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Abstract: Human activity recognition (HAR) is a classification process that is used for recognizing
human motions. A comprehensive review of currently considered approaches in each stage of HAR,
as well as the influence of each HAR stage on energy consumption and latency is presented in this
paper. It highlights various methods for the optimization of energy consumption and latency in each
stage of HAR that has been used in literature and was analyzed in order to provide direction for
the implementation of HAR in health and wellbeing applications. This paper analyses if and how
each stage of the HAR process affects energy consumption and latency. It shows that data collection
and filtering and data segmentation and classification stand out as key stages in achieving a balance
between energy consumption and latency. Since latency is only critical for real-time HAR applications,
the energy consumption of sensors and devices stands out as a key challenge for HAR implementation
in health and wellbeing applications. Most of the approaches in overcoming challenges related to
HAR implementation take place in the data collection, filtering and classification stages, while the
data segmentation stage needs further exploration. Finally, this paper recommends a balance between
energy consumption and latency for HAR in health and wellbeing applications, which takes into
account the context and health of the target population.

Keywords: human activity recognition; health and wellbeing; HAR stages; energy
consumption; latency

1. Introduction

Human Activity Recognition (HAR) is defined as a classification process utilized for human
motion recognition. HAR can be used in a broad range of applications, particularly health and
wellbeing [1,2]. Creating a healthy lifestyle that includes regular physical activity, can be supported by
collecting, assessing, and examining HAR data. Deficient physical activity, on the other hand, is one of
the factors that precipitates a higher risk of stress occurrence, heart disease, diabetes, and repetitive
motion injuries [3].

Various chronic diseases can be discovered and prevented using HAR [4]. Although the
implementation of effective HAR applications is quite a hard and complex task as it allows the response
for a specific patient, such as is the case with obese patients, diabetics, or heart disease patients [5].
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Activity monitoring can be helpful in identifying abnormal activities and preventing unwanted
outcomes related to dementia and other mental diseases [5]. Additionally, HAR can potentially be used
in mental health applications because it can detect sedentary behavior, which is related to depression [6].
The monitoring of daily activities of older adults can help to identify long periods of inactiveness or
the occurrence of a fall [3,7]. The aim of HAR in health applications is to enable interaction through
monitoring/management between patients and medical staff (remote or in hospital). Besides this
role, HAR also plays a key role with regard to assistance with daily activities aimed at preventing
disease and preserving human health through the monitoring of daily sports activities, performance
during sports activities and improvement in sports education enhancing human wellbeing. This paper
discusses the overall HAR implementation in clinical health applications and applications for disease
prevention and the preservation of health and wellbeing.

The implementation of HAR in the health and wellbeing domains carries specific requests in
terms of energy consumption, recognition accuracy, and latency [8]. The energy consumption of
sensors is challenging due to the high-energy requirements related to continuous monitoring of
health conditions. The recognition accuracy is associated with the number of correct predictions of a
classification model [9]. High recognition accuracy is crucial for the long-term monitoring of patients
and for the promotion of technology adoption among operators, professionals and users [8]. Latency
appears to be the main concern in HAR applications [7], since delayed activity recognition can have
serious consequences in certain health and wellbeing applications (e.g., after a stroke or when sugar
levels in blood decrease).

Inspired by all of the aforementioned, the aim of this paper was threefold: (1) to give an overall
description of HAR through its stages, highlighting the influence of each stage on energy consumption
and latency; (2) to review existing approaches for an energy-efficient and latency-sensitive HAR
application and (3) to perform the grouping of current solutions based on context and health condition,
emphasizing the prioritization of energy consumption and latency with regard to recognition of
each group.

The remaining part of this paper is structured as follows: Section 2 describes the methodology
used to conduct our research. Section 3 represents a literature review of approaches used to implement
each stage of the HAR process. This section highlights the impact of each stage on energy consumption
and latency. A summarization of current approaches for energy saving and latency minimization per
stage during HAR in health and wellbeing applications is given in Section 4. This allows us to identify
the research area for future work and gives valuable directions for the implementation of HAR in
health and wellbeing applications. Finally, Section 5 entails the conclusion.

2. Research Methodology

The main objectives of this paper can be summarized as follows: (1) to provide a review of
approaches used in each stage of HAR, emphasizing the impact of each stage on energy consumption
and latency; (2) to identify approaches used to optimize energy consumption and latency by each
stage of HAR; (3) to group the existing solutions in order to meet energy consumption and latency
requirements, while considering the context and health condition of the target population. The research
questions posed in this study were: (1) how do HAR stages affect energy consumption and latency? (2)
Which approaches are used to minimize energy consumption and latency in current literature? (3) Can
energy consumption and latency be managed at a specific HAR stage? (4) What other factors affect
effective HAR implementation in health and wellbeing applications?

The methodology used in the research is depicted in Figure 1. The first step was article collection,
which resulted in the initial selection of 260 articles. The collection stage included a literature search
that was carried out using a combination of the following keywords: activity recognition, HAR, HAR
stages, health and wellbeing applications, energy consumption, and latency. The search was carried
out using Google Scholar and Web of Science. Only 135 out of 260 collected articles were relevant
for this research study (articles or reviews), while 73 articles were directly related to the HAR stages,



Sensors 2019, 19, 5206 3 of 27

energy consumption and latency. Out of 73 articles, 30 were related to HAR, energy consumption,
latency and health and wellbeing applications (Figure 1). The articles were collected according to the
year range from 2005 to 2019, however, most of them were published in 2018.

Figure 1. Research methodology.
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After the collection stage, the types of data which were not articles or reviews were excluded from
the database. The next step was HAR stage identification and for each stage a summary of approaches
were selected (Section 3.1). Additional paper selection was conducted in order to extract articles that
dealt with energy consumption and latency in HAR. After the selection of articles, the authors explored
the influence of the HAR stages on energy consumption and latency (Section 3.2). The next stage
included the segregation of health and wellbeing applications where HAR was implemented across
the literature collected, as well as the identification of approaches for energy consumption and latency
reduction (Section 4). The next step was the survey of possible improvements for energy consumption
and latency of HAR applications (Section 4.1) and the proposal of overall directions for the effective
implementation of HAR in health and wellbeing applications (Section 4.2).

The investigation of different stages for HAR underlined the extent to which various approaches
were covered by existing literature and also provided the basis for the identification of the influence of
each HAR stage on energy consumption and latency. Based on the identified influence, the possibility
to manage energy consumption and latency from different HAR stages was discussed. Having in
mind an effective design for health and wellbeing applications, we proposed new grouping criteria,
encompassing context and condition. Context is a three-dimensional variable that varies through the
physical, user and medical states. The condition included different groups of health-related issues
mentioned in the literature that were analyzed. Thus, we surveyed and compared different studies in
this way in order to contribute to the understanding of the scope and grouping of HAR applications in
health and wellbeing.

Our research methodology was motivated by the challenge of identifying how specific stages of
HAR influence the energy consumption and latency of health and wellbeing applications. After the
approaches in each HAR stage were identified, as well as their influence on energy consumption
and latency, it became possible to choose approaches that best fit energy and latency expectations of
HAR applications. In this sense, we proposed the grouping of health and wellbeing applications, the
determination and prioritization of energy consumption and latency requirements of such application
groups, thus leading to effective application implementation.

3. Impact of Human Activity Recognition (HAR) Stages on Energy Consumption and Latency

The challenges of HAR in health and wellbeing applications is mainly related to energy
consumption and latency. Energy consumption is a crucial factor for certain applications of activity
recognition, such as the long term monitoring of patients in health and wellbeing [8]. Furthermore,
power efficiency along with computational efficiency appears to be the main challenge for wearable
device-based HAR implementation [10]. Communications, sensing and computation tasks are generally
the sources of energy consumption in HAR [8]. Continuous sensing and online updating of HAR data
is required in HAR, notwithstanding that they are large consumers of energy [11]. However, research
efforts in available literature for the reduction of energy consumption is limited.

Latency is defined as the time that has elapsed from the beginning of an activity to its detection
by the system [8]. It encompasses the time required to acquire, process and analyze the data [8].
Low-latency classification is critical for certain HAR applications because immediate feedback may
be required [12]. Sudden fall detection and epilepsy seizure detection are examples of such HAR
applications in the health and wellbeing domain [8,13]. For some other applications, such as the
distance walked in a day, latency can be less critical [8,12].

3.1. Overview of HAR Stages

HAR is based on the recognition of daily human activities using various machine learning
algorithms [14,15]. This is described through several stages, where different approaches can be used
(see Figure 2). Some of the approaches for each stage of HAR that have been successfully implemented
and have introduced motivation, as well as some examples of their use in HAR-related literature are
mentioned in Section 3.1.
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Figure 2. Overview of HAR approaches. Legend: Ant Colony Optimization (ACO), Artificial Bee Colony
(ABC), Artificial Neural Network (ANN), Canonical Correlation Analysis (CCA), Decision Table (DT1),
Decision Tree (DT), Discrete Wavelet Transform (DWT), Electrocardiogram (ECG), Electromyography
(EMG), FFT (Fast Fourier Transformation), Gaussian Mixture Model (GMM), Generalized Discriminant
Analysis (GDA), Global Positioning System (GPS), Graph Clustering based Ant Colony Optimization
(GCACO), Graph Clustering with Node Centrality (GCNC), Hidden Markovian Model (HMM),
Independent Component Analysis (ICA), Information Gain (IG), k Nearest Neighbors (kNN), Linear
Discriminant Analysis (LDA), Naive Bayes (NB), Minimal Redundancy-Maximal Relevance (MR-MR),
Particle Swarm Optimization (PSO), Principal Component Analysis (PCA), Random Forests (RF),
Random Subspace (RS), Root Mean Square (RMS), Relevance Redundancy (RR), Sequential Backward
Selection (SBS), Signal Magnitude Area (SMA), Signal Vector Magnitude (SVM), Singular Value
Decomposition (SVD), Support Vector Machine (SVM), Unsupervised Feature Selection method based
on Ant Colony Optimization (UFSACO), Sequential Forward Selection (SFS), Wavelet Transform (WT).
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3.1.1. Data Collection and Filtering

The first stage of HAR is data collection and filtering. The data collection process begins by
defining a set of activities to be recognized, and then recording data from the sensors during a defined
activity set [16], or simply taking over data from a publicly available HAR dataset [17].

Data capturing can be conducted by various wearable sensors, such as an
accelerometer [3,14,18-32], a gyroscope [15,21,28,31-36], a magnetometer [19,34-38], an
Electrocardiogram sensor (ECG) [31,39], a Global Positioning System (GPS) sensor [22],
Electromyography sensor (EMG) [8,40,41], etc. Besides wearable sensors, data collection can be
conducted using non-contact sensing [4,42—44], and with various sensors that are integrated into
smartphones [45-50]. Many problems during data collection from wearable sensors may occur.
For example, subjects forget to wear sensors, measurements have a high signal to noise ratio, bias in
physical activity measurement from an accelerometer, and subjects that do not wear the device in an
appropriate position [51]. On the other hand, wearable sensors enable the continuous measurement
of physical activity (which is of particular importance to certain HAR applications in health and
wellbeing) at a lower cost when compared to a non-contact sensing approach [52]. The disadvantage
of non-contact sensing is the restricted area of measured physical activity (area with implemented
sensors), and the high cost of implementation [52]. A particular benefit of non-contact sensors is the
elimination of the possibility of forgetting to wear the sensors (important for people with mental
disease) and the elimination of wear discomfort (important in some population groups such as people
with skin disease) [52].

A vast number of datasets for HAR [39] are available for use (Table 1) such as: HAR [19,33,53,54],
WISDM [53,55-57], UCI HAR [35,55,58], USCHAD [19], PAMAP2 [19,37,57], OPPORTUNITY [4,35,37],
UniMiB-SHAR [4], MSR Action 3D [59], RGBD-HuDaAct [59], MSR Daily Activity 3D [59],
MHEALTH [60], WHAREF [22], KEH [61], etc. Determining which dataset to use in a HAR application
and which techniques are the most appropriate for the HAR stages in a specific context is not a
trivial task at all [39]. Since the performance level in activity recognition also depends on specific
sets of activities [5], different authors have used various sets of possible activities in their research.
After data collection, different preprocessing techniques are applied on raw signal data, in order to
remove signal artefacts, such as noise and missing values [15,58]. If not removed, these artefacts
badly decrease the classification algorithms performance [15]. Different preprocessing techniques can
be found in literature. Filtering data with a third order low-pass Butterworth filter was used in [9]
as a preprocessing technique. Besides filtering, certain authors used noise removal [62] and added
additional data, such as time averaged signal magnitude of all accelerometer signals of three axis [62].
Preprocessed data must be segmented in order to be used in the subsequent stages of the HAR process.

Table 1. HAR dataset characteristics.

Number of Activities/Actions/Class of

Dataset oo Number of Involved Users References
Activities
HAR 6/0/0 30 [19,33,53,54]
WISDM 6/0/0 36 [53,55-57]
UCI HAR 6/0/0 30 [35,55,58]
USCHAD 12/0/0 14 [19]
PAMAP2 12/0/0 9 [19,37,57]
OPPORTUNITY 5/0/0 12 [4,35,37]
UniMiB-SHAR 0/0/17 17 [4]
MSR Action 3D 0/30/0 1 [59]
RGBD-HuDaAct 12/0/0 30 [59]
MSR Daily Activity 3D 15/0/0 10 [59]
MHEALTH 12/0/0 10 [60]
WHARF 5/0/0 17 [22]

KEH 9/0/0 8 [61]
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3.1.2. Data Segmentation

After preprocessing, the collected data is entered into the data segmentation stage, which is
defined as the process of segment labeling, where each segment contains information about activities
that have to be recognized [4]. In this stage, parts of information which are insignificant for recognition
are removed [4]. Thus, the quantity of data is reduced. This is very important, since in each step a
limited amount of data can be processed because of hardware-related constraints [4]. Piecewise Linear
Representation (PLR) is simple for usage, since different data segments are linearly interpolated [63].
Simplicity and intuitiveness made sliding window algorithms popular in medical applications [28],
leaving inconsistency in choosing a preferable window size [46]. Besides different sliding window
sizes [64], some researches can also choose to introduce window overlapping [65]. The most commonly
used fixed-size sliding window overlapping size is 1 s (used in [17,21,42,66]).

Besides the PLR and sliding window approaches, authors in [62] mention energy-based
segmentation. This segmentation approach relies on the fact that various activities are present with
various strengths, for a large number of activity recognition problems. Other segmentation approaches
include rest-position segmentation [62], top-down segmentation [62], bottom-up segmentation [28,62],
and Sliding Window and Bottom-Up (SWAB) [62]. After segmentation, data is prepared for feature
extraction [62]. In certain studies, such as [67], segmentation is viewed as part of preprocessing.

3.1.3. Feature Extraction

Feature extraction derivates various and broad features that are distinguishing for activities [62].
Deep learning methods, such as Convolutional Neural Network (CNN), and Recurrent Neural Network
(RNN) can be used for feature extraction [10]. These methods do not require expert knowledge [68].
Extracted features can be classified into four categories: signal-based features, body model features,
event-based features (e.g., features that characterize renewed eye movement) and multilevel features
(e.g., data is clustered and then statistics are calculated on a sliding window) [62]. These five classes of
features are the most commonly used in literature: time-domain features, frequency-domain features,
time-frequency domain features, heuristic features and domain specific features [28,62]. The features
are usually extracted in the frequency domain and/or the time domain [36]. Table 2 shows the most
frequently analyzed features in the literature.

The time-frequency domain features indicate benefits over other domain features since they
carry both time and frequency domain information [69]. They appear to be appropriate for capturing
time-varying and non-stationary signals, that can be used to describe emotional status [70]. The Discrete
Wavelet Transform (DWT) and the Hilbert Huang spectrum (HHS) are showing signs of future success
in this field [70]. Features obtained from an essential understanding of how a unique set of movements
can form distinguishable sensor signals, are called heuristic features [71]. Feature extraction is followed
by dimensionality reduction in order to decrease the computational complexity and latency of HAR.

Table 2. Review of the most frequently analyzed features.

Feature Domain Measured Physical Signals Feature Calculation References
Time, Frequency, Min, Max, Mean, SD, SMA, SVM, Tilt
and Heuristic domain Data from accelerometer angle, PSD, Slger;liizr;tropy, Spectral [2]

Mean, Min, SD, Variance, MED,
Skewness, Kurtosis, Energy, Principal
frequency, Magnitude of principal
Time and Frequency D . frequency (for each axis of a 3-axis
. ata from 3-axis accelerometer .
domain accelerometer), Cross-correlation of
accelerometer axis, MED crossing for
each axis, 25th percentile for each axis,
75th percentile for each axis

[34]
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as well as linear acceleration,
gravity, and orientation

Skewness, Kurtosis, Entropy,
Integration, SMA, Band power
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Table 2. Cont.
Feature Domain Measured Physical Signals Feature Calculation References
Time and Fr.equency Data from accelerometer Mean, Skewness, Ku.rtosis, DFT, [35]
domain Autocorrelation
Time and Frequency ~ Dava from 3-axis accelerometer, i \ipp. MNVALUE, Max, Min, P2P,
domain a 3-axis gyroscope and a 3-axis STD, RMS, S2E [36]
magnetometer
Time and Frequency Data from acceler(ci)meter, Mean, STD, MED, Min, Max, Skewness, 38
domain gyroscope and a Kurtosis, Energy, Entropy, IQR 381
magnetometer
Data from accelerometer,
Time domain compass sensor, gyroscope Min, Max, Mean, SD [46]
and a barometer
Mean, Variance, SD, Min, Max, Range
between min and max, Absolute Min,
Time and Frequency Coefficient of variation, Skewness,
domain Data from 3-axial acceleration = Kurtosis, 1st Quartile, 2nd Quartile, 3rd [61]
Quartile, IQR, MCR, Absolute Area,
DFR, Energy, Entropy, TAA, TMA,
Correlation Corr(X,Z) CorrXZ Corr(Y,Z)
Time, Frequency, . Mea.n, SD, RMS, Peak count, Peak
and Heuristic domain Data from acceleration amplitude, i}:())iszalsﬁzrgy Spectral [71]
Time and Frequency Mean, SD, Absolute Max, First 3 peaks
domain Data from acceleration in power magnitude, Spectral entropy, [72]
Autoregressive coefficient, SMA
Data from acceleration,
Time domain features gyroscope, temperature, Mean, SD [73]
magnetometer and barometer
Time and Frgquency Data from accelerometer Mean, SD, IQR, RMS, Energy. of FFT [74]
domain components, Entropy of FFT histogram
Spectral energy, Spectral entropy, Mean,
Time and Frequency . . Variance, Mean Trend, WMD, Variance
domain Data from 3-axial acceleration Trend, WVD, DFA coefficient, X-Z [75]
Energy uncorrelated (Spectral), Max,
Difference acceleration
Mean, SD, Max, Min, SMA, Average
sum of the squares, IQR, Signal entropy,
Autoregression coefficients, Correlation
Time, Frequency, Data from acceleration or coefficient, Largest frequency [76]
and Heuristic domain gyroscope component, Weighted average
skewness, Kurtosis, Energy of a
frequency interval, Angle between two
vectors
Time and Frequency . ' Min, Max, SD, Median, Mean,
domain Data from 3-axial acceleration  Skewness, Kurtosis, Absolute skewness, [77]
Absolute kurtosis
Mean, SD, median, 25th percentile, 75th
Time and Frequency percentile, Peak, Valley, RMS, Principal
domain Data from accelerometer frequency, Spectral energy, Entropy, the [78]
sum of FFT Coefficients grouped in four
exponential bands
Time and frequency Me'an', Variance, RMS, Mean absolu?e
domain Data from accelerometer deviation, Range, Covariance, Quartile [79]
Deviation, Coefficient of correlation
Mean, Min, Max, Range of overall time,
Time and frequency Data from wristband C Variance, Kurtosis, Skewness,
domain hand-dominated actions ross-mean, Rate, Energy, Entrf)py, [80]
Percentage of energy each detailed
wavelet components accounts for
Data from 3D accelerometer, Mean, Variance, SD, RMS, Mean
Time and frequency BYTOSCope, magnetometer, crossing rate, Zero crossing rate,
and ambient pressure sensor [81]
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Table 2. Cont.

Feature Domain Measured Physical Signals Feature Calculation References

Mean, SD, Median, 25th percentile, 75th
percentile, Pairwise correlation, RMD,
Time and frgquency Data from 3-axial acceleration IOR, Mejan crossing rate, Mean of
domain movement intensity, Normalized SMA,
Dominant frequency, Spectral energy,
Spectral entropy

Legend: SD (Standard Deviation), SVM (Signal Vector Magnitude), SMA (Signal Magnitude Area), PSD (Power
Spectral Density), FFT (Fast Fourier Transformation), DFT (Digital Fourier Transform), AMP (Amplitude of the
signal), MED (Median of the signal), MNVALUE (Mean of the signal), Max (Maximum of the signal), Min (Minimum
of the signal), P2P (Peak to Peak Amplitude) RMS (Root Mean Square Power) S2E (Stand to End Value), IQR
(Interquartile range), MCR (Mean Crossing Rate), TAA (Total Absolute Area), TMA (Total Magnitude Area), WMD
(Windowed Mean Difference), WVD (Windowed Variance Difference), DFR (Dominant Frequency Ratio), DFA
(Detrended Fluctuation Analysis).

[82]

3.1.4. Dimensionality Reduction

Dimensionality reduction is used to decrease the feature vector dimension while providing
accuracy of recognition [62]. Basically, two forms of dimensionality reduction are used: feature
selection and feature transformation [62].

In feature selection a subset of features is chosen from the original feature set [83], and a new
feature vector with fewer features is used for activity description [33,77,83,84]. This approach is used
in wearable sensor systems with limited hardware resources for real time activity recognition [33].
Feature selection approaches improve the initial baseline efficiency of HAR [21]. In general, feature
selection approaches are divided into filter-based, wrapper-based, and embedded approach-based
methods [19,83,84]. Nevertheless, some authors also use terms such as basic features (statistics applied
to raw sensor data) and graphical features (generated from graph representations) [50]. However,
this type of classification is rarely used. When filter-based methods are applied, the feature selection
process is dispart from the classification verification process, which makes them fast, but their drawback
is that they require a threshold to stop the feature selection process [84]. Table 3 lists the authors who
have reported and implemented different filter-based methods for feature selection.

Table 3. Review of feature selection approaches.

Feature Selection Approach  Feature Selection Approach Type References

MR-MR [65,79]
GCACO [79]
GCNC [79]

IG [5,17,60,84-87]
Gain ratio [79,85,88]

Filter-based methods Term variance [79]
Gini index [79]
Laplacian score [79]
Fisher score [79]

RS [79,89]
RR [79]

UFSACO [79]
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Table 3. Cont.

Feature Selection Approach Feature Selection Approach Type References
SBS [79]
SFS [46,79]

ACO [79]
Wrapper-based PSO [79]

GA [2,39,79]
Random mutation hill-climbing [79]
Simulated annealing [79]
ABC [79]

Legend: Graph Clustering with Node Centrality (GCNC), Graph Clustering based Ant Colony Optimization
(GCACO), Unsupervised Feature Selection Method based on Ant Colony Optimization (UFSACO), Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Minimal Redundancy-Maximal Relevance (MR-MR), Information Gain
(IG), Random Subspace (RS), Relevance Redundancy (RR), Sequential Backward Selection (SBS), Sequential Forward
Selection (SFS), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC).

If a classification scheme is a wrapper around which the whole feature selection is carried out,
then the approach for selecting features is called wrapper-based [75]. The main drawbacks of this
approach are poor generalization across different learning methods and computational complexity.
However, they tend to provide higher accuracy when compared to filter-based approaches. Different
feature selection approaches can be found in literature (Table 4). Embedded approach-based methods
completely remove noise and irrelevant features with filter-based methods, and create an optimal
feature set using the wrapper-based method [79]. In this way, the high efficiency of the filter model is
combined with the high accuracy of the wrapper model [79].

Feature transformation exploits the fact that the transformation of data onto a feature space with a
lower dimension [28] results in dimensionality reduction [90]. Feature transformation is recommended
if multiple features together provide good discrimination of activities [28], while they provide poor
performance for individual differentiation [28]. Different forms of feature transformation appear
in the literature. Some authors have proposed an unsupervised dimensionality reduction method
based on the Common PCA (CPCA) method [28], while some combined PCA with Independent
Component Analysis (ICA) [28]. An overall review of feature transform approaches is shown in Table 4.
After dimensionality reduction, the data was prepared for classification.

3.1.5. Classification

The choice of classification algorithms is a very important factor for HAR performance [62,78].
Basic approaches used in the HAR classification stage include threshold-based methods, pattern-based
methods and Artificial Neural Networks (ANN). If activities can be distinguished by various intensities
then threshold-based methods can be widely used [28]. Pattern-based methods are classified as
supervised and unsupervised learning techniques. The most known supervised learning techniques
include k-Nearest Neighbors (kNN) [4,18,71,91], Decision Tree (DT) [26,87,92-94], Decision Table [11],
Random Forests (RF) [7,83], Naive Bayes (NB) [15,79,83,87,95,96] and Support Vector Machine
(SVM) [2,12,33,34,58,60,76,79,81,83,88,97-100]. Classification techniques have been summarized in
Figure 2.

kNN is known to be simple, robust [64], and the best solution among all supervised classification
algorithms [83]. kNN seems to be the least complex algorithm [101], and its performance for fall
detection implementation appears to be adequate [91]. The performance of kNN are directly related to
the quality of the feature set, where low-quality features result in lower performance [12]. Furthermore,
overlapping clusters (classes) lead to the poor performance of kNN [83]. A simple decision Tree [6] is
comparable to kNN in terms of performance and computational complexity [11]. DT appears to be an
adequate choice for activity classification with a hierarchy [11].
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Table 4. Review of feature transform approaches.

Feature Transform Approach Feature Transform Approach Type References
FT [27,102]

WT [27,103,104]
DWT [27,104]

LDA [5,28,59,90]
Feature transform CDA (90,105]

CCA [7,105-107]
SVD [4,108]

PCA [4,40,55,59,60,74]

Legend: Fourier Transform (FT), Wavelet Transform (WT), Discrete WT (DWT), Local Discriminant Analysis (LDA),
Generalized Discriminant Analysis (GDA), Canonical Correlation Analysis (CCA), Singular Value Decomposition
(SVD), Principal Components Analysis (PCA).

Authors in [83] showed that RF algorithms provided the highest average accuracy compared with
SVMs, NBs, and DT [94]. On the other hand, RF drawback is the need for huge amounts of labeled data
for good performance achievement [83]. The NB classifier is popular due to its simplicity [83,84,87],
ease of implementation [83], and effectiveness [84]. For human activity recognition, the NB approach
shows similar accuracy levels when compared to other classification approaches. Some studies
claim that the NB approach outperforms other classification approaches. Other studies show that
classification accuracy obtained when using the NB approach is lower in comparison when SVM
and DT approaches are used [83]. Even SVMs demonstrated the worst results for classification in [2].
However, it was still better than MLP [99], kNN [58], and even ANN [33], and in some studies such
as [12,34] produced the best classification result.

The Hidden Markov Model (HMM) was introduced to classification with the aim of improving
activity recognition accuracy [4], relying on its unique advantage—capturing the transition among
different types of activities [11]. The HMM classifier gives the best results among all unsupervised
classification algorithms [83]. The main drawback of Gaussian Mixture Model (GMM) is a request for
too many empirical parameters, which decreases the possibility of its implementation in practice [109].
However, in some cases, such as with the recognition of static postures and non-temporal event
patterns, it appears to have good classification performance [88].

Additionally, k-means clustering has poor performance in the case of overlapping clusters
(classes) [83]. However, they are still used in practice because of their advantages such as small
computational complexity, high efficiency for large datasets, and a high linearity of time complexity [1].
Neural network usage is limited in practice because of its high computational cost and the need for a
large amount of training data [5].

On the other hand, a high tolerance of noisy data makes them appropriate for some classification
problems [60]. In [85] the authors reported that SVM, NN and RF approaches worked best for
activity recognition.

Since Convolution Neural Networks (CNN) combine feature extraction and classification
in an end-to-end approach [37], they can perform classification in a very efficient way [55,89].
Recurrent Neural Networks (RNN), however, outperformed CNN for short duration activities. While
in some cases ANNs had better performance than other techniques, in other cases they appeared to be
less effective [33].

3.2. Energy Consumption and Latency per HAR Stage

Most HAR stages affect energy consumption, whereas latency is affected only by the data collection
and filtering stage, data segmentation stage, and classification stage. There are many articles dealing
with energy consumption, whereas only a few of them are devoted to latency analysis.
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3.2.1. Impact of HAR Stages on Energy Consumption

Each HAR stage has been analyzed in order to determine its impact on energy consumption

as follows:

Data collection and filtering stage: Firstly, in the data collection and filtering stage the set of used
sensors affects energy consumption [62,110]. The reduction in the number of sensors can help
improve the energy efficiency of the sensor device [61], whilst adding new sensor-type events can
improve accuracy [54]. The number of sensors in this stage also affects the ability for complex
activity detection, which is easier done with more than a single sensor unit [10]. In health and
wellbeing applications, new sensor types (especially wearables) can be impractical for elderly
people [52] because they are a source of discomfort for them. Therefore, the choice of the number
of sensors is a very complex problem in HAR. Energy consumption cannot be reduced by a
reduction in the number of sensors in the case of smartphone-based data collection, since the
number of sensors is already limited. Furthermore, in the case of non-contact sensing, the number
of sensors depends of their type and the covered HAR area. Having this in mind, some authors
measured energy efficiency of HAR approaches with wearables [8,10,14,30-32]. Some authors
analyzed the energy consumption of activity recognition of smartphones [45,111,112].

Data segmentation stage: Segmentation approaches also affect energy consumption, which is
calculated through the computational complexity of a segmentation algorithm. As highlighted
in Section 3.2, PLR cannot be used as a universal segmentation approach because of high
computational complexity (and consequently energy consumption) [63]. Many online Piecewise
Linear Approximation (PLA) approaches have been noted in literature, and some of them
are introduced to reduce energy consumption in WSNs (Wireless Sensor Networks) [32].
Even increasing the window size improved the recognition accuracy of various complex activities
and had a smaller effect on simple activities in most cases [113]. Therefore, the choice of activities in
HAR affects the choice of the segmentation approach, and consequently computational complexity
and energy consumption in this stage.

Feature extraction stage: The approaches and type of extracted features from each segment of
data can potentially influence the computational load (energy consumption) and classification
accuracy [78] of HAR. Therefore, the choice of feature extraction approaches influences the battery
life [5] of sensor devices. Keeping in mind the type of extracted features, it is worth mentioning that
time-domain features reduce complexity because they avoid the framing, windowing, filtering,
Fourier transformation, liftering, etc. of data [29]. Following the aforementioned, they can be
deployed in nodes with limited resources [29], which is the case of many practical applications of
HAR [114]. However, they have shown to be prone to measurement and calibration errors [29],
which lowers HAR accuracy. Frequency-domain features are less susceptible to signal quality
variations [21] and have a more robust performance [2]. The lack of temporal descriptions [70]
appears to be the main drawback of frequency-domain features. In conclusion, time-domain
features consume less energy compared to frequency domain features [10]. Other techniques for
energy reduction mentioned in literature include the usage of locally extracted features [115] and
Fast Fourier Transform (FFT) based features [32].

Feature selection stage: Generally, feature selection causes an increase in computational and
memory demands because it changes the shape of objects into high dimensionality vectors.
This stage affects energy consumption through computational complexity of the selected
algorithm. For example, the dimensionality reduction done using PCA helps reduce overall
energy consumption [116].

Classification stage: Classification approaches affect energy consumption through computational
complexity of selected classification algorithms. For example, the complexity of RF was higher
than in SVM and NN classifiers, resulting in higher energy consumption [10].
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Based on the aforementioned, one can notice that every HAR stage affects energy consumption.
In addition, several other factors affecting energy consumption have been identified. One of these factors
is the environment in which data needs to be collected. In controlled environments, energy consumption
is not a challenge [19] while in real life different factors can influence energy consumption. Some of
these factors include the use of different kinds of sensors in multiple devices [49], unevenly distributed
datasets among various classes [12,55,117] and the wrong placement or orientation of wearables
sensors [15,62]. A lower performance of HAR in real-life environments raises the criteria for better
energy consumption.

3.2.2. Impact of HAR Stages on Latency

The impact of each HAR stage on latency is analyzed as follows:

e Data collection and filtering stage: Preprocessing techniques (filtering) cause additional latency
during HAR [3]. These techniques should be avoided for low latency real-time applications of
HAR [3].

e Data segmentation stage: In this stage, latency can be reduced using advanced methods for data
segmentation [39]. The choice of window size exhibits a high influence on latency during HAR.
On the other hand, optimal size is not defined a priori [10]. Intuitively, by decreasing the window
size, activity detection increases [98] and energy needs decrease [13]. However, short window
usage has higher overheads because the recognition algorithm is triggered more frequently. In a
popular segmentation technique, the sliding window technique, the window size of 1-2 s can be
the best tradeoff between accuracy and recognition latency [10].

e (lassification stage: Classification algorithms also affect latency during HAR. Long latency of
HAR during the testing stage is achieved using the NN classifier, while RF, ANN, and SVM
classifiers [80] show similar behavior.

Based on the aforementioned, it can be seen that not all HAR stages affect latency. Latency is
mainly affected by techniques used in the data collection and filtering stage, data segmentation stage,
and classification stage.

3.3. Summary

Section 3 describes approaches and techniques for identifying activities across all stages of the
HAR process. This is very important in order to gain insight into the large number of approaches
at each HAR stage that can be found in literature. Furthermore, it is important to highlight that
different approaches/combinations result in different recognition accuracies. Given that accuracy above
a certain threshold is acceptable, it is very important to observe the effects of stages/combinations on
energy consumption and latency. Not all approaches in all stages affect the individual performance
parameter equally, so choosing the optimal approach in all stages would also lead to an optimal result
for given energy and latency requirements. The importance of energy consumption and latency varies
throughout application domains, but also within an application domain. A detailed approach for
selecting techniques/combinations for achieving optimal results for energy consumption and latency
creates the possibility of treating individual applications in an application domain, which further leads
to the personalization of a given service. The goal of a detailed perception of all the possible approaches
is to gain further insight into choosing the best approach for given application requirements in terms
of energy consumption and latency.

Energy consumption is affected by all the stages of the recognition process, while latency is
affected only by the data collection and filtering stage, data segmentation stage and classification stage.
Based on the foregoing, it is conclusive that these stages are also critical for the process in which the
choice of techniques/approaches should strike a balance between energy consumption and latency.
The impact of a particular technique on energy consumption or latency is discussed in Section 3.2.
For example, the NN algorithm, due to it being less complex, requires less energy consumption than
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the RF algorithm; on the other hand, the NN algorithm has a longer latency in recognition than the
RF algorithm.

Not all health-related applications are equally sensitive to energy consumption or latency.
Since accuracy is implied nowadays, energy consumption and latency should be balanced. Many
research papers are focused on developing mechanisms to lower energy consumption and latency
in the various stages of the HAR process. Section 4 provides a brief overview of these mechanisms
entailed in the collected literature.

4. The Optimization of Energy Consumption and Latency in HAR

Section 4 identifies currently implemented HAR solutions in the literature that has been
summarized (Table 5). These solutions are related to the following applications, such as active
and assisted living (AAL) [103,118], fall detection (FD) [7,10,26,91,119,120], automatic estimation of
activity capability for rheumatic and musculoskeletal disease (RMD) [121], monitoring of elderly
people [38,75] and ambulatory monitoring (AM) [7,80]. Solutions combine different HAR techniques
in diverse HAR stages, depending on their research goal. The HAR stage in focus is highlighted in
Table 5 along with associated HAR approaches.

Table 5. Summary of HAR applications in health and wellbeing.

Applications HAR Stage in Focus HAR Approaches References
FD Classification Two public databas;sB,TANN, kNN, QSVM, [119]
FD Data collection and filtering, = Wrist-Worn Sensor, Feed-Forward NN, GA, [26]
Classification SVM, DT, RBS
FD Data collection and filtering Kalman Filter, KNN [91]
D Feature extraction, Temporal and Frequency features, LDA, [120]
Classification CART, NB, SVM, RF, kNN, NN
FD Feature extraction, Feature Improved RE, PCE, HSW [10]
selection, Classification
Data collection and filtering,  prypy (oo ors cCA, MLGLI, LSVM, kNN,
FD, AM Data segmentation, Feature 71
. RF, NB
selection
Health and wellbeing Feature extraction, Wearable sensors (accelerometers,
- e gyroscope, and magnetometer), 1 s. [38]
monitoring Classification . .
window with no overlap, BT
Data collection and filtering, Wristband sensor, Statistics-, Frequency-,
AM Feature extraction, and Wavelet-domain features, NB, kNN, [80]
Classification NN, SV, RF
AAL Data collection and filtering Radar Smart Sensor, DTFT [103]
Smartphone sensors (accelerometer,
AAL Classification gyroscope, and gravity sensor), C4.5 DT, [118]
NB, SVM, RF, BA, kNN, HMM
RMD Data segmentation, Feature Accelerometer, DTW, RR, LDA [121]
extraction and classification
Monitoring of elderly Data collectl(?r.\ an}d filtering, Tri-axial accelerometer, Relief-F, kNN, NB [75]
people Classification

Legend: Fall Detection (FD), Ambulatory Monitoring (AM), Active and Assisted Living (AAL), Discrete-Time
Fourier transform (DTFT), Genetic Algorithms (GA), Neural Network (NN), Support vector machines (SVM),
Decision Trees (DT), C5.0 rule-based systems (RBS), k Nearest Neighbors (kNN), Artificial NN (ANN), Quadratic
Support Vector Machine (QSVM), Pairwise Correlation Features (PCF), Hybrid Sliding Windows (HSW), Ensemble
Bagged Tree (EBT), Rheumatic and Musculoskeletal Diseases (RMD), Dynamic Time Warping (DTW), Linear
Discriminant Analysis (LDA), CART Decision Trees (CART), Gaussian Naive Bayes (NB), Random Forest (RF),
Hidden Markov models (HMM), Sequential Forward Floating Search (SFFS), Canonical Correlation Analysis (CCA),
Multinomial Logistic Regression with 1 (MLGL1), SVM with linear kernel (LSVM), Local Energy based Shape
Histogram (LESH), Sequential Minimal Optimization (SMO), Simple Logistic Regression (SLR), Bagged Trees (BT),

Bootstrap Aggregating (BA).

Table 5 shows that the applications of HAR in health and wellbeing are diverse and use different
approaches in each stage thereby making it hard to analyze in the context of energy consumption
and latency requirements. Generally, HAR designers face challenges associated with balancing
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energy consumption, latency, and required accuracy [8], which are regarded as the main performance
parameters of HAR in health and wellbeing applications.

After the identification of factors that affect energy consumption and latency at each stage of HAR
(Section 3.2), possible solutions for their improvement on a stage level are given in Table 6. Based on
a summarization of HAR applications in health and wellbeing (Table 5), certain general directions
for the effective implementation of HAR in health and wellbeing applications were formed. Finally,
we identified a research area for future work based on currently considered improvements of energy
consumption and latency for HAR applications in the health and wellbeing domain.

Table 6. The summary of possible improvements of energy consumption and latency.

HAR Stage Improvement Approach Verified in Literature

e  Reducing the number of sensors

e  Reduce sensor data on the
wearable sensor node

e  Sampling rate reduction

Data collection and e  Dynamically appropriate [14,19,30,32,61,122,123]

. ) filtering sampling rates
nergy consumption e  KEH Wearables
e  Adaptive selection of sensors
in real-time
Data segmentation e TLA [32]

e  Time domain-features instead of
frequency-domain features
e  Using locally extracted features for
Feature extraction glo})e}l multi—us.e.r [10,32,115]
activity recognition
e  (Calculation of FFT-based features
on the wireless node sensor

e  Energy efficient RF
e  Template matching approach
e  Variable step size
o e  Adaptive Accelerometer-based
Classification Activity Recognition controls the [10,31,45,124]
activity recognition duration
e The choice of algorithm
for classification
Data segmentation e  Decreasing the window size [98]
Latency
Classification e Choice of algorithm [80]
e Avoid preprocessing techniques
e  Advanced methods for the
General [39]

representation of features
and segmentation

Legend: Human Activity Recognition (HAR), Kinetic Energy Harvesting (KEH), Piecewise Linear Approximation
(PLA) of Fast Fourier Transform (FFT), Random Forests (RF).

4.1. Improvements of Energy Consumption and Latency in HAR

Table 6 summarizes possible improvements for energy consumption and latency of HAR
applications in the health and wellbeing domain.

Energy consumption can be improved by reducing the number of sensors [61], reducing the
amount of data on the sensor node [8,32], reducing the sampling rate [14,30,61,82,111,124,125], using a
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dynamically adjusted sampling rate [124] and Kinetic Energy Harvesting (KEH) supporting devices,
as well as adaptive selection of sensors in real-time data acquisition [61] in the Data collection and
filtering stage of HAR. The impact of some of these mechanisms is verified in practice and listed in
Table 6.

There are also mechanisms for energy consumption reduction in the data segmentation stage.
The only verified example in literature is the use of the Piecewise Linear Approximation (PLA)
algorithm [32]. In the feature extraction stage, savings in power consumption can be achieved in
several ways, the use of time-domain instead of frequency-domain features [10], using locally extracted
features instead of globally [115], multi-user activity recognition [115], and the calculation of the Fast
Fourier Transform (FFT)-based features on wireless sensor nodes [32].

In the classification stage, several mechanisms for reducing energy consumption are applied
such as energy efficient RF [10], template-matching approach [31], variable step size [45], adaptive
accelerometer-based activity recognition [111], and the choice of a classification algorithm [10,124].

Latency can be reduced in the data segmentation and classification stages. A smaller window
size can reduce latency during activity recognition [98], while an adequate classification algorithm can
also have an impact on latency [80]. In addition to this, literature suggests avoiding preprocessing
techniques, and the use of advanced methods for the representation of features and segmentation,
to avoid greater latency during the HAR process [39]. It should be noted that not all HAR applications
need to balance energy consumption and latency. For some HAR applications in the health and
wellbeing domain, latency is not really an issue (daily sport activities), because no action needs to be
taken after certain detected events. For others latency is critical (fall detection) because the detection of
immediate danger or a problem should cause a reaction.

In addition to the impact of HAR stages, energy consumption and latency change depending on
environmental parameters and the application of HAR. In that sense, Section 4.2 proposes directions
for effective HAR design keeping in mind the factors mentioned.

4.2. Proposal of an Effective Design of a HAR Application in Health and Wellbeing

Most of the approaches for energy consumption and latency improvements of HAR in health
and wellbeing are conducted in the data collection and filtering stages and then in the classification
stage. As can be seen in Section 3, the key stages for achieving a balance between energy consumption
and recognition latency are data collection and filtering, data segmentation and classification stages.
Additional approaches to improve performance in the data segmentation stage should be explored.
Since the data collection stage is related to users and their environment (context), the need for the
introduction of context as one of the parameters for performance analysis is obvious.

Table 7 shows an overall approach to HAR implementation in health and wellbeing highlighting
the importance of context and condition for improving energy consumption and latency. This table
can be useful in the HAR implementation process to prioritize energy consumption requirements
(through physical and user context) and latency requirements (through medical context and health
condition). Further on, based on requirements related to energy consumption and latency, it is possible
to determine the approaches for the implementation of each HAR stage.

As mentioned in Section 2, context is a three-dimensional variable including physical, user and
medical contexts. From the physical context point of view, Table 7 delves into activities which were
performed indoors [126,127] or indoors and outdoors [128]. Indoor activities could be those conducted
in a medical institution [127,129] or a smart home [130]. In the indoor area (rehabilitation center
and smart house), different approaches (Section 3.1.1) for data collection can be applied, which pose
different challenges in relation to energy consumption.

Since HAR in rehabilitation centers was applied for the supervision of the elderly, having in mind
the resistance of older adults to the sensory devices and the use of the smartphones [131], as well as
the need for lower energy consumption, HAR implementation using non-contact sensing should be
explored in detail in this scenario. In addition, a non-contact sensing approach can reduce performance
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costs in rehabilitation centers compared to smart homes, as the system is implemented for a specific
group of people. In such enclosed spaces, personalization of the solution is very important and the
problem of integration of HAR with other systems in the center/home is encountered. In the case of HAR
indoor/outdoor, it is necessary to research the energy performance of combined sensing approaches
(wearables and non-contact sensing) for data collection. If energy consumption is controlled in the
other stages of the HAR process, then some of the energy-efficient mechanisms can be implemented.
User context can be analyzed in terms of older adults [83,126,127,129] or other populations. Older
adults (often referred to as elderly in the analyzed literature) with regard to this study were people
aged 65 years and over. This was adopted based on findings from the [132] study. Other populations
were in accordance with those under the age of 65.

Medical context refers to the presence/absence of a reaction when a specific event is detected and
the time in which activity data is collected, which further affects the time needed for data analysis.
Regarding the medical context, three situations can arise. The first is activity management [133,134],
the second, activity monitoring [7,83,126,128,129] and third, activity encouraging [135,136]. Activity
management requires a reaction to a specific detected activity/condition, while activity monitoring and
activity encouraging require only activity information collection. Activity encouraging is conducted
at a specific period of time and in specific conditions and contexts (Table 7), while monitoring and
management require time independent tracking of activities.

In health and wellbeing applications, under the term chronic disease, activity recognition
is most often referred to with regard to cardiac disorders [128,137-139], diabetes [8,128,138-141],
obesity [8,128,138] or arrhythmia [8,140]. A healthy population refers to population without any
registered illness or disease. Accordingly, we proposed the prioritization of selected HAR performance
requirements related to energy consumption and latency. Context and condition were further used to
determine the energy and latency performance requirements. Energy is affected by the physical and
user context, and latency by the medical context and health condition for HAR application.

Table 7. Input consideration for HAR implementation in health and wellbeing.

Performance
Context .
Condition | Importance
Physical User Medical
) 9]
§ = g = e
'-g ) n .9 -~ s %D 8 E
B = | £ £ = = 5 B > 5}
e | 2| 2| E| 5| = 2 ‘g 3 8 > &0 2 5
o g | 5 S| 3| 8 o E 3 5 = < 5 s RS
S| 22| 5| <& 2% |2 |85 | 8§ =& | % 3
cE | 5| = | 5| 8| g » = g 3
=0 |E | E |2 || 5 |£ & 5§ =
B # | 0| g <= B | 5 £
S © R v
<
X X X X 2.34 3 [30,129]
[7,83,103,
) 1 * x| 2 2| 126,130]
X X X X X 2 2.5 [140,142]
X X X X X 2 2 [127]
X X - X X X 3 2 [128]
X X X X X 2.5 2.5

Prioritization was conducted using three levels of priority: 1—Low, 2—Medium, 3—High.
The priority for energy consumption in an indoor environment was 1, and in an outdoor environment
3. This was explained by the fact that in an indoor environment it is easier to reach the energy source.
Furthermore, the priority for energy consumption in a medical institution is 3, and in a smart home,
2 (driven by the fact that in a medical institution critical health conditions are treated).

Lower energy consumption is less important to the rest of the population compared to older
adults (3 for the older adults, 2 for the others).
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Latency had a priority of 3 for the management of activities, 2 for the monitoring of activities,
and 1 for encouraging activities. Furthermore, latency had a priority of 1 for an ill population and 2 for
a healthy population. The average priority for each category was calculated as an arithmetic mean.
Based on average priority denoted as performance importance in Table 6, the most demanding in terms
of energy consumption were indoor/outdoor systems for older adults, (3) followed by indoor/outdoor
systems for the rest of the population (2.5). The priority required for energy consumption during
activities in medical institutions for older adults was 2.34. Other groups of activities (older adults in
smart homes and other population in medical institutions) had a priority of 2 for energy consumption.

In terms of latency in activity recognition, the highest priority or the smallest delay should be
in cases of activity management for chronic patients (3), followed by the monitoring of activities
for people with chronic disease (2.5), and a small priority (2) for activity monitoring for the healthy
population and activity encouraging. It is clear that management (which requires a response to detected
events) requires smaller latency when compared to monitoring. Latency in response to a specific
medical condition should also have a higher priority when compared to changes in healthy people’s
medical condition.

Section 4.2 explains the approach recommended for the application of HAR in health and
wellbeing. It consists of observing the context (physical, user, and medical) and health status of the
target population. Based on the input values of the mentioned parameters, priority is given to energy
consumption and recognition latency. This priority will determine the required balance between these
two performance parameters and will continue to influence the choice of approach at each stage of the
process. It should be noted that the most demanding indoor/outdoor systems are those that manage
the health of the chronically ill older populations due to high energy consumption requirements and
low latency.

4.3. Summary

Section 4 highlights the key challenges of HAR applications in the health and wellbeing domain.
The challenges were extracted by observing HAR implementations in the health and wellbeing domain
from available literature and contemplating whether and how each stage of the process affected
challenges in terms of energy consumption and latency. We have shown that the stages of data
collection and filtering, data segmentation and classification stand out as key to achieving balance.
Most of the approaches for overcoming challenges in existing literature take place in the data collection
and filtering and classification stages, while the data segmentation stage needs further exploration.
In the end of this section, recommendations for a balance between energy consumption and latency for
general HAR application in health and wellbeing taking into account the context and health of the target
population were given. Managing activities of the chronically ill older population in indoor/outdoor
systems presents the greatest challenge for implementing HAR in health and wellbeing.

5. Conclusions and Future Work

This paper provides a comprehensive survey of current approaches used in each stage of HAR,
highlighting the influence of each stage on energy consumption and latency, which are regarded as
critical for real time HAR implementation in health and wellbeing applications. Currently considered
approaches for energy consumption and latency reduction per HAR stage were summarized and
directions for effective HAR implementation were proposed. The concept of HAR processes were
introduced through the presentation of approaches and methods in each process stage: data collection
and filtering, data segmentation, feature extraction, dimension reduction and classification. As a result,
we gained insight into a multitude of approaches across all stages of HAR.

We considered whether and how each stage of the process affected challenges in terms of energy
consumption and latency. Here, the stages of data collection and filtering and data segmentation
and classification stood out as key to achieving a balance needed for real-time HAR applications in
health and wellbeing, and were stages from which energy consumption and latency could be managed.



Sensors 2019, 19, 5206 19 of 27

Based on the distinct capabilities of HAR in health and wellbeing, it can be concluded that most of the
approaches in overcoming challenges take place in the data collection and filtering and classification
stages, while the data segmentation stage needs further exploration. Finally, this paper recommends
a balance between energy consumption and latency for general HAR application in the health and
wellbeing domain, which takes into account the context and health of the target population. In this
paper, the context and health of the target population were regarded as factors that affect effective
HAR implementation in health and wellbeing. Indoor/outdoor systems for managing activities of
the chronically ill older population were the biggest challenge for implementing HAR in health
and wellbeing.

A broad research community could use the results from this paper for further research in this area.
Besides energy consumption and latency, other important challenges per HAR stage can be analyzed
and the data segmentation stage could be further explored in literature. The results of this paper can
be verified in different HAR implementations in health and wellbeing applications (initially through
simulations and after that in practice). Some solutions for energy consumption reduction are already
presented in literature [8,10,14,24,30,111,123,125]. Although certain solutions that balance energy
consumption and accuracy exist [112], so far we have not found any papers covering energy efficient
and latency sensitive solutions. The health and wellbeing community may benefit overall from effective
HAR implementation. For example, continuous monitoring of health conditions (currently limited to
energy consumption on sensors) can result in a better diagnosis, since it provides detailed information
about an individual’s health. Furthermore, reduced latency in HAR recognition can prevent fatal
consequences of slow reaction on elderly falls at home. In addition, hardware manufacturers and
software developers of HAR solutions can benefit from the results of this paper, since it has demystified
issues related to implementation, testing and comparisons of different approaches in each stage of the
HAR process.

Author Contributions: E.C. and J.B.H. conceived and designed the experiments (research study); E.C. performed
the experiments (research study); S.B. analyzed the data and contributed materials; E.C. and ].B.H. wrote the paper.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable comments and
suggestions, which significantly improved the quality of this paper. We want to thank Mirza Dinarevi¢ for English
language editing.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zhao, S.; Li, W,; Cao, ]J.A. User-Adaptive Algorithm for Activity Recognition Based on K-Means Clustering,
Local Outlier Factor, and Multivariate Gaussian Distribution. Sensors 2018, 18, 1850. [CrossRef] [PubMed]

2. Sukor, A.S.A.; Zakaria, A.; Rahim, N.A. Activity Recognition using Accelerometer Sensor and Machine
Learning Classifiers. In Proceedings of the 2018 IEEE 14th International Colloquium on Signal Processing &
It's Applications, Batu Feringghi, Malaysia, 9-10 March 2018.

3. Mehrang, S.; Pietild, J.; Korhonen, I. An Activity Recognition Framework Deploying the Random Forest
Classifier and A Single Optical Heart Rate Monitoring and Triaxial Accelerometer Wrist-Band. Sensors 2018,
18, 613. [CrossRef] [PubMed]

4. Li, F; Shirahama, K.; Adeel Nisar, M.; Képing, L.; Grzegorzek, M. Comparison of Feature Learning Methods
for Human Activity Recognition Using Wearable Sensors. Sensors 2018, 18, 679. [CrossRef] [PubMed]

5. Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition using Wearable Sensors. IEEE Commun.
Surv. Tutor. 2012, 15, 1192-1209. [CrossRef]

6. Garcia-Ceja, E.; Zia Uddin, M.; Torreseb, J. Classification of Recurrence Plots” Distance Matrices with a
Convolutional Neural Network for Activity Recognition. Procedia Comput. Sci. 2018, 130, 157-163. [CrossRef]

7. Yao,L.; Sheng, Q.Z; Li, X.; Gu, T.; Tan, M.; Wang, X.; Wang, S.; Ruan, W. Compressive Representation for
Device-Free Activity Recognition with Passive RFID Signal Strength. IEEE Trans. Mob. Comput. 2017, 10,
293-306. [CrossRef]


http://dx.doi.org/10.3390/s18061850
http://www.ncbi.nlm.nih.gov/pubmed/29882788
http://dx.doi.org/10.3390/s18020613
http://www.ncbi.nlm.nih.gov/pubmed/29470385
http://dx.doi.org/10.3390/s18020679
http://www.ncbi.nlm.nih.gov/pubmed/29495310
http://dx.doi.org/10.1109/SURV.2012.110112.00192
http://dx.doi.org/10.1016/j.procs.2018.04.025
http://dx.doi.org/10.1109/TMC.2017.2706282

Sensors 2019, 19, 5206 20 of 27

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Rault, T.; Bouabdallah, A.; Challal, Y.; Marin, F. A survey of energy-efficient context recognition systems
using wearable sensors for healthcare applications. Pervasive Mob. Comput. 2017, 37, 23-44. [CrossRef]
Jourdan, T.; Boutet, A.; Frindel, C. Toward privacy in IoT mobile devices for activity recognition.
In Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, New York, NY, USA, 12-14 November 2019.

Ding, G.; Tian, J.; Wu, J.; Zhao, Q.; Xie, L. Energy Efficient Human Activity Recognition Using Wearable
Sensors. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), Barcelona, Spain, 15-18 April 2018.

Su, X.; Tong, H.; Ji, P. Activity Recognition with Smartphone Sensors. Tsinghua Sci. Technol. 2014, 19, 235-249.
Bulling, A.; Blanke, U.; Schiele, B. A tutorial on human activity recognition using body-worn inertial sensors.
ACM Comput. Surv. (CSUR) 2014, 46, 33. [CrossRef]

Banos, O.; Galvez, ].-M.; Damas, M.; Pomares, H.; Rojas, I. Window Size Impact in Human Activity Recognition.
Sensors 2014, 14, 6474-6499. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029702/
(accessed on 12 July 2019). [CrossRef]

Cheng, W.; Erfani, S.; Zhang, R.; Ramamohanarao, K. Learning Datum-Wise Sampling Frequency for
Energy-Efficient Human Activity Recognition. In Proceedings of the AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2-7 February 2018.

Nweke, H.F,; Teh, YW.; Al-garadi, M.A. Deep Learning Algorithms for Human Activity Recognition using
Mobile and Wearable Sensor Networks: State of the Art and Research Challenges. Expert Syst. Appl. 2018,
105, 233-261. [CrossRef]

Kikhia, B.; Gomez, M.; Jiménez, L.L.; Hallberg, J.; Koronen, N.; Synnes, K. Analyzing Body Movements
within the Laban Effort Framework Using a Single Accelerometer. Sensors 2014, 14, 5725-5741. [CrossRef]
[PubMed]

Saha, J.; Chowdhury, C.; Chowdhury, I.R.; Biswas, S.; Aslam, N. An Ensemble of Condition Based Classifiers
for Device Independent Detailed Human Activity Recognition Using Smartphones. Information 2018, 9, 94.
[CrossRef]

Nguyen, H.; Lebel, K.; Boissy, P.; Bogard, S.; Goubault, E.; Duval, C. Auto detection and segmentation of
daily living activities during a Timed Up and Go task in people with Parkinson’s disease using multiple
inertial sensors. J. Neuroeng. Rehabil. 2017, 14, 26-39. [CrossRef] [PubMed]

Twomey, A.; Diethe, T.; Fafoutis, X.; Elsts, A.; McConville, R.; Flach, P.; Craddock, I. A Comprehensive Study
of Activity Recognition Using Accelerometers. Informatics 2018, 5, 27. [CrossRef]

Allen, ER.; Ambikairajah, E.; Lovell, N.H.; Celler, B.G. Classification of a known sequence of motions and
postures from accelerometry data using adapted Gaussian mixture models. Physiol. Meas. 2006, 27, 935-951.
[CrossRef]

Dobbins, C.; Rawassizadeh, R. Towards Clustering of Mobile and Smartwatch Accelerometer Data for Physical
Activity Recognition. Informatics 2018, 5, 29. Available online: https://www.mdpi.com/2227-9709/5/2/29
(accessed on 12 July 2019). [CrossRef]

Jordao, A.; Borges Torres, L.A.; Schwartz, W.R. Novel approaches to human activity recognition based on
accelerometer data. Signal Image Video Process. 2018, 12, 1387-1394. [CrossRef]

Choi, H.; Wang, Q.; Toledo, M.; Turaga, P.; Buman, M.; Srivastava, A. Temporal Alignment Improves Feature
Quality: An Experiment on Activity Recognition with Accelerometer Data. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City,
UT, USA, 18-22 June 2018.

Cleland, I.; Kikhia, B.; Nugent, C.; Boytsov, A.; Hallberg, J.; Synnes, K.; McClean, S.; Finlay, D. Optimal
Placement of Accelerometers for the Detection of Everyday Activities. Sensors 2013, 13, 9183-9200. Available
online: https://www.ncbi.nlm.nih.gov/pubmed/23867744 (accessed on 12 July 2019). [CrossRef]
Fanchamps, M.H.].; Horemans, H.L.D.; Ribbers, G.M.; Stam, H.]J.; Bussmann, J.B.J. The Accuracy of the
Detection of Body Postures and Movements Using a Physical Activity Monitor in People after a Stroke.
Sensors 2018, 18, 2167. Available online: https://www.ncbinlm.nih.gov/pmc/articles/PMC6069255/ (accessed
on 12 July 2019). [CrossRef]

Khojasteh, S.B.; Villar, J.R.; Chira, C.; Gonzdlez, V.M.; de la Cal, E. Improving Fall Detection Using an
On-Wrist Wearable Accelerometer. Sensors 2018, 18, 1350. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.pmcj.2016.08.003
http://dx.doi.org/10.1145/2499621
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029702/
http://dx.doi.org/10.3390/s140406474
http://dx.doi.org/10.1016/j.eswa.2018.03.056
http://dx.doi.org/10.3390/s140305725
http://www.ncbi.nlm.nih.gov/pubmed/24662408
http://dx.doi.org/10.3390/info9040094
http://dx.doi.org/10.1186/s12984-017-0241-2
http://www.ncbi.nlm.nih.gov/pubmed/28388939
http://dx.doi.org/10.3390/informatics5020027
http://dx.doi.org/10.1088/0967-3334/27/10/001
https://www.mdpi.com/2227-9709/5/2/29
http://dx.doi.org/10.3390/informatics5020029
http://dx.doi.org/10.1007/s11760-018-1293-x
https://www.ncbi.nlm.nih.gov/pubmed/23867744
http://dx.doi.org/10.3390/s130709183
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069255/
http://dx.doi.org/10.3390/s18072167
http://dx.doi.org/10.3390/s18051350
http://www.ncbi.nlm.nih.gov/pubmed/29701721

Sensors 2019, 19, 5206 21 of 27

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Zheng, Y. An activity recognition algorithm based on energy expenditure model. In Proceedings of the
3rd International Conference on Mechatronics, Robotics and Automation. Advances in Computer Science
Research, Shenzhen, China, 20-21 April 2015.

Auvci, A.; Bosch, S.; Marin-Perianu, M.; Marin-Perianu, R.; Havinga, P. Activity Recognition Using Inertial
Sensing for Healthcare, Wellbeing and Sports Applications: A Survey. In Proceedings of the 23th International
Conference on Architecture of Computing Systems 2010, Hannover, Germany, 22-23 February 2010.
Dargie, W. Analysis of Time and Frequency Domain Features of Accelerometer Measurements. Proceedings
of 18th International Conference on Computer Communications and Networks, San Francisco, CA, USA, 3-6
August 2009.

Rezaie, H.; Ghassemian, M. An Adaptive Algorithm to Improve Energy Efficiency in Wearable Activity
Recognition Systems. IEEE Sens. J. 2017, 17, 5315-5323. [CrossRef]

Ghasemzadeh, H.; Fallahzadeh, R.; Jafari, R. A Hardware-Assisted Energy-Efficient Processing Model for
Activity Recognition Using Wearables. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 2016, 2. Available
online: https://dl.acm.org/citation.cfm?id=2886096 (accessed on 12 July 2019). [CrossRef]

Griitzmacher, F; Beichler, B.; Hein, A ; Kirste, T.; Haubelt, C. Time and Memory Efficient Online Piecewise
Linear Approximation of Sensor Signals. Sensors 2018, 18, 1672. Available online: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC6022087/ (accessed on 12 July 2019). [CrossRef] [PubMed]

Suto, J.; Oniga, S.; Sitar, P. Feature Analysis to Human Activity Recognition. Int. ]. Comput. Commun. Control.
2017, 2, 116-130. [CrossRef]

Chowdhury, AK.; Tjondronegoro, D.; Chandran, V.; Trost, S.G. Physical Activity Recognition using
Posterioradapted Class-based Fusion of Multi Accelerometers data. IEEE ]. Biomed Health Inform. 2018,
22,678-685. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28534801 (accessed on 12 July 2019).
[CrossRef]

Cao, J.; Li, W,; Ma, C,; Tao, Z. Optimizing multi-sensor deployment via ensemble pruning for wearable
activity recognition. Inf. Fusion 2018, 41, 68-79. [CrossRef]

Rokni, S.A.; Ghasemzadeh, H. Autonomous Training of Activity Recognition Algorithms in Mobile Sensors:
A Transfer Learning Approach in Context-Invariant Views. IEEE Trans. Mob. Comput. 2018, 17, 1764-1777.
[CrossRef]

Rueda, M.F; Grzeszick, R.; Fink, G.A.; Feldhorst, S.; ten Hompel, M. Convolutional Neural Networks for
Human Activity Recognition Using Body-Worn Sensors. Informatics 2018, 5, 26. [CrossRef]

Khatun, S.; Morshed, B.I. Fully-Automated Human Activity Recognition with Transition Awareness
from Wearable Sensor Data for mHealth. In Proceedings of the 2018 IEEE International Conference on
Electro/Information Technology (EIT), Rochester, MI, USA, 3-5 May 2018.

De-la-Hoz-Franco, E.; Ariza-Colpas, P.; Quero, ].M.; Espinilla, M. Sensor-Based Datasets for Human Activity
Recognition-A Systematic Review of Literature. IEEE Access 2018, 6, 59192-59210. Available online:
https://ieeexplore.ieee.org/document/8478653 (accessed on 12 July 2019). [CrossRef]

Chen, S.; Lach, J.; Lo, B.; Yang, G.-Z. Toward Pervasive Gait Analysis with Wearable Sensors: A Systematic
Review. IEEE ]. Biomed. Health Inform. 2016, 20, 1521-1537. Available online: https://ieeexplore.ieee.org/
document/7574303 (accessed on 12 July 2019). [CrossRef] [PubMed]

Dobkin, B.H. Wearable motion sensors to continuously measure real-world physical activities. Curr. Opin.
Neurol. 2013, 26, 602-608. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035103/
(accessed on 12 July 2019). [CrossRef] [PubMed]

Scheurer, S.; Tedesco, S.; Brown, K.N.; O’Flynn, B. Human Activity Recognition for Emergency First
Responders via Body-Worn Inertial Sensors. In Proceedings of the 2017 IEEE 14th International Conference
on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, The Netherlands, 9-12 May 2017.
Oniga, S.; Siit6, J. Human activity recognition using neural networks. In Proceedings of the 2014 15th
International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, 28-30 May 2014.
Al Machot, F; Ranasinghe, S.; Plattner, J.; Jnoub, N. Human Activity Recognition based on Real Life
Scenarios. In Proceedings of the CoMoRea 2018, IEEE International Conference on Pervasive Computing
and Communications (PerCom), Athens, Greece, 19-23 March 2018.


http://dx.doi.org/10.1109/JSEN.2017.2720725
https://dl.acm.org/citation.cfm?id=2886096
http://dx.doi.org/10.1145/2886096
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022087/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022087/
http://dx.doi.org/10.3390/s18061672
http://www.ncbi.nlm.nih.gov/pubmed/29882849
http://dx.doi.org/10.15837/ijccc.2017.1.2787
https://www.ncbi.nlm.nih.gov/pubmed/28534801
http://dx.doi.org/10.1109/JBHI.2017.2705036
http://dx.doi.org/10.1016/j.inffus.2017.08.002
http://dx.doi.org/10.1109/TMC.2018.2789890
http://dx.doi.org/10.3390/informatics5020026
https://ieeexplore.ieee.org/document/8478653
http://dx.doi.org/10.1109/ACCESS.2018.2873502
https://ieeexplore.ieee.org/document/7574303
https://ieeexplore.ieee.org/document/7574303
http://dx.doi.org/10.1109/JBHI.2016.2608720
http://www.ncbi.nlm.nih.gov/pubmed/28113185
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035103/
http://dx.doi.org/10.1097/WCO.0000000000000026
http://www.ncbi.nlm.nih.gov/pubmed/24136126

Sensors 2019, 19, 5206 22 of 27

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Liang, Y.; Zhou, X.; Yu, Z.; Guo, B.; Yang, Y. Energy Efficient Activity Recognition Based on Low Resolution
Accelerometer in Smart Phones. In Proceedings of the GPC 2012: Advances in Grid and Pervasive Computing,
International Conference on Grid and Pervasive Computing, Uberlandia, Brazil, 26-28 May 2012; Miani, R.,
Camargos, L., Zarpelao, B., Rosas, E., Pasquini, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2019.
Usharani, J.; Sakthivel, U. Human Activity Recognition using Android Smartphone. In Proceedings of the 1st
International Conference on Innovations in Computing & Networking (ICICN-16), Mysore Road, Bengalura,
12-13 May 2016.

Chako, A.; Kavitha, R. Activity Recognition using Accelerometer and Gyroscope Sensor Data. Int. |. Comput.
Tech. 2017, 4, 23-28. Available online: http://oaji.net/articles/2017/1948-1514030944.pdf (accessed on 12
July 2019).

Mandong, A.; Minir, U. Smartphone Based Activity Recognition using K-Nearest Neighbor Algorithm.
In Proceedings of the International Conference of Engineering Technologies (ICENTE’18), Konya, Turkey,
25-27 October 2019.

Mughal, ET. Latest trends in human activity recognition and behavioral analysis using different types of
sensors. Int. J. Adv. Electron. Comput. Sci. 2018, 5, 2393-2835.

Akter, S.S.; Holder, L.B.; Cook, D.J. Springer Nature. In Proceedings of the Activity Recognition Using
Graphical Features from Smart Phone Sensor, International Conference on Internet of Things, Seattle, WA,
USA, 25-30 June 2014; Georgakopoulos, D., Zhang, L.-]., Eds.; Springer: Berlin/Heidelberg, Germany, 2018.
Allet, L.; Knols, R.H.; Shirato, K.; de Bruin, E.D. Wearable Systems for Monitoring Mobility-Related Activities
in Chronic Disease: A Systematic Review. Sensors 2010, 10, 9026-9052. [CrossRef] [PubMed]

Cero Dinarevi¢, E.; Barakovié¢ Husié¢, J.; Barakovi¢, S. Issues of Human Activity Recognition in Healthcare.
In Proceedings of the 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo,
Bosnia and Herzegovina, 20-22 March 2019.

Walse, K.H.; Dharaskar, R.V.; Thakare, V.M. Performance Evaluation of Classifiers on WISDM Dataset for
Human Activity Recognition. In Proceedings of the Second International Conference on Information and
Communication Technology for Competitive Strategies, Udaipur, India, 4-5 March 2016.

Niu, X.; Wang, Z.; Pan, Z. Extreme Learning Machine based Deep Model for Human Activity Recognition
with Wearable Sensors. Comput. Sci. Eng. 2018, 21, 16-25. [CrossRef]

Andrey, 1. Real-time human activity recognition from accelerometer data using Convolutional Neural
Networks. Appl. Soft Comput. 2018, 62, 915-922.

Garcia-Ceja, E.; Brena, R. Activity Recognition Using Community Data to Complement Small Amounts of
Labeled Instances. Sensors 2016, 16, 877. [CrossRef]

Mohamed, R.; Zainudin, M.N.S.; Sulaiman, M.N.; Perumal, T.; Mustapha, N. Multi-label classification for
physical activity recognition from various accelerometer sensor positions. J. Inf. Commun. Technol. 2018, 17,
209-231.

Jain, A.; Kanhangad, V. Human Activity Classification in Smartphones using Accelerometer and Gyroscope
Sensors. IEEE Sens. . 2018, 18, 1169-1177. [CrossRef]

Ali, H.H.; Moftah, H.M.; Youssif, A.A. Depth-based human activity recognition: A comparative perspective
study on feature extraction. Future Comput. Inform. J. 2018, 3, 51-67. [CrossRef]

Subasi, A.; Radhwan, M.; Kurdi, R.; Khateeb, K. IoT based Mobile Healthcare System for Human Activity
Recognition. In Proceedings of the 2018 15th Learning and Technology Conference (L&T), Jeddah, Saudi
Arabia, 25-26 February 2018.

Khalifa, S.; Lan, G.; Hassan, M.; Seneviratne, A. HARKE: Human Activity Recognition from Kinetic Energy
Harvesting Data in Wearable Devices. IEEE Trans. Mob. Comput. 2018, 17, 1353-1368. [CrossRef]
Alzahrani, M.; Kammoun, S. Human Activity Recognition: Challenges and Process Stages. Int. J. Innov. Res.
Comput. Commun. Eng. 2016, 4, 1111-1118. Available online: http://www.rroij.com/open-access/human-
activity-recognition-challenges-and-process-stages-.pdf (accessed on 12 July 2019).

Guerrero, J.L.; Berlanga, A.; Garaia, J.; Molina, ].M. Piecewise Linear Representation Segmentation as
a Multiobjective Optimization Problem. In Distributed Computing and Artificial Intelligence. Advances in
Intelligent and Soft Computing; De Leon, F,, de Carvalho, A.P,, Rodriguez-Gonzalez, S., De Paz Santana, J.F.,
Rodriguez, ] M.C,, Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 79, pp. 267-274.

Nguyen, N.D.; Bui, D.T.; Truong, PH.; Jeong, G.-M. Position-Based Feature Selection for Body Sensors
regarding Daily Living Activity Recognition. J. Sens. 2018, 2018. [CrossRef]


http://oaji.net/articles/2017/1948-1514030944.pdf
http://dx.doi.org/10.3390/s101009026
http://www.ncbi.nlm.nih.gov/pubmed/22163393
http://dx.doi.org/10.1109/MCSE.2018.110145933
http://dx.doi.org/10.3390/s16060877
http://dx.doi.org/10.1109/JSEN.2017.2782492
http://dx.doi.org/10.1016/j.fcij.2017.11.002
http://dx.doi.org/10.1109/TMC.2017.2761744
http://www.rroij.com/open-access/human-activity-recognition-challenges-and-process-stages-.pdf
http://www.rroij.com/open-access/human-activity-recognition-challenges-and-process-stages-.pdf
http://dx.doi.org/10.1155/2018/9762098

Sensors 2019, 19, 5206 23 of 27

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Gravina, R.; Alinia, P; Ghasemzadeh, H.; Fortino, G. Multi-sensor fusion in body sensor networks:
State-of-the-art and research challenges. Inf. Fusion 2017, 35, 68-80. Available online: https://www.
sciencedirect.com/science/article/pii/S156625351630077X (accessed on 12 July 2019). [CrossRef]

Bharti, P.; De, D.; Chellappan, S.; Das, S.K. HuMAn: Complex Activity Recognition with Multi-Modal
Multi-Positional Body Sensing. IEEE Trans. Mob. Comput. 2018, 18, 857-870. Available online: https:
//ieeexplore.ieee.org/document/8374816 (accessed on 12 July 2019). [CrossRef]

Shaolin, M.; Scholten, H.; Having, P.J. Towards physical activity recognition using smartphone sensors.
In Proceedings of the 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing
(UIC), Vietri sul Mare, Italy, 18-20 December 2013.

Sun, W,; Cai, Z,; Li, Y,; Liu, F; Fang, S.; Wang, G. Security and Privacy in the Medical Internet of Things:
A Review. Secur. Commun. Netw. 2018, 2018, 9. [CrossRef]

Sensorweb. Available online: http://sensorweb.engr.uga.edu/wp-content/uploads/2018/06/shi2018dynamic.
pdf (accessed on 15 July 2019).

Nakisa, B.; Rastgoo, M.N.; Tjondronegoro, D.; Chandran, V. Evolutionary computation algorithms for feature
selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 2018, 93, 143-155.
[CrossRef]

Fullerton, E.; Heller, B.; Munoz-Organero, M. Recognising human activity in free-living using multiple
body-worn accelerometers. IEEE Sens. ]. 2017, 17, 5290-5297. Available online: https://ieeexplore.ieee.org/
document/7964661 (accessed on 12 July 2019). [CrossRef]

Jos, D. Human Activity Pattern Recognition from Accelerometry Data. Master’s Thesis, German Aerospace
Center Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (DLR), Cologne, Germany, November 2013.
Holzemann, A.; Van Laerhoven, K. Using Wrist-Worn Activity Recognition for Basketball Game Analysis.
In Proceedings of the 5th international Workshop on Sensor-based Activity Recognition and Interaction,
Berlin, Germany, 20-21 September 2018.

Lv, M; Chen, L.; Chen, T.; Chen, G. Bi-View Semi-Supervised Learning Based Semantic Human Activity
Recognition Using Accelerometers. IEEE Trans. Mob. Comput. 2018, 17, 1991-2001. [CrossRef]

Gupta, P; Dallas, T. Feature Selection and Activity Recognition System Using a Single Triaxial Accelerometer.
IEEE Trans. Biomed. Eng. 2014, 61, 1780-1786. [CrossRef] [PubMed]

Chen, Z.; Zhang, L.; Cao, Z.; Guo, J. Distilling the Knowledge from Handcrafted Features for Human Activity
Recognition. IEEE Trans. Ind. Inform. 2018, 14, 4334-4342. Available online: https://ieeexplore.ieee.org/
document/8247224 (accessed on 12 July 2019). [CrossRef]

Shahid Khan, M.U.; Abbas, A.; Ali, M.; Jaward, M.; Khan, S.U.; Li, K.; Zomaya, A.Y. On the correlation of
sensor location and Human Activity Recognition in Body Area Network (BANs). IEEE Syst. ]. 2018, 12,
82-91. [CrossRef]

Benson, L.C.; Clermont, C.A.; Osis, S.T.; Kobsar, D.; Ferber, R. Classifying Running Speed Conditions Using a
Single Wearable Sensor: Optimal Segmentation and Feature Extraction Methods. J. Biomech. 2018, 71, 94-99.
[CrossRef] [PubMed]

Wang, H.; Ke, R; Li,].; An, Y.; Wang, K.; Yu, L. A correlation-based binary particle swarm optimization method
for feature selection in human activity recognition. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718772785.
[CrossRef]

Shen, C.; Chen, Y.; Yang, G.; Guan, X. Toward Hand-Dominated Activity Recognition Systems with
Wristband-Interaction Behavior Analysis. IEEE Trans. Syst. Man Cybern. Syst. 2018, Early Access, 1-11.
[CrossRef]

Akbari, A.; Wu, J.; Grimsley, R.; Jafari, R. Hierarchical Signal Segmentation and Classification for Accurate
Activity Recognition. In Proceedings of the 2018 ACM International Joint Conference and 2018 International
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, 8-12 October
2018.

Jansi, R.; Amutha, R. A novel chaotic map based compressive classification scheme for human activity
recognition using a tri-axial accelerometer. Multimed. Tools Appl. 2018, 77, 31261-31280. [CrossRef]

Attal, F; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, E; Oukhellou, L.; Amirat, Y. Physical Human
Activity Recognition Using Wearable Sensors. Sensors 2015, 15, 31314-31338. Available online: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC4721778/ (accessed on 12 July 2019). [CrossRef]


https://www.sciencedirect.com/science/article/pii/S156625351630077X
https://www.sciencedirect.com/science/article/pii/S156625351630077X
http://dx.doi.org/10.1016/j.inffus.2016.09.005
https://ieeexplore.ieee.org/document/8374816
https://ieeexplore.ieee.org/document/8374816
http://dx.doi.org/10.1109/TMC.2018.2841905
http://dx.doi.org/10.1155/2018/5978636
http://sensorweb.engr.uga.edu/wp-content/uploads/2018/06/shi2018dynamic.pdf
http://sensorweb.engr.uga.edu/wp-content/uploads/2018/06/shi2018dynamic.pdf
http://dx.doi.org/10.1016/j.eswa.2017.09.062
https://ieeexplore.ieee.org/document/7964661
https://ieeexplore.ieee.org/document/7964661
http://dx.doi.org/10.1109/JSEN.2017.2722105
http://dx.doi.org/10.1109/TMC.2018.2793913
http://dx.doi.org/10.1109/TBME.2014.2307069
http://www.ncbi.nlm.nih.gov/pubmed/24691526
https://ieeexplore.ieee.org/document/8247224
https://ieeexplore.ieee.org/document/8247224
http://dx.doi.org/10.1109/TII.2018.2789925
http://dx.doi.org/10.1109/JSYST.2016.2610188
http://dx.doi.org/10.1016/j.jbiomech.2018.01.034
http://www.ncbi.nlm.nih.gov/pubmed/29454542
http://dx.doi.org/10.1177/1550147718772785
http://dx.doi.org/10.1109/TSMC.2018.2819026
http://dx.doi.org/10.1007/s11042-018-6117-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721778/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721778/
http://dx.doi.org/10.3390/s151229858

Sensors 2019, 19, 5206 24 of 27

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Wang, A.; Chen, G.; Wu, X,; Liu, L.; An, N.; Chang, C.-Y. Towards Human Activity Recognition: A Hierarchical
Feature Selection Framework. Sensors 2018, 18, 3629. [CrossRef]

Koldijk, S.; Neerincx, M.A.; Kraaij, W. Detecting Work Stress in Offices by Combining Unobtrusive Sensors.
IEEE Trans. Affect. Comput. 2016, 9, 227-239. [CrossRef]

Alumni. Media. Available  online: http://alumni.media.mit.edu/~{}emunguia/pdf/
PhDThesisMunguiaTapia08.pdf (accessed on 15 July 2019).

Al-Garadi, M.A.; Mohames, A.; Al-Ali, A.; Du, X.; Guizani, M. A Survey of Machine and Deep Learning
Methods for Internet of Things (IoT) Security. Available online: https://arxiv.org/abs/1807.11023 (accessed on
12 July 2019).

Al Machot, F,; Heinrich, C.; Ranasinghe, M.S. A Hybrid Reasoning Approach for Activity Recognition Based
on Answer Set Programming and Dempster-Shafer Theory. In Studies in Systems, Decision and Control, Recent
Advances in Nonlinear Dynamics and Synchronization; Kyamakya, K., Mathis, W., Stoop, R., Chedjou, ].C., Li, Z,,
Eds.; MetaPress and Springerlink: Basel, Switzerland, 2017; Volume 109, pp. 303-318.

Xue, Y.-W,; Liu, J.; Chen, J.; Zhang, Y.-T. Feature Grouping Based on Ga and L-Gem for Human Activity
Recognition. In Proceedings of the 2018 International Conference on Machine Learning and Cybernetics
(ICMLC), Kobe, Japan, 15-18 July 2018.

He, W.; Guo, Y.; Gao, C.; Li, X. Recognition of human activities with wearable sensors. EURASIP . Adv.
Signal Processing 2012, 108, 1-13. [CrossRef]

De Miguel, K.; Brunete, A.; Hernando, M.; Gambo, E. Home Camera-Based Fall Detection System for the
Elderly. Sensors 2017, 17, 2864. [CrossRef] [PubMed]

Garcia-Cejaa, E.; Rieglera, M.; Nordgreenc, T.; Jakobsenc, P.; Oedegaardf, K.J.; Terresena, J. Mental Health
Monitoring with Multimodal Sensing and Machine Learning: A Survey. Pervasive Mob. Comput. 2018, 51,
1-26. [CrossRef]

Mubheidat, F.; Tawalbeh, L.; Tyrer, H. Context-Aware, Accurate, and Real Time Fall Detection System for
Elderly People. In Proceedings of the 2018 IEEE 12th International Conference on Semantic Computing
(ICSC), Laguna Hills, CA, USA, 31 January—-2 February 2018.

Moldovan, D.; Antal, M.; Pop, C.; Olosutean, A.; Ciora, T.; Anghel, I.; Salomie, I. Spark-Based Classification
Algorithms for Daily Living Activities. In Advances in Intelligent Systems and Computing, Artificial Intelligence
and Algorithms in Intelligent Systems; Silhavy, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; Volume
764, pp. 69-78.

Kalita, S.; Karmakar, A.; Hazarika, S.M. Efficient extraction of spatial relations for extended objects vis-a-vis
human activity recognition in video. Appl. Intell. 2018, 48, 204-219. [CrossRef]

Jiménez, A.R.; Seco, F. Multi-Event Naive Bayes Classifier for Activity Recognition in the UCAmI Cup.
In Proceedings of the 2th International Conference on Ubiquitous Computing and Ambient Intelligence
(UCAmMI 2018), Punta Cana, Dominican Republic, 4-7 December 2018.

Malhotra, A.; Schizas, L.D.; Metsis, V. Correlation Analysis-Based Classification of Human Activity Time
Series. IEEE Sens. J. 2018, 18, 8085-8095. [CrossRef]

Sani, S.; Wiratunga, N.; Massie, S.; Cooper, K. Personalised Human Activity Recognition Using Matching
Networks. In Case-Based Reasoning Research and Development; Cox, M.T., Funk, P, Begum, S., Eds.; Springer:
Berlin/Heidelberg, Germany, 2018; Volume 11156, pp. 339-353.

Sfar, H.; Bouzeghoub, A. Activity Recognition for Anomalous Situations Detection. Jetsan 2018, 39, 400-406.
[CrossRef]

Xu, W,; Pang, Y.; Yang, Y. Human Activity Recognition Based on Convolutional Neural Network.
In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China,
20-24 August 2018.

Cadenasa, J.M.; Carmen Garrido, M.; Martinez-Espafia, R.; Mufioz, A. A k-nearest neighbors based
approach applied to more realistic activity recognition datasets. |. Ambient. Intell. Smart Environ. 2018, 10,
247-259. Available online: https://content.iospress.com/articles/journal-of-ambient-intelligence-and-smart-
environments/ais486 (accessed on 12 July 2019). [CrossRef]

Wang, X.-J. A Human Body Gait Recognition System Based on Fourier Transform and Quartile Difference
Extraction. Int. ]. Online Biomed. Eng. (IJOE) 2017, 13, 129-139. [CrossRef]


http://dx.doi.org/10.3390/s18113629
http://dx.doi.org/10.1109/TAFFC.2016.2610975
http://alumni.media.mit.edu/~{}emunguia/pdf/PhDThesisMunguiaTapia08.pdf
http://alumni.media.mit.edu/~{}emunguia/pdf/PhDThesisMunguiaTapia08.pdf
https://arxiv.org/abs/1807.11023
http://dx.doi.org/10.1186/1687-6180-2012-108
http://dx.doi.org/10.3390/s17122864
http://www.ncbi.nlm.nih.gov/pubmed/29232846
http://dx.doi.org/10.1016/j.pmcj.2018.09.003
http://dx.doi.org/10.1007/s10489-017-0970-8
http://dx.doi.org/10.1109/JSEN.2018.2864207
http://dx.doi.org/10.1016/j.irbm.2018.10.012
https://content.iospress.com/articles/journal-of-ambient-intelligence-and-smart-environments/ais486
https://content.iospress.com/articles/journal-of-ambient-intelligence-and-smart-environments/ais486
http://dx.doi.org/10.3233/AIS-180486
http://dx.doi.org/10.3991/ijoe.v13i07.7294

Sensors 2019, 19, 5206 25 of 27

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

Diraco, G.; Leone, A.; Siciliano, P. A Radar-Based Smart Sensor for Unobtrusive Elderly Monitoring in
Ambient Assisted Living Applications. Biosensors 2017, 7, 29. Available online: https://www.ncbi.nlm.nih.
gov/pubmed/29186786 (accessed on 12 July 2019). [CrossRef]

Arif, M.; Kattan, A. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the
Body. PLoS ONE 2015, 10. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.
pone.0130851 (accessed on 12 July 2019). [CrossRef]

Khan, S.S.; Ye, B.; Taati, B.; Mihailidis, A. Detecting agitation and aggression in people with dementia using
sensors-A systematic review. Alzheimer’s Dement. 2018, 14, 824-832. [CrossRef] [PubMed]

Uddin, Z.; Kim, D.-H.; Kim, T.-5. A Human Activity Recognition System using HMMs with GDA on
Enhanced Independent Component Features. Int. Arab. J. Inf. Technol. 2015, 12, 304-310.

Reis, PM.; Hebenstreit, F; Gabsteiger, F; von Tscharner, V.; Lochmann, M. Methodological aspects of EEG
and body dynamics measurements during motion. Front. Hum. Neurosci. 2014, 8, 156-175. [CrossRef]
[PubMed]

Oliveira, G.L.; Nascimento, E.R.; Vieira, A.W.; Campos, M.EM. Sparse Spatial Coding: A novel approach
for efficient and accurate object recognition. In Proceedings of the 2012 IEEE International Conference on
Robotics and Automation, Saint Paul, MN, USA, 14-18 May 2012.

Adomavicius, G. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art
and Possible Extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734-749. [CrossRef]

Chin, Z.H.; Ng, H.; Yap, T.T.V,; Tong, H.L.; Ho, C.C.; Goh, V.T. Daily Activities Classification on Human Motion
Primitives Detection Dataset. In Proceedings of the Lecture Notes in Electrical Engineering, Computational
Science and Technology, Kota Kinabalu, Malaysia, 29-30 August 2018.

Ye, J.; Qi, G.-J.; Zhuang, N.; Hu, H.; Hua, K.A. Learning Compact Features for Human Activity Recognition
via Probabilistic First-Take-All. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 1. [CrossRef]

Lee, ].; Kim, J. Energy-Efficient Real-Time Human Activity Recognition on Smart Mobile Devices. Mob. Inf.
Syst. 2016, 2016, 12. [CrossRef]

Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, H.; Havinga, P.J.M. Complex Human Activity Recognition Using
Smartphone and Wrist-Worn Motion Sensors. Sensors 2016, 16, 426. [CrossRef]

Muhammad, S.A.; Klein, B.N.; Van Laerhoven, K.; David, K. A Feature Set Evaluation for Activity
Recognition with Body-Worn Inertial Sensors. In Constructing Ambient Intelligence, Aml 2011 Workshops,
Amsterdam, The Netherlands, 16-18 November 2011; Wichert, R., Van Laerhoven, K., Gelissen, J., Eds.; Springer:
Berlin/Heidelberg, Germany.

Gordon, D.; Hanne, J.-H.; Berchtold, M.; Miyaki, T.; Beigl, M. Recognizing Group Activities using Wearable
Sensors. Available online: https://www.teco.edu/~{}michael/publication/2011_MobiQuitous_GAR.pdf
(accessed on 12 July 2019).

Stiden, A.; Blinck, H.; Bhattacharya, S.; Siiger Prentow, T.; Kjeergaard, M.B.; Dey, A.; Sonne, TM.;
Jensen, M.M. Smart Devices are Different: Assessing and MitigatingMobile Sensing Heterogeneities for
Activity Recognition. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems,
Seoul, Korea, 1-4 November 2015.

Abidine, B.M.; Fergani, L.; Fergani, B.; Oussalah, B. The joint use of sequence features combination and
modified weighted SVM for improving daily activity recognition. Pattern Anal. Appl. 2018, 21, 119-138.
[CrossRef]

Voicu, R.-A.; Dobre, C.; Bajenaru, L.; Ciobanu, R.-I. Human Physical Activity Recognition Using Smartphone
Sensors. Sensors 2019, 19, 458. [CrossRef]

Chelli, A.; Patzold, M. A Machine Learning Approach for Fall Detection and Daily Living Activity Recognition.
IEEE Access 2019, 7, 38670-38687. Available online: https://ieeexplore.ieee.org/document/8672567/authors#
authors (accessed on 12 July 2019). [CrossRef]

Martinez-Villasefior, L.; Ponce, H.; Espinosa-Loera, R.A. Multimodal Database for Human Activity
Recognition and Fall Detection. In Proceedings of the 2th International Conference on Ubiquitous Computing
and Ambient Intelligence (UCAmI 2018), Punta Cana, Dominican Republic, 4-7 December 2018.

Billiet, L.; Swinnen, T.W.; Westhovens, R.; de Vlam, K.; Van Hulffel, S. Accelerometry-Based Activity
Recognition and Assessment in Rheumatic and Musculoskeletal Diseases. Sensors 2016, 16, 2151. Available
online: https://www.ncbinlm.nih.gov/pmc/articles/PMC5191131/ (accessed on 12 July 2019). [CrossRef]
[PubMed]


https://www.ncbi.nlm.nih.gov/pubmed/29186786
https://www.ncbi.nlm.nih.gov/pubmed/29186786
http://dx.doi.org/10.3390/bios7040055
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130851
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130851
http://dx.doi.org/10.1371/journal.pone.0130851
http://dx.doi.org/10.1016/j.jalz.2018.02.004
http://www.ncbi.nlm.nih.gov/pubmed/29571749
http://dx.doi.org/10.3389/fnhum.2014.00156
http://www.ncbi.nlm.nih.gov/pubmed/24715858
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1109/TPAMI.2018.2874455
http://dx.doi.org/10.1155/2016/2316757
http://dx.doi.org/10.3390/s16040426
https://www.teco.edu/~{}michael/publication/2011_MobiQuitous_GAR.pdf
http://dx.doi.org/10.1007/s10044-016-0570-y
http://dx.doi.org/10.3390/s19030458
https://ieeexplore.ieee.org/document/8672567/authors#authors
https://ieeexplore.ieee.org/document/8672567/authors#authors
http://dx.doi.org/10.1109/ACCESS.2019.2906693
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191131/
http://dx.doi.org/10.3390/s16122151
http://www.ncbi.nlm.nih.gov/pubmed/27999255

Sensors 2019, 19, 5206 26 of 27

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

Yuan, G.; Wang, Z.; Meng, F; Yan, Q.; Xia, S. An overview of human activity recognition based on smartphone.
Sens. Rev. 2019, 39, 288-306. [CrossRef]

Boukhechba, M.; Bouzouane, A.; Bouchard, B.; Gouin-Vallerand, C.; Giroux, S. Energy Optimization for
Outdoor Activity Recognition. J. Sens. 2016, 2016. [CrossRef]

Soria Morillo, L.M.; Gonzalez-Abril, L.; Ortega Ramirez, ].A.; de la Concepcion, M.A.A. Low Energy Physical
Activity Recognition System on Smartphones. Sensors 2015, 15, 5163-5196. [CrossRef] [PubMed]

Zheng, L.; Wu, D.; Ruan, X.; Weng, S.; Peng, A.; Tang, B.; Lu, H.; Shi, H.; Zheng, H. A Novel Energy-Efficient
Approach for Human Activity Recognition. Sensors 2017, 17, 2064. [CrossRef]

Awais, M.; Chiari, L.; Ihlen, E.A.F,; Helbostad, L.; Palmerini, L. Physical Activity Classification for Elderly
People in Free Living Conditions. IEEE |. Biomed. Health Inform. 2019, 23, 197-207. [CrossRef]

Torrers, RL.S.; Visvanathan, R.; Hoskins, S.; van den Hengel, A.; Ranasinghe, D.C. Effectiveness of a
Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exit’s in Healthy Older
People. Sensors 2016, 16, 546-563. [CrossRef]

Chen, M.; Ma, Y,; Li, Y.; Wu, D.; Zhang, Y.; Youn, C.-H. Wearable 2.0: Enabling Human-Cloud Integration
in Next Generation Healthcare Systems. IEEE Commun. Mag. 2017, 55, 54—61. Available online: https:
//ieeexplore.ieee.org/document/7823338 (accessed on 12 July 2019). [CrossRef]

Li, J. Methods for Assessment and Prediction of QoE, Preference and Visual Discomfort in Multimedia
Application with Focus on S-3DTV. Ph.D. Thesis, Universitéde Nantes, Nantes, France, 2013.

Yao, L.; Sheng, Q.Z.; Benatallah, B.; Dustdar, S.; Wang, X.; Shemshadi, A.; Kanhere, S.5. WIT'S: An
IoT-endowed computational framework for activity recognition in personalized smart homes. Computing
2018, 100, 369-385. [CrossRef]

Mohadis, H.M.; Mohamad Ali, N. A Study of Smartphone Usage and Barriers Among the Elderly.
In Proceedings of the 2014 3rd International Conference on User Science and Engineering (i-USEr), Shah
Alam, Malaysia, 2-5 September 2014.

Bourke, K.A.; Ihlem, E.A.E; Bergquist, R.; Wik, P.B.; Vereijken, B.; Helbostad, J.L. A Physical Activity Reference
Data-Set Recorded from Older Adults Using Body-Worn Inertial Sensors and Video Technology—The ADAPT
Study Data-Set. Sensors 2017, 17, 559. [CrossRef]

Kafali, O.; Bromuri, S.; Sindlar, M.; Van der Weide, T.; Pelaez, E.A.; Schaechtle, U.; Alves, B.; Zufferey, D.;
Rodriguez-Villegas, E.; Schumacher, M.I.; et al. COMMODITY12: A smart e-health environment for diabetes
management. |. Ambient. Intell. Smart Environ. 2013, 5, 479-502.

Vasilateanu, A.; Radu, 1.C.; Buga, A. Environment crowd-sensing for asthma management. In Proceedings of
the IEEE E-Health and Bioengineering Conference (EHB), Iasi, Rumania, 19-21 November 2015.

Lin, J.J.; Mamykina, L.; Lindtner, S.; Delajoux, G.; Strub, H.B. Fish’N’Steps: Encouraging physical activity
with an interactive computer game. In Proceedings of the 8th International Conference on Ubiquitous
Computing, Orange County, CA, USA, 17-21 September 2006.

Consolvo, S.; McDonald, D.W.; Toscos, T.; Chen, M.Y.; Froehlich, J.; Harrison, B.; Klasnja, P.; LaMarca, A.;
LeGrand, L.; Libby, R.; et al. Activity sensing in the wild: A field trial of ubifit garden. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5-10 April 2008.

Kantoch, E.; Augustyniak, P.; Markiewicz, M.; Prusak, D. Monitoring activities of daily living based on
wearable wireless body sensor network. In Proceedings of the 2014 36th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26-30 August 2014.

Alam, M.R.; Reazh, M.B.1.; Ali, M.A.M. A Review of Smart Homes—Past, Present, and Future. IEEE Trans.
Syst. Man Cybern. Part C 2012, 42, 1190-1203. Available online: https://www.researchgate.net/publication/
262687986_A_Review_of_Smart_Homes_-_Past_Present_and_Future (accessed on 12 July 2019). [CrossRef]
Majumder, S.; Aghayi, E.; Noferesti, M.; Memarzadeh-Tehran, H.; Mondal, T.; Pang, Z.; Deen, M.]. Smart
Homes for Elderly Healthcare—Recent Advances and Research Challenges. Sensors 2017, 17,2496. [CrossRef]
Agoulmine, N.; Jamal Deen, M.; Lee, ].-S.; Meyyappan, M. U-Health Smart Home. IEEE Nanotechnol. Mag.
2011, 5, 6-11. Available online: https://ieeexplore.ieee.org/document/5993590 (accessed on 12 July 2019).
[CrossRef]


http://dx.doi.org/10.1108/SR-11-2017-0245
http://dx.doi.org/10.1155/2016/6156914
http://dx.doi.org/10.3390/s150305163
http://www.ncbi.nlm.nih.gov/pubmed/25742171
http://dx.doi.org/10.3390/s17092064
http://dx.doi.org/10.1109/JBHI.2018.2820179
http://dx.doi.org/10.3390/s16040546
https://ieeexplore.ieee.org/document/7823338
https://ieeexplore.ieee.org/document/7823338
http://dx.doi.org/10.1109/MCOM.2017.1600410CM
http://dx.doi.org/10.1007/s00607-018-0603-z
http://dx.doi.org/10.3390/s17030559
https://www.researchgate.net/publication/262687986_A_Review_of_Smart_Homes_-_Past_Present_and_Future
https://www.researchgate.net/publication/262687986_A_Review_of_Smart_Homes_-_Past_Present_and_Future
http://dx.doi.org/10.1109/TSMCC.2012.2189204
http://dx.doi.org/10.3390/s17112496
https://ieeexplore.ieee.org/document/5993590
http://dx.doi.org/10.1109/MNANO.2011.941951

Sensors 2019, 19, 5206 27 of 27

141. Mirtchouk, M.; Merck, C.; Kleinberg, S. Automated Estimation of Food Type and Amount consumed from
body-worn audio and motion sensors. In Proceedings of the 20016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12-16 September 2016.

142. Charlona, Y.; Bourennane, W.; Bettahar, F.; Campo, E. Activity monitoring system for elderly in a context
of smart home. Digit. Technol. Healthc. 2013, 34, 60-63. Available online: https://www.sciencedirect.com/
science/article/abs/pii/S1959031812001509 (accessed on 12 July 2019). [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



https://www.sciencedirect.com/science/article/abs/pii/S1959031812001509
https://www.sciencedirect.com/science/article/abs/pii/S1959031812001509
http://dx.doi.org/10.1016/j.irbm.2012.12.014
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Research Methodology 
	Impact of Human Activity Recognition (HAR) Stages on Energy Consumption and Latency 
	Overview of HAR Stages 
	Data Collection and Filtering 
	Data Segmentation 
	Feature Extraction 
	Dimensionality Reduction 
	Classification 

	Energy Consumption and Latency per HAR Stage 
	Impact of HAR Stages on Energy Consumption 
	Impact of HAR Stages on Latency 

	Summary 

	The Optimization of Energy Consumption and Latency in HAR 
	Improvements of Energy Consumption and Latency in HAR 
	Proposal of an Effective Design of a HAR Application in Health and Wellbeing 
	Summary 

	Conclusions and Future Work 
	References

