
sensors

Article

Face Detection Ensemble with Methods Using Depth
Information to Filter False Positives

Loris Nanni 1 , Sheryl Brahnam 2,* and Alessandra Lumini 3

1 Department of Information Engineering, University of Padova, Via Gradenigo, 6, 35131 Padova, Italy;
nanni@dei.unipd.it

2 Department of Information Technology and Cybersecurity, Missouri State University, 901 S. National Street,
Springfield, MO 65804, USA

3 Dipartimento di Informatica—Scienza e Ingegneria, Università di Bologna, Via Sacchi 3, 47521 Cesena, Italy;
alessandra.lumini@unibo.it

* Correspondence: sbrahnam@missouristate.edu

Received: 10 October 2019; Accepted: 25 November 2019; Published: 28 November 2019 ����������
�������

Abstract: A fundamental problem in computer vision is face detection. In this paper, an experimentally
derived ensemble made by a set of six face detectors is presented that maximizes the number of true
positives while simultaneously reducing the number of false positives produced by the ensemble.
False positives are removed using different filtering steps based primarily on the characteristics of
the depth map related to the subwindows of the whole image that contain candidate faces. A new
filtering approach based on processing the image with different wavelets is also proposed here.
The experimental results show that the applied filtering steps used in our best ensemble reduce
the number of false positives without decreasing the detection rate. This finding is validated on a
combined dataset composed of four others for a total of 549 images, including 614 upright frontal faces
acquired in unconstrained environments. The dataset provides both 2D and depth data. For further
validation, the proposed ensemble is tested on the well-known BioID benchmark dataset, where it
obtains a 100% detection rate with an acceptable number of false positives.
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1. Introduction

One of the most fundamental yet difficult problems in computer vision and human–computer
interaction is face detection, the object of which is to detect and locate all faces within a given image or
video clip. Face detection is fundamental in that it serves as the basis for many applications [1] that
involve the human face, such as face alignment [2,3], face recognition/authentication [4–7], face tracking
and tagging [8], etc. Face detection is a hard problem because unlike face localization, no assumptions
can be made regarding whether any faces are located within an image [9,10]. Moreover, faces vary
widely based on gender, age, facial expressions, and race, and can dramatically change in appearance
depending on such environmental conditions as illumination, pose (out-of-plane rotation), orientation
(in-plane rotation), scale, and degree of occlusion and background complexity. Not only must a capable
and robust face detection system overcome these difficulties, but for many of today’s applications,
it must also be able to do so in real time.

These challenges have resulted in a large body of literature reporting different methods for
tackling the problem of face detection [11]. Yang et al. [12], who published a survey of face
detection algorithms developed in the last century, have divided these earlier algorithms into four
categories: knowledge-based methods, feature invariant approaches, template-matching methods,
and appearance-based methods, the latter demonstrating some superiority compared with the other
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algorithms thanks to the rise in computing power. In general, these methods formulate face detection
as a two-class pattern recognition problem that divides a 2D image into subwindows that are then
classified as either containing a face or not [13]. Moreover, these approaches take a monocular
perspective in the sense that they forgo any additional sensor or contextual information that might
be available.

Around the turn of the century, Viola and Jones [14] presented a 2D detection method that has since
become a major source of inspiration for many subsequent face detectors. The famous Viola–Jones (VJ)
algorithm achieved real-time object detection using three key techniques: an integral image stratagem
for efficient Haar feature extraction, a boosting algorithm (AdaBoost) for an ensemble of weak classifiers,
and an attentional cascade structure for fast negative rejection. However, there are some significant
limitations to the VJ algorithm that are due to the suboptimal cascades, the considerable pool size
of the Haar-like features, which makes training extremely slow, and the restricted representational
capacity of Haar features to handle, for instance, variations in pose, illumination, facial expression,
occlusions, makeup, and age-related factors [15]. These problems are widespread in unconstrained
environments, such as those represented in the Face Detection Dataset and Benchmark (FDDB) [16]
where the VJ method fails to detect most faces [17].

Some early Haar-like extensions and enhancements intended to overcome some of these
shortcomings include rotated Haar-like features [18], sparse features [19], and polygon features [20].
Haar-like features have also been replaced by more powerful image descriptors, such as local binary
patterns (LBP) [21], spatial histogram features [22], histograms of oriented gradients (HoG) [23],
multidimensional local Speeded-Up Robust Features (SURF) patches [24], and, more recently,
by normalized pixel difference (NPD) [17] and aggregate channel features [25], to name but a few.

Some older feature selection and filtering techniques for reducing the pool size, speeding up
training, and improving the underlying boosting algorithm of the cascade paradigm include the works
of Brubaker et al. [26] and Pham et al. [27]. In Küblbeck et al. [28], the illumination invariance and
speed were improved with boosting combined with modified census transform (MCT); in Huang et
al. [29], a method for detecting faces with arbitrary rotation in-plane and rotation off-plane angles in
both still images and videos is proposed. For an excellent survey of face detection methods prior to
2010, see [11].

Some noteworthy 2D approaches produced in the last decade include the work of Li et al. [15] at
Intel labs, who introduced a two-pronged strategy for the faster convergence speed of the SURF cascade,
first by adopting, as with [24], multidimensional SURF features rather than single-dimensional Haar
features to describe local patches, and second, by replacing decision trees with logistic regression. Two
simple approaches that are also of note are those proposed in Mathias et al. [30], which obtained top
performance compared with such commercial face detectors as Google Picasa, Face.com, Intel Olaworks,
and Face++. One method is based on rigid templates, which is similar in structure to the VJ algorithm,
and the other detector uses a simple deformable part model (DPM), which, in brief, is a generalizable
object detection approach that combines the estimation of latent variables for alignment and clustering
at the training time with multiple components and deformable parts to manage intra-class variance.

Four 2D models of interest in this study are the face detectors proposed by Nilsson et al. [31],
Asthana et al. [32], Liao et al. [33], and Markuš et al. [34]. Nilsson et al. [31] used successive mean
quantization transform (SMQT) features that they applied to a Split up sparse Network of Winnows
(SN) classifier. Asthana et al. [32] employed face fitting, i.e., a method that models a face shape with a
set of parameters for controlling a facial deformable model. Markuš et al. [34] combined a modified VJ
method with an algorithm for localizing salient facial landmark points. Liao et al. [33], in addition to
proposing the aforementioned scale-invariant NPD features, expanded the original VJ tree classifier
with two leaves to a deeper quadratic tree structure.

Another powerful approach for handling the complexities of 2D face detection is deep
learning [35–41]. For instance, Girshick et al. [36] were one of the first to use Convolutional Neural
Networks (CNN) in combination with regions for object detection. Their model, appropriately named
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Region-CNN (R-CNN), consists of three modules. In the testing phase, R-CNN generates approximately
2000 category-independent region proposals (module 1), extracts a fixed-length deep feature vector
from each proposal using a CNN (module 2), and then classifies them with Support Vector Machines
(SVMs) (module 3). In contrast, the deep dense face detector (DDFD) proposed by Farfade et al. [37]
requires no pose/landmark annotations and can detect faces in many orientations using a single deep
learning model. Zhang et al. [39] proposed a deep learning method that is capable of extracting tiny
faces, also using a single deep neural network.

Motivated by the development of affordable depth cameras, another way to enhance the accuracy
of face detection is to go beyond the limitations imposed by the monocular 2D approach and include
additional 3D information, such as that afforded by the Minolta Vivid 910 range scanner [42], the MU-2
stereo imaging system [43], the VicoVR sensor, the Orbbec Astra, and Microsoft’s Kinect [44], the latter
of which is arguably the most popular 3D consumer-grade device on the market. Kinect combines a 2D
RGB image with a depth map (RGB-D) that initially (Kinect 1) was computed based on the structured
light principle of projecting a pattern onto a scene to determine the depth of every object but which
later (Kinect 2) exploited the time-of-flight principle to determine depth by measuring the changes that
an emitted light signal encounters when it bounces back from objects.

Since depth information is insensitive to pose and changes in illumination [45], many researchers
have explored depth maps and other kinds of 3D information [46]; furthermore, several benchmark
datasets using Kinect have been developed for both face recognition [44] and face detection [47].
The classic VJ algorithm was adapted to consider depth and color information a few years after Viola
and Jones published their groundbreaking work [48,49]. To improve detection rates, most 3D face
detection methods combine depth images with 2D gray-scale images. For instance, in Shieh et al. [50],
the VJ algorithm is applied to images to detect a face, and then its position is refined via structured
light analysis.

Expanding on the work of Shotton et al. [51], who used pair-wise pixel comparisons in depth
images to quickly and accurately classify body joints and parts from single depth images for pose
recognition, Mattheij et al. [52] compared square regions in a pair-wise fashion for face detection.
Taking cues from biology, Jiang et al. [53] integrated texture and stereo disparity information to filter
out locations unlikely to contain a face. Anisetti et al. [54] located faces by applying a course detection
method followed by a technique based on a 3D morphable face model that improves accuracy by
reducing the number of false positives, and Taigman et al. [6] found that combining a 3D model-based
alignment with DeepFace trained on the Labeled Faces in the Wild (LFW) dataset [55] generalized well
in the detection of faces in an unconstrained environment. Nanni et al. [9] overcame the problem of
increased false positives when combining different face detectors in an ensemble by applying different
filtering steps based on information in the Kinetic depth map.

The face detection system proposed in this paper is composed of an ensemble of face detectors that
utilizes information extracted from the 2D image and depth maps obtained by Microsoft’s Kinect 1 and
Kinect 2 3D devices. The goal of this paper, which improves the method presented in [9], is to test a set
of filters, which includes a new wave-based filter proposed here, on a new collection of face detectors.
The main objective of this study is to find those filters that preserve the ensemble’s increased rate of
true positives while simultaneously reducing the number of false positives. Creating an ensemble of
classifiers is a feasible method for improving performance in face detection (see [9]), as well as in many
other classification problems. The main reason that ensembles improve face detection performance
is that the combination of different methods increases the number of candidate windows and thus
the probability of including a previously lost true positive. However, the main drawback of using
ensembles in face detection is the increased generation of false positives. The rationale behind the
proposed approach is to use some filtering steps to reduce false positives. The present work extends [9]
by adding to the proposed ensemble additional face detectors.

The best performing system developed experimentally in this work is validated on the challenging
dataset presented in [9] that contains 549 samples with 614 upright frontal faces. This dataset includes
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depth images as well as 2D images. The results in the experimental section demonstrate that the
filtering steps succeed in significantly decreasing the number of false positives without significantly
affecting the detection rate of the best-performing ensemble of face detectors. To validate the strength
of the proposed new even system further, we validate it on the widely used BioID dataset [56], where
it obtains a 100% detection rate with a limited number of false positives. Our best ensemble/filter
combination outperforms the method proposed by Markuš et al. [34], which has been shown to surpass
the performance of these well-known state-of-the-art commercial face detection systems: Google Picasa,
Face++, and Intel Olaworks.

The organization of this paper is as follows. In Section 2, the strategy taken in this work for face
detection is described along with the face detectors tested in the ensembles and the different filtering
steps. In Section 3, the experiments on the two above-mentioned datasets are presented, along with a
description of the datasets, definition of the testing protocols, and a discussion of the experimental
results. The paper concludes, in Section 4, by providing a summary with some notes regarding future
directions. The MATLAB code developed for this paper, along with the dataset, is freely available at
https://github.com/LorisNanni.

2. Materials and Methods

The basic strategy taken in this work is to develop experimentally a high-performing face detection
ensemble composed of well-known face detectors. The goal is to obtain superior results without
significantly increasing the number of false positives. The system proposed here, as illustrated in
Figure 1, is a three-step process.

Figure 1. Schematic of the proposed face detection system.

In Step 1, high recall is facilitated by first performing face detection on the color images. A set of
six face detectors (experimentally derived, as described in the experimental section) are applied to
each image. The face detection algorithms tested in this paper are described in Section 2.2. Before

https://github.com/LorisNanni
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detection, as also illustrated in Figure 1, color images are sometimes rotated {20◦, −20◦} to handle faces
that are not upright. The addition of rotated images is noted in the experimental section whenever
these are included in the dataset.

Since this first step is imprecise and therefore produces many false positives, the purpose of Step 2
is to align the depth maps to the color images so that false positives can be winnowed out in Step 3 by
applying seven filtering approaches that take advantage of the depth maps. Alignment is accomplished
by first calibrating the color and depth data using the calibration technique proposed in Herrera et
al. [57]. The positions of the depth samples in 3D space are determined using the intrinsic parameters
(focal length and principal point) of the depth camera. Then, these positions are reprojected in 2D
space by considering both the color camera’s intrinsic parameters and the extrinsic parameters of the
camera pair system. Next, color and depth values are associated with each sample, as described in
Section 2.1. This operation is applied only to regions containing a candidate face to reduce computation
time. Finally, in Step 3, these regions are filtered, as detailed in Section 2.3, to remove false positives
from the candidate faces.

2.1. Depth Map Alignment and Segmentation

The color images and depth maps are jointly segmented by a procedure similar to that described in
Mutto et al. [58] that has two main stages. In Stage 1, each sample is transformed into a six-dimensional
vector. In Stage 2, the point set is clustered using the mean shift algorithm [59].

Every sample in the Kinetic depth map corresponds to a 3D point, pi, i = 1, . . . , N, with N the
number of points. The joint calibration of the depth and color cameras, as described in [57], allows a
reprojection of the depth samples over the corresponding pixels in the color image so that each point
is associated with the 3D spatial coordinates (x, y, and z) of pi and its RGB color components. Since
these two representations lie in entirely different spaces, they cannot be compared directly, and all
components must be comparable to extract multidimensional vectors that are appropriate for the mean
shift clustering algorithm. Thus, a conversion is performed so that the color values lie in the CIELAB
uniform color space, which represents color in three dimensions expressed by values representing
lightness (L) from black (0) to white (100), a value (a) from green (−) to red (+), and a value (b) from
blue (−) to yellow (+). This introduces a perceptual significance to the Euclidean distance between the
color vectors that can be used in the mean shift algorithm.

Formally, the color information of each scene point in the CIELAB color space, c, can be described
with the 3D vector:

pc
i =


L(pi)

a(pi)

b(pi)

, i = 1, . . . , N. (1)

The geometry, g, can be represented simply by the 3D coordinates of each point, thus:

pg
i =


x(pi)

y(pi)

z(pi)

, i = 1, . . . , N. (2)

The scene segmentation algorithm needs to be insensitive to the relative scaling of the point-cloud
geometry. Moreover, the geometry and color distances must be brought into a consistent framework.
For this reason, all the components of pg

i are normalized with respect to the average of the standard

deviations of the point coordinates in the three dimensions σg =
(
σx + σy + σz

)
/3. Normalization

produces the vector: 
x(pi)

y(pi)

z(pi)

 = 3
σx + σy + σz


x(pi)

y(pi)

z(pi)

 = 1
σg


x(pi)

y(pi)

z(pi)

. (3)
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To balance the relevance of color and geometry in the merging process, the color information
vectors are normalized as well. The average of the standard deviations of the L, a, and b color
components are computed producing the final color representation:

L(pi)

a(pi)

b(pi)

 = 3
σL + σa + σb


L(pi)

a(pi)

b(pi)

 = 1
σc


L(pi)

a(pi)

b(pi)

. (4)

Once the geometry and color information vectors are normalized, they can be combined for a
final representation f :

p f
i =



L(pi)

a(pi)

b(pi)

λx
λy
λz


, (5)

with the parameter λ adjusting the contribution to the final segmentation of color (low values of λ
indicating high color relevance) and geometry (low values indicating high geometry relevance). By
adjusting λ, the algorithm can be reduced to a color-based segmentation (λ = 0) or to a geometry
(depth)-only segmentation (λ→∞ ) (see [58] for a discussion of the effects that this parameter produces
and for automatically tuning λ to an optimal value).

Once the final vectors p f
i are calculated, they can be clustered by the mean shift algorithm [59]

to segment the acquired scene. This algorithm offers an excellent trade-off between segmentation
accuracy and computational complexity. For final refinement, regions are removed that are smaller
than a predefined threshold, since they are typically due to noise. In Figure 2, examples of a segmented
image are shown.

Figure 2. Color image (left), depth map (middle), and segmentation map (right).

2.2. Face Detectors

We perform experiments on the fusion of six face detectors: the four detectors tested in [9] (the
canonic VJ algorithm [14], a method using the Split up sparse Network of Winnows (SN) classifier [31],
a modification of the VJ algorithm with fast localization (FL) [34], and a face detector based on
Discriminative Response Map Fitting (DRMF) [32]), as well as two additional face detectors (the VJ
modification using NPD features (NPD) [33] and a high-performance method implemented here:
http://dlib.net/face_detector.py.html. In the following, this latter method is called Single Scale-invariant
Face Detector (SFD). Each of these face detection algorithms is briefly described below.

2.2.1. VJ

The canonical VJ algorithm [14] is based on Haar wavelets extracted from the integral image.
Classification is performed, as noted in the introduction, by combining an ensemble of AdaBoost
classifiers that select a small number of relevant descriptors with a cascade combination of weak learners.

http://dlib.net/face_detector.py.html
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The disadvantage of this approach is that it requires considerable training time. However, it is
relatively fast during the testing phase. The precision of VJ relies on the threshold s, which is used to
classify a face within an input subwindow.

2.2.2. SN

SN [31], available in MATLAB (http://www.mathworks.com/matlabcentral/fileexchange/loadFile.
do?objectId=13701&objectType=FILE), feeds SMQT features, as briefly discussed in the Introduction,
to a Split up Sparse Network of Winnows (SN) classifier. SMQT enhances gray-level images. This
enhancement reveals the structure of the data and additionally removes some negative properties
such as gain and bias. This is how SMQT features overcome to some extent the illumination and
noise problem.

SMQT features are extracted by moving a patch across the image while repeatedly downscaling
and resizing it to detect faces of different sizes. The detection task is performed by the SN classifier,
i.e., a sparse network of linear units over a feature space that can be used to create lookup tables.

2.2.3. FL

FL (Fast Localization) [34] is a method that combines a modification of the standard VJ algorithm
with a component for localizing a salient facial landmark. An image is scanned with a cascade of binary
classifiers that considers a set of reasonable positions and scales. Computing a data structure, such as
integral images, an image pyramid, or HoG features, etc., is not required with this method. An image
region is classified as having a face when all the classifiers are in agreement that the region contains
one. At this stage, another ensemble calculates the position of each facial landmark point. Each binary
classifier in the cascade is an ensemble of decision trees that have pixel intensity comparisons in their
internal nodes as binary tests. Moreover, they are based on the same feature type, unlike the VJ
algorithm that uses five types of Haar-like features. Learning takes place with a greedy regression tree
construction procedure and a boosting algorithm.

2.2.4. RF

RF [32] is a face detector based on Discriminative Response Map Fitting (DRMF), which is a
specific face fitting technique. DRMF is a discriminative regression method for the Constrained Local
Models (CLMs) framework. Precision is adjusted in RF using the sensitivity parameter s that sets both
a lower and a higher sensitivity value.

2.2.5. NPD

NPD [33] extracts the illumination and blur invariant NPD features mentioned in the Introduction.
NPD is computed as the difference-to-sum ratio between two pixels and is extremely fast because it
requires only one memory access using a lookup table. However, because NPD contains redundant
information, AdaBoost is applied to select the most discriminative feature set and to construct strong
classifiers. The Gentle AdaBoost algorithm [60] is adopted for the deep quadratic trees. The splitting
strategy consists in quantizing the feature range into l discrete bins (l = 256 in the original paper and
here), and an exhaustive search is performed to determine whether a feature lies within a given range
[θ1, θ2]. The weighted mean square error is applied as the optimal splitting criterion.

2.3. Filtering Steps

As noted in Figure 1, some of the false positives generated by the ensemble of classifiers are
extracted by applying several filtering approaches that take advantage of the depth maps. The filters
tested in this work are the set of six tested in [9] (viz. SIZE, STD, SEG, ELL, EYE, and SEC) and a
new filter proposed here (viz. WAV), which is based on processing the image with different wavelets.

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13701&objectType=FILE
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13701&objectType=FILE
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Each of these filtering techniques is described below. Figure 3 illustrates images rejected by the seven
types of filters.

Figure 3. Examples of images rejected by the different filtering methods.

2.3.1. Image Size Filter (SIZE)

SIZE [10] rejects candidate faces based on the size of the face region extracted from the depth map.
First, the 2D position and dimension (W2D, h2D) in pixels of a candidate face region are identified by
the face detector. Second, this information is used to estimate the corresponding 3D physical dimension
in mm (W3D, h3D) as follows:

W3D = W2D
d
fx

and h3D = h2D
d
fx

, (6)

where fx and fy are the Kinect camera focal lengths computed by the calibration algorithm in [57], and d
is the average depth of the samples in the candidate bounding box. Face candidate regions are rejected
when they lie outside the fixed range in cm [0.075, 0.35]. Note that d is defined as the median of the
depth samples and is necessary for reducing the impact of noisy samples in the average computation.

2.3.2. Flatness/Unevenness Filter (STD)

STD, as proposed in [9], extracts information from the depth map that relates to the flatness
and unevenness of candidate face regions. Flat and uneven faces detected by the classifiers are then
removed using the depth map and a segmentation method based on the depth map.

The filtering method is a two-step process. In Step 1, a segmentation procedure using the depth
map is applied; in Step 2, the standard deviation (STD) of the pixels of the depth map that belong to
the larger segment (i.e., the region obtained by the segmentaion procedure) is calculated from each
face candidate region. Those regions whose STD lies outside the range of [0.01, 2.00] are rejected.

2.3.3. Segmentation-Based Filtering (SEG and ELL)

SEG and ELL, proposed in [9], apply the segmented version of the depth image to compare its
dimension to its bounding box in SEG or to its shape (which should approximate that of an ellipse)
in ELL. From this information, two simple but useful evaluations can be made. In the case of SEG,
the relative dimension of the larger area can be compared to the entire candidate image. The candidate
regions where the area of the larger region is less than 40% of the entire area are rejected. In the
case of ELL, the larger region is given a fitness score using the least-squares criterion to determine its
closeness to an elliptical model. This score is calculated here using the MATLAB function fit_ellipse [61].
The candidate regions with a score higher than 100 are rejected.

2.3.4. Eye-Based Filtering (EYE)

EYE, as proposed in [9], uses the presence of eyes in a region to detect a face. In EYE, two robust
eye detectors are applied to candidate face regions [62,63]. Regions with a low probability of containing
two eyes are rejected.

One of the eye detectors [62] used in EYE is a variant of the Pictorial Structures (PS) model. PS
is a computationally efficient framework that represents a face as an undirected graph G = (V, E),
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where the vertices V correspond to facial features. The edges E describe the local pairwise spatial
relationships between the feature set. PS is expanded in [62] so that it can deal with complications in
appearance as well as with many of the structural changes that eyes undergo in different settings.

The second eye detector, presented in [63], makes use of color information to build an eye map
that highlights the iris. A radial symmetry transform is applied to both the eye map and the original
image once the area of the iris is identified. The cumulative results of this enhancement process provide
the positions of the eye. Face candidates are rejected in those cases where detection of the eyes fall
outside a threshold of 1 for the first approach [62] and of 750 for the second approach [63].

2.3.5. Filtering Based on the Analysis of the Depth Values (SEC)

SEC, as proposed in [9], takes advantage of the fact that most faces, except those where people
are lying flat, are on top of the body, while the remaining surrounding volume is often empty. With
SEC, candidate faces are rejected when the neighborhood manifests a different pattern from that which
is expected.

The difference in the expected pattern is calculated as follows. First, the rectangular region
defining a candidate face is enlarged so that the neighborhood of the face in the depth map can
be analyzed.

Second, the enlarged region is then partitioned into radial sectors (eight in this work, see Figure 4),
each emanating from the center of the candidate face. For each sector Seci, the number of pixels ni are
counted whose depth value dp is close to the average depth value of the face d, thus:

ni =

∣∣∣∣∣{p :
∣∣∣∣dp − d

∣∣∣< td ∧ p ∈ Sec1

}∣∣∣∣∣ (7)

where td is a measure of closeness (td = 50 cm here).

Figure 4. Examples of partitioning of a neighborhood of the candidate face region into 8 sectors (gray
area). The lower sectors Sec4 and Sec5 that should contain the body are depicted in dark gray [9].

Finally, the number of pixels per sector is averaged on the two lower sectors (Sec4 and Sec5) and
then again on the remaining sectors, from which two of the values, nu and nl respectively, are obtained.
The ratio between nu and nl is then computed as:

nl
nu

=
1
2 (n4 + n5)

1
6 (n1 + n2 + n3 + n6 + n7 + n8)

. (8)

If the ratio drops below a certain threshold, tr (where tr = 0.8 here), then the candidate face
is removed.

2.3.6. WAV

WAV is a filtering technique that processes an image with different wavelets. With WAV, statistical
indicators are extracted (e.g., the mean and variance) and used for discarding candidate images with
no faces. Rejection is based on five criteria.

The first criterion applies phase congruency [64] to the depth map of the largest cluster, and the
average value is used to discriminate between face/non-face. The segmentation process divides the
image into multiple clusters, and only the largest cluster (that is, the one that is most likely to contain
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the face) is considered. Phase congruency has higher values when there are edges. WAV keeps only
those candidates with an acceptable value, i.e., those with a number of edges that is neither too high
nor too low, and deletes all others since they most likely contain no faces.

WAV is used here in two ways, but in both cases, Haar-like waves are selected since they often
give the best results, as demonstrated in [65]. The first method (second criterion) works on the same
principle as the phase congruency test: the Haar wave is applied to each image, and the average value
is calculated for each one. However, the second test (third criterion) follows the approach in [50], where
edge maps are first extracted and then fitted to an ellipse (the typical shape of a face). If an ellipse is
found, then the image is rotated by an angle given by the intersection between the origin and the major
axis of the ellipse, and the filter is applied to the rotated image. If no elliptical shape is found, the filter
is applied to the original unrotated image. To conclude, the WAV filter produces higher values when it
encounters specific features, especially abrupt changes that are typically not present in many non-faces.

Two remaining tests (fourth and fifth criteria) are based on Gabor’s logarithmic wavelet filter for
finding the symmetry of the shape of the largest cluster. We calculate the phase symmetry of points in
an image. This is a contrast invariant measure of symmetry [64]. High values indicate the presence of
symmetry, which can mean the presence of a symmetrical shape, such as an ellipse, and therefore that
have a good probability of containing a face. The first test discriminates based on the average of the
scores, while the latter uses variance instead of the mean.

3. Results and Discussion

3.1. Datasets

Four datasets—Microsoft Hand Gesture (MHG) [66], Padua Hand Gesture (PHG) [67], Padua
FaceDec (PFD) [10], and Padua FaceDec2 (PFD2) [9]—were used to experimentally develop the system
proposed in this work. The faces in these datasets were captured in unconstrained environments. All
four datasets contain colored images and their corresponding depth maps. All faces are upright and
frontal with each possessing limited degrees of rotation. Originally, for two datasets, the faces were
collected for gesture recognition rather than face detection. In addition, a separate set of images was
collected for preliminary experiments and for parameter tunings. These faces were extracted from the
Padua FaceDec dataset [10]. As in [9], these datasets were merged to form a challenging dataset for
face detection.

In addition to the merged datasets, experiments are reported on the BioID dataset [56] so that
comparisons with the system proposed here can be made with other face detection systems. Each of
these five datasets is discussed below, with important information about each one summarized in
Table 1.

MHG [66] was collected for the purpose of gesture recognition. This dataset contains images of
10 different people performing a set of gestures, which means that not only does each image in the
dataset include a single face, but the images also exhibit a high degree of similarity. As in [9], a subset
of 42 MHG images was selected, with each image manually labeled with the face position.

PHG [67] is a dataset for gesture recognition. It contains images of 10 different people displaying
a set of hand gestures, and each image contains only one face. A subset of 59 PHG images were
manually labeled.

PFD [10] was acquired specifically for face detection. PFD contains 132 labeled images that were
collected outdoors and indoors with the Kinect 1 sensor. The images in this dataset contain zero, one,
or more faces. Images containing people show them performing many different daily activities in the
wild. Images were captured at different times of the day in vary lighting conditions. Some faces also
exhibit various degrees of occlusion.

PFD2 [9] contains 316 images captured indoors and outdoors in different settings with the Kinect
2 sensor. For each scene, a 512 × 424 depth map and a 1920 × 1080 color image were obtained. Images
contain zero, one, or more faces. Images of people show them in various positions with their heads
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tilted or next to objects. The outdoor depth data collected by Kinect 2 are highly noisy compared to the
images collected with Kintect 1. This makes PFD2 an even more challenging dataset. The depth data
was retroprojected over the color frame and interpolated to the same resolution to obtain two aligned
depth and color fields.

Table 1. Characteristics of the six datasets. MHG: Microsoft Hand Gesture, PHG: Padua Hand Gesture,
PFD: Padua FaceDec, and PFD2: Padua FaceDec2.

Dataset Number Images Color Resolution Depth Resolution Number Faces Difficulty Level

MHG 42 640 × 480 640 × 480 42 Low
PHG 59 1280 × 1024 640 × 480 59 Low
PFD 132 1280 × 1024 640 × 480 150 High
PFD2 316 1920 × 1080 512 × 424 363 High

MERGED 549 — — 614 High

BioID 1521 384 × 286 — 1521 High

The MHG, PHG, PFD, and PFD2 datasets were merged, as in [9], to form a larger, more challenging
dataset, called MERGED, containing 549 images with 614 total faces. Only upright frontal faces
with a maximum rotation of ±30◦ were included. Parameter optimization of the face detectors
was manually performed and fixed for all images even though they came from four datasets with
different characteristics.

As a final dataset for validating the approach proposed in this work, we chose one of the leading
benchmark datasets for upright frontal face detection: the BioID dataset [56]. It contains 1521 images
of 23 people collected during several identification sessions. The images in BioID are gray-scale and do
not include depth map information. Moreover, the degree of rotation in the facial images is small. As a
consequence, most of the filters applied to the ensembles were not transferable to the BioID dataset.
Despite this shortcoming, this dataset is useful in demonstrating the effectiveness of the ensembles
developed in this work.

3.2. Performance Indicators

The following two well-known performance indicators are reported here:

• Detection rate (DR): the ratio between the number of faces correctly detected and the total number
of faces in the dataset. The faces were manually labeled. DR is evaluated at different precision
levels considering different values of “eye distance”. Let dl, (dr) be the Euclidean distance between
the manually extracted Cl, (Cr) and the detected C′l, (C′r) left (right) eye positions. The relative
error of detection is defined as ED = max(dl, dr)/dlr, where the normalization factor dlr is the
Euclidean distance of the expected eye centers used to make the measurement independent of the
scale of the face in the image and of the image size. There is a general agreement [56] that ED ≤
0.25 is a good criterion for claiming eye detection, since this value roughly corresponds to an eye
distance smaller than the eye width. Some face detectors (i.e., FL and RF) give the positions of the
eye centers as the output, whereas for others (i.e., VJ and SN), the eye position is assumed to be a
fixed position inside the face bounding box.

• False positives (FP): the number of candidate faces that do not include a face.

3.3. Experiments

The first experiment compares the detection rates of the six face detectors, along with some of
their combinations, by adjusting (1) the sensitivity values of s, where applicable, and (2) the detection
procedure which either does or does not involved the addition of poses constructed by rotating images
20◦/−20◦.
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The value for the sensitivity threshold s is shown in parentheses in Table 1. To reduce the number of
false positives (FP), all output images having a distance of their centroid ≤30 pixels are merged as in [9].

As evident in the results in Table 2, the addition of rotated poses is of little value for the RF
face detector, since this detector was originally trained on images that contained rotated faces. Thus,
the addition of rotated poses increased the number of false positives.

Table 2. Performance of the six face detectors and the best performing ensembles (see the last seven rows)
on the MERGED dataset (* denotes the addition of the 20◦/−20◦ rotated images/poses in the dataset).
As in [9], a face is considered detected in an image if the eye distance ED < 0.35. DR: detection rate,
FL: fast localization, FP: false positives, NPD: normalized pixel difference, SFD: Single Scale-invariant
Face Detector, SN: Split up sparse Network of Winnows, VJ: Viola–Jones.

Face Detector(s)/Ensemble +Poses DR FP

VJ(2) No 55.37 2528
RF(−1) No 47.39 4682

RF(−0.8) No 47.07 3249
RF(−0.65) No 46.42 1146

SN(1) No 66.61 508
SN(10) No 46.74 31

FL No 78.18 344
NPD No 55.70 1439
SFD No 81.27 186

VJ(2) * Yes 65.31 6287
RF(−1) * Yes 49.67 19,475

RF(−0.8) * Yes 49.67 14,121
RF(−0.65) * Yes 49.02 5895

SN(1) * Yes 74.59 1635
SN(10) * Yes 50.16 48

FL * Yes 83.39 891
NPD * Yes 64.17 10,431

FL + RF(−0.65) No 83.06 1490
FL + RF(−0.65) + SN(1) No 86.16 1998

FL + RF(−0.65) + SN(1) * Mixed 88.44 3125
FL * + SN(1) * Yes 87.79 2526

FL * + RF(−0.65) + SN(1) * Mixed 90.39 3672
FL * + RF(−0.65) + SN(1) * + SFD Mixed 91.21 3858

FL * + RF(−0.65) + SN(1) * + NPD * + SFD Mixed 92.02 16,325

Only the most interesting results are reported for the ensembles of classifiers. As can be seen in
Table 2, high-performing approaches in an ensemble increase the detection rates while also generating
more false negatives.

In Table 3, the performance of the face detectors presented in Table 2 are reported on the BioID
dataset. As noted in [9], the addition of rotated poses is not needed when images are acquired in
constrained environments. Although there is no significant difference in performance when adding the
rotated poses, a difference is evident in the number of false positives that the rotated poses produce:
they increase the false positives.
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Table 3. Performance of the six face detectors and ensembles reported above on the BioID dataset (note:
some values are taken from [9]).

Face Detector(s)/Ensemble +Poses DR (ED < 0.15) DR (ED < 0.25) DR (ED < 0.35) (FP)

VJ(2) No 13.08 86.46 99.15 517
RF(−1) No 87.84 98.82 99.08 80

RF(−0.8) No 87.84 98.82 99.08 32
RF(−0.65) No 87.84 98.82 99.08 21

SN(1) No 71.27 96.38 97.76 12
SN(10) No 72.06 98.16 99.74 172

FL No 92.57 94.61 94.67 67
SFD No 99.21 99.34 99.34 1

VJ(2) * Yes 13.08 86.46 99.15 1745
RF(−1) * Yes 90.53 99.15 99.41 1316

RF(−0.8) * Yes 90.53 99.15 99.41 589
RF(−0.65) * Yes 90.53 99.15 99.41 331

SN(1) * Yes 71.33 96.52 97.90 193
SN(10) * Yes 72.12 98.36 99.87 1361

FL * Yes 92.57 94.61 94.67 1210
FL + RF(−0.65) No 98.42 99.74 99.74 88

FL + RF(−0.65) + SN(10) No 99.15 99.93 99.93 100
FL + RF(−0.65) + SN(1) * Mixed 99.15 100 100 281

FL * + SN(1) * Yes 98.03 99.87 99.93 260
FL * + RF(−0.65) + SN(1) * Mixed 99.15 100 100 1424

FL * + RF(−0.65) + SN(1) * + SFD Mixed 99.41 100 100 1425

In Table 3, we also discover that each of the face detectors identifies a different set of faces.
This diversity in the individual face detectors is what enables the ensemble to improve the best
standalone approaches. It is also noteworthy that the same classifier can perform differently on the
MERGED versus BioID dataset. For instance, RF works well on BioID but not so well on MERGED;
perhaps this is because it contains low-quality faces.

In Table 4, an experiment is reported that evaluated the seven filtering steps, as detailed in
Section 2.3, along with their combinations. The first experiments showed that the best ensemble
(considering the trade-off between performance and false positives) is FL + RF(−0.65) + SN(1)* + SFD.
For this reason, the filtering sets are tested only for this detector.

Table 4. Performance of FL + RF(−0.65) + SN(1)* + SFD obtained combining different filtering steps
on MERGED.

Filter Combination DR FP

SIZE 91.21 1547
SIZE + STD 91.21 1514

SIZE + STD + SEG 91.21 1485
SIZE + STD + SEG + ELL 91.04 1440

SIZE + STD + SEG + ELL + EYE 90.55 1163
SIZE + STD + SEG + ELL + SEC + EYE 90.39 1132

SIZE + STD + SEG + ELL + SEC + EYE + WAV 90.07 1018

SIZE is clearly the best method for removing false positive candidates from a set of faces detected
by FL + RF(−0.65) + SN(1)* + SFD. The next best filter is EYE. However, because EYE is computationally
expensive, it cannot be used in all applications. Although the other filters, when considered individually,
are of less value because of their low computational costs, they are useful for reducing the number
of false positives when applied sequentially. If real-time detection is not required (which is typically
the case when tagging faces), then EYE filtering can be used to reduce the number of false positives
produced by an ensemble without decreasing the number of true positives.
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The results presented in the previous tables shows that the proposed approach performs better
than FL and SPD, both of which are considered two of the best face detectors in the literature. It is true
that the results reported here have been obtained on two rather small datasets; nonetheless, MERGED
is highly realistic. Thus, it is reasonable to predict that the best ensemble proposed in this work would
perform comparatively well in real-world conditions. The images contained in MERGE include those
containing a single frontal face as well as those containing multiple faces acquired “in the wild”.

Finally, in order to evaluate the computational cost of our approach, the processing time per
640 × 480 image on a i7-7700HQ PC system is reported in Table 5 for each detection method of
“FL* + RF(−0.65) + SN(1)* + SFD” and each additional filter (on a candidate region of size 78 × 78 pixels).
All the tests are performed without parallelizing the code. However, it should be noted that the filters
and face detectors can run in parallel, resulting in a significant reduction of computation time.

Table 5. Average processing time per image in ms.

Detection Method/Filter ms

RF 12,571
SN 1371
FL 170

SPD 175

SIZE 0.33
STD 10.86
SEG 8.808
ELL 10.24
EYE 19,143
WAV 179.4

4. Conclusions

In this paper, an ensemble of state-of-the-art face detectors is combined with a set of filters
calculated from both the depth map and the color image. The filters reduce the number of false
positives produced by the ensemble while maximizing the detection rate. A set of seven filters based
on the size, the flatness, or the unevenness of the candidate face regions, or on the size of the larger
cluster of the depth map of the candidate face regions, or on eye detection or the degree of ellipse
fitting are evaluated, including a new method proposed here that is based on processing the candidate
region with different wavelets. The method proposed in this work for developing an ensemble of face
detectors uses the depth map to obtain increased effectiveness even under many indoor and outdoor
illumination settings.

The experimental results demonstrate that the filtering steps significantly reduce the number of false
positives (from 16,325 to 1018) without significantly decreasing the detection rate (from 92.02 to 90.07) on
a challenging dataset containing images with cluttered and complicated backgrounds. The performance
of the proposed system is also reported on the challenging BioID benchmark to validate the approach
presented here further and to compare the best performing ensemble with the state-of-the-art in
face detection.

The face detector named SFD is shown to outperform all other standalone methods. However,
an ensemble proposed here that combines SFD with other types of face detectors is shown to boost
the standalone performance of SFD. Obviously, increasing the number of face detectors included
in ensembles increases the number of false positives; however, as the experiments in this work
demonstrate, the application of a new cascade of filters reduces this number to acceptable levels.
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