composed a medium tactical-grade inertial measurement
unit (IMU) (C-MIGIT) and a dual-frequency geodetic-grade GNSS receiver (ProPak V3, NovAtel).
Some additional ground control points in the GNSS-denied environment were included to guarantee
that the reference solution was at the centimeter level of accuracy. The system was set up on a platform
for testing, as shown in Figure 8. The reference trajectories were generated using tightly coupled
integration with a smoothing algorithm using the commercial IMU/GNSS processing software, Inertial
Explore. A testing software module was written and designed in C++ programming language to
acquire and process data.
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In the first test, the testing field was carried out at a GNSS-hostile environment at a campus of
National Cheng Kung University, Tainan, Taiwan. The testing trajectory is displayed in Figure 9. For
performance evaluation, the solutions provided by pure VO, VO/GNSS using an original EKF, and
VO/GNSS with on-line smoothing were analyzed. Figure 9 shows the positions of these solutions on
the map and Figure 10 indicates a graphical comparison of the positional error between solutions. The
numerical statistics in terms of the positional root-mean-square error (RMSE) are shown in Table 1.Sensors 2019, 19, x FOR PEER REVIEW 10 of 15 
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Table 1. Comparison of the positional root-mean-square error (RMSE) for the first test.

RMSE (m) Pure VO VO/GNSS EKF VO/GNSS on-line Smoothing

North 6.689 2.054 0.522
East 15.601 1.195 0.525
Up 12.933 2.933 1.454
3D 21.34 3.775 1.632

Improvement (%) - 82.3 92.4

It can be seen from the results that the positional error of the pure VO grows quickly over time. For
VO/GNSS fusion using an EKF, the VO position is constrained by GNSS, and thus, its accuracy improves
significantly (by 82.3%) compared to that of pure VO. Moreover, the integrated solution can provide
seamless navigation even with GNSS outages. With on-line smoothing, the smoother is activated
whenever an updating measurement is found. Smoothing is performed backward from current to
previous updating time, utilizing data which stores in temporary dynamic arrays. The navigation
solution with smoothing is more accurate (by 92.4%) than pure VO.

For the second test, the data set was collected at the Kuei-Jen Campus, National Cheng Kung
University, where the GNSS satellite is good for evaluation, as show in Figure 11. In this test, the
testing equipment was similar to that of the first test. Two simulated GNSS outages were generated.
The performance analysis focuses on the VO/GNSS solution with an EKF, on-line smoothing, and
on-line smoothing and error modelling. The comparison between the three solutions in terms of the
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ground trajectory and a graph are shown in Figures 12 and 13, respectively. The numerical analysis
results, in terms of the positional RMSE, are shown in Table 2.Sensors 2019, 19, x FOR PEER REVIEW 11 of 15 
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Table 2. Comparison of the positional RMSE for the second test.

RMSE (m) VO/GNSS EKF On-line Smoothing On-Line Smoothing
and Error Modelling

North 5.606 5.994 0.255
East 12.535 3.612 0.339
Up 1.98 0.458 0.322
3D 13.874 7.013 0.533

Improvement (%) - 49.5 96.2

According to the statistics in Table 2, the estimation accuracy in terms of position for smoothing is
much better than that of the EKF. With on-line smoothing, the improvement in RMSE is about 50%.
The heading error, however, still drifts over time, leading to a large position error, particularly during
GNSS outages. For on-line smoothing and error modelling, the heading error was estimated; the
accuracy improvement was 96.2% compared to that of the EKF.
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6. Conclusions

This study proposed an integrated scheme of VO and GNSS with on-line smoothing and error
modelling based on the EKF and the RTS smoother to overcome the issues of GNSS in GNSS-challenging
environments and the problem of unbounded error in VO. A system that included a camera, a GNSS
receiver, and an IMU was combined for testing and reference generation, and a console program
written in C++ based on OpenCV was implemented to evaluate the proposed method.

The testing results indicate that with an EKF used for data fusion, the RMSE of the 3D position is
about 80 times lower than that of the VO-only solution. With on-line smoothing and error modelling,
the predicted and updated information from the EKF were smoothed and the heading error was
estimated. The results are thus more accurate and provide seamless on-line navigation information.

In feature-based approach, the static, salient, and repeatable features are tracked across the
sequence images. Therefore, in future work, an algorithm that adopts outlier removal and more robust
feature tracking to deal with complex environments (e.g., urban roads with many moving vehicles)
will be developed. Non-linear, non-Gaussian filtering and a smoothing algorithm will be applied in
the VO/GNSS integrated system to overcome the limitation of the EKF in terms of error modelling and
highly dynamic movement.
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