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Abstract: Personal Area Networks (PAN) are key topologies in pervasive Internet of Things
(IoT) localization applications. In the numerous object localization techniques, centralization and
synchronization between the elements are assumed. In this paper, we leverage crowdsourcing from
multiple fixed and mobile elements to enhance object localization. A cooperative crowdsourcing
scheme is proposed to localize mobile low power tags using distributed and mobile/fixed readers for
GPS assisted environments (i.e., outdoor) and fixed readers for indoors. We propose Inertial-Based
Shifting and Trilateration (IBST) technique to provide an accurate reckoning of the absolute location
of mobile tags. The novelty in our technique is its capability to estimate tag locations even when the
tag is not covered by three readers to perform trilateration. In addition, IBST provides scalability
since no processing is required by the low power tags. IBST technique is validated through
extensive simulations using MATLAB. Simulation results show that IBST consistently estimates
location, while other indoor localization solutions fail to provide such estimates as the state-of-the-art
techniques require localization data to be available simultaneously to provide location estimation.

Keywords: inertial sensor; localization; RSSI; crowdsourcing

1. Introduction

Radio Frequency Identification (RFID) and IEEE 802.15-based tags are widely accepted to be
the de facto of low power identification and computation in wireless communication. These tags,
battery assisted ones in particular, can be equipped with sensing elements and memories to provide
rich information for services requiring location estimation. Therefore, Personal Area Network (PAN)
technologies are considered to be a key enabler of many Internet of Things (IoT) smart applications.
Smart applications rely on contextual information, predominantly the location of the tags or “things” at
a specific time [1]. Location awareness of the tags will aid contextual decision-making, hence enhancing
the quality of experience for users. Nevertheless, localizing the tags, while considering the IoT
characteristics in terms of scalability, heterogeneity, and mobility, remains a challenging problem.

During the last decade, PAN technology has developed rapidly in conjunction with a steep cost
reduction of the supporting system-on-chip integrated circuits [2]. Due to this development, several
low-power, small footprint, and sensor-assisted devices have sprouted. Consequently, myriad of
pervasive and context-aware applications have been proposed [3–11]. In particular, in RFID systems,
tag- and reader-based localization schemes were proposed. In tag-based localization, the tag location is
mainly estimated based on its proximity to a given reader(s) with a known location [12]. In reader-based
localization, reader location can be estimated similarly by its proximity to a pre-deployed set of tags [5].
Unsurprisingly, as readers’ prices are orders of magnitude more than tags, RFID tag-localization is the
dominant in localization solutions.
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In this paper, we propose a cooperative tag-localization scheme called Inertial-Based Shifting and
Trilateration (IBST) based on crowdsourcing in both indoor and outdoor environments. The system is
comprised of battery-assisted tags that are attached to mobile objects, while mobile or fixed readers
(with known absolute locations) will read and write corresponding information on these tags. In our
scheme, the Readers (heterogeneous, independent, and dynamic PAN-based standardized readers)
detect surrounding tags, read their current memory, and update the tags’ memory with the estimated
distance and current reader location information. The readers report the detected tags’ information to
a backend server, the server processes the data from all readers, and then it responds to users’ queries
about objects of interest. We remark that our approach is fundamentally different from existing tag
localization techniques.

Existing localization techniques assume that the tag’s location can be estimated based on
simultaneous information from all surrounding readers. This assumption, however, may not always be
applicable in mobile or dynamic environments. For instance, at a given time, if the current information
for localization is obtained from less than three readers, location cannot be reckoned [13]. This challenge
is evident as the non-uniformity of readers’ locations, heterogeneity in readers’ detection ranges,
and mobility of both tags and readers prevent having sufficient and synchronous detection information
for each tag.

The proposed asynchronous crowdsourcing localization technique, Inertial-Based Shifting and
Trilateration (IBST), is the focus of this paper. Whenever sufficient detection information is not available,
IBST utilizes asynchronous reader detections to localize tags that are equipped with inertial sensors.
The tags are localized based on Received Signal Strength Indicator (RSSI) trilateration/proximity and
inertial-based shifting. To the best of our knowledge, our approach is the first to develop a PAN object
localization system utilizing reader crowdsourcing,

- utilize tags’ memory to store reader detection information and location information that can be
read by other passing readers, and

- use asynchronous detection information and internal inertial sensor information to enhance
localization when the concurrent spatial information is not sufficient to localize a tag.

We validate the proposed system through extensive simulations using MATLAB. Results show
that our approach can achieve accurate location estimation in typical IoT settings.

The remainder of this paper is organized as follows: Section 2 reviews some of the related work and
motivates our proposed approach. In Section 3, we provide system models, such as system architecture,
channels model, and inertial sensors displacement model. The proposed IBST crowdsourcing technique
is described in Section 4. Section 5 presents the performance evaluation of the proposed system. Finally,
our conclusion is given in Section 6.

2. Related Work and Motivation

Various PAN localization schemes have been proposed in the literature, in which, an infrastructure
of RF transceivers (e.g., RFID readers, Zigbee sink nodes, etc.) are deployed to detect and collect
information from surrounding tags [6–10]. In [6], the Coupled RSSI and Inertial Navigation System
(INS) Localization scheme (CRIL) has been proposed, having two main advantages. CRIL can
adapt effectively and quickly to dynamic communication environments, and it can account for the
uncertainties in RSSI measurements, among which are varying covariance and outliers. The indoor
localization approach, named iBILL [7], uses iBeacon and inertial sensors simultaneously in large open
areas. Users’ real-time locations are estimated by inertial sensors through an improved particle filter.
The latter is used to alleviate the effect of sensing fluctuations of localization errors. In HILS [8], a more
efficient Heron-bilateration-based position determination technique (HBPD) is proposed. This novel
technique requires Wi-Fi signals from only two access points to localize a mobile device. HILS utilizes
HBPD technique to reset the bias drift errors associated with inertial sensors and to indemnify the
unavailability of strong Wi-Fi signals from Access Points (APs).
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ANTspin [9] has been proposed as an efficient absolute localization method for RFID tags using
Spinning Antenna. It introduces a rotary table in the experiment where the reader antennas are fixed
to continuously collect dynamics data. Based on the characteristics of collected RSSI data, the relative
incident angle and distance between tags and antenna are analyzed for localization. An approach
for RSSI-based, calibration-free, and real-time indoor localization is proposed in [10]. Although the
author presents switch-beam array-based hardware, compliant with IEEE 802.15.4 router functionality,
the focus is on the creation of an algorithm layer to be used with the pre-existing hardware that is
capable to enable full localization and data contextualization over a standard 802.15.4 Wireless Sensor
Network using RSSI information with no need for a prolonged offline calibration phase.

In each of these five solutions, having sufficient information to localize at a given time is required.
In addition, the centralized and fixed infrastructure-based systems provide limited scalability, especially
in solutions that require bulky readers that cannot be mobile and may not be applicable for IoT settings,
especially in outdoor environments. In the next section, we show the advantage of crowdsourcing on
the adaptability of the system given a dynamic environment.

3. System Model

3.1. System Architecture

We consider an (indoor or outdoor) environment where we track tagged mobile users (a person,
animal, or object) in two-dimensional space in a specific place. A number of dynamic, heterogeneous,
and uncoordinated readers in known positions are distributed and authorized to discover, access,
and update the memories of tags within their vicinity. The tags are assumed to be battery-assisted and
can be read through a PAN standardized protocol (e.g., IEEE 802.15.4 [14], RFID [15], WiFi [16], etc.).
Tags are equipped with an ultra-low power inertial measurement unit (IMU) [17]. Thus, the object
within the range of a given reader can communicate data and measure the received signal strength.

3.2. Ranging Model

In our proposal, we adopt RSSI-based ranging in which the distance is estimated based on the
received signal strength due to its simplicity and availability in most wireless transceivers. However,
other ranging techniques (e.g., Angle of Arrival and Time difference of Arrival) may be incorporated
(especially in fixed dedicated readers) if higher hardware complexity can be tolerated.

Based on the lognormal path loss model [18], the RSSI of the transmitted signal from the tag,
denoted by PRX, is written as

PRX(dBm) = A− 10η log10

(
d
d0

)
+ N0 , (1)

where A is the received signal strength at a reference distance d0, d is the distance between the reader
and the tag, η is the path loss exponent, and N0 is the noise in the environment. The value of A depends
on the transmitted signal power PTX and the antenna gains of the transmitter and the receiver. The noise
N0 is usually defined as a zero-mean Gaussian random variable N(0, σ). It is worth mentioning that
the antenna in the proposed system is assumed to be omnidirectional.

Rewriting Equation (1), the distance d between the reader and the tag can be written as:

d = d0·10
A−PRX+N0

10η . (2)

Shadowing and multipath effects are severe on RSSI ranging at long distances due to noise factor
in the power part of Equation (2). In other words, it is more accurate to estimate the distance if the
power of the received signal is higher than estimating the distance at lower RSSI.
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3.3. Inertial Sensor Model

In our scheme, we utilize inertial sensor modules in the tags to improve the localization
accuracy. In the Inertial Navigation System (INS) [17], IMU is used to estimate a tag’s location
from a given reference point. The sensor is used to estimate the orientation (heading) from that
reference point. However, the location error of the IMU usually accumulates, leaving the sole use of
inertial sensors impractical.

To model the INS sensor estimated location, accumulated error per displacement within a time
period ∆t is presented based on errors in the sensor which output the degrees, the gyroscope which
outputs the angular velocity of the object, and the accelerometer which outputs the linear acceleration.
Accordingly, if the current two-dimensional location is Pi at time t, the next estimated location, Pi+1,
at t + ∆t can be given as

P(t + ∆t) = P(t) + dis + dise, (3)

where dis is the mean displacement vector calculated for ∆t, and dise is the displacement error, including
sensor biases, which is a function of angular velocity and linear acceleration errors. Figure 1 illustrates
the inertial tag displacement model.
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As the inertial error reduction is beyond the scope of this paper, the error is numerically modeled
based on the results reported in [19].

4. Proposed Solution

4.1. Crowdsourcing Scheme

Our approach suggests that in dynamic environments, the available crowdsourcing in terms of
mobile and fixed readers, along with tags’ memories, can be leveraged to provide localization service.

Given a set of N tags and a set of M readers, when a reader Rm (m ∈ {1, 2, . . . M}) detects a tag
Tn (n ∈ {1, 2, . . . N}) successfully, it generates a detection event containing time and range information
about the tag with respect to the reader. Each reader adds the event to a Detections table in the tag’s
memory, and these events are subsequently used to localize the tag.

At any tag detection, the reader creates and then updates two types of information:

a. Detections table, shown in Table 1, contains temporal and spatial information about a tag Tn with
respect to reader Rm. Such information is considered the raw information about a tag’s vicinity
to a specific reader at a given time. The number of entries in Detections table is denoted by k.

b. Absolute Tag Location (ATL) table, shown in Table 2, contains the estimated locations of a tag Tn.
Each location is identified by its estimation time.

c. Tag Displacement Vector (TDV) table contains the distance vectors that are measured based on
inertial sensors (IS) records. TDV contains k − 1 tag displacement vectors between every two
subsequent reader detections.
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Table 1. Schema of a Detections table.

Field Description

time The time at which a Reader Rm detects tag Tn and creates the detection record.

position The 2D position of the Reader Rm at time of detection is represented by relative x, y coordinates.

distance The tag to Reader distance, measured using RSSI.

Table 2. Schema of an Absolute Tag Location table.

Field Description

time The time at which a Reader Rm estimates the location of tag Tn based on the tag’s detection information.

location The estimated location of Tn, is represented by x, y coordinates.

Readers scan the surrounding vicinity to detect tags in their proximity, fetch Detections, ATL,
and TDV tables, in addition to IS records. If enough detection entries are available to perform
trilateration, the tags’ location is estimated, and tables in the tag’s memory are updated.

By this schema, tags’ memories are always updated once detected by Readers. For each successfully
identified tag Tn by a given reader Rm, the reader creates a detection record in the memory of Tn.

The tables in the tag’s memory allow the reader to estimate the tag’s current location. Note that
the location estimation algorithm is performed by readers. Tags function is limited to inertial
sensors information recording. Location information processed by the reader is then reported to
a central database (online or offline), which is accessible by a user that is interested in the location of
a specific tag(s).

4.2. Inertial-Based Shifting Trilateration (IBST) Technique

Typically, most distance-based localization techniques assume that the measured spatial
information, even those from mobile anchors, is synchronous and sufficient to localize objects.
Thus, they estimate the object position based on the intersection of the given spatial information (i.e.,
trilateration, bounding box, etc.). In dynamic reader deployment environments, this assumption may
not be applicable, which results in blind spots where no location estimation is possible. In fixed and
pre-deployed reader environments, high-density reader deployment will be needed to ensure full
coverage of the targeted area.

Inertial-Based Shifting Trilateration (IBST) is proposed to overcome insufficient spatial information
(i.e., non-intersecting ranges from three or more readers is available). In IBST, once new ranging
measurements by RSSI are available (i.e., once a tag is detected by a reader), we expand the range
around the previously calculated location(s) based on the tag’s IS records. Next, we introduce IBST
shifting process and algorithm.

4.3. IBST Process

In IBST, the range from the reader to a detected tag is considered a circle that is centered at the
Reader position. The radius of such a circle is the mapped distance from the RSSI channel model and is
bounded by the maximum reading range of the reader.

IBST makes the previously estimated location(s) centers for circles with radii based on the recorded
inertial sensor readings upon current detection. Ultimately, to apply trilateration, at least two previous
estimated locations in addition to the current detection range by the reader are needed.

Definition 1. (detection set): Given a set of K Readers, the detection set of a tag i is the spatial information
measured simultaneously or consecutively, is denoted by lik, where k ∈ {K}, and is ordered chronologically in the
tag’s memory.
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Each element lik in the Detections table of tag i is represented by {tk, Rk(x,y), dk}, which are defined
in Table 1 as detection time, reader position, and distance (range). The tag can be localized once it has
three entries in its Detections table.

Theorem 1. If a given tag i with a known initial location Li with a relative two-dimensional coordinates (xLi ,
yLi) has been detected at a range of d1 from a reader R1 of a known two-dimensional coordinates (x1, y1), then at
most, two points (P1 and P2) of the tag’s absolute location can be determined.

Proof. As long as the inertial sensor displacement vector vLi→p, from the point Li to the moment of
being detected by R1, is available, the circle centered at (xLi , yLi) with a radius of s1 = ‖vLi→p‖ and the
circle centered at (x1, y1) with a radius of d1 = ‖vR1→p‖ will intersect. If vLi→p is perpendicular on the
circle around R1, one intersecting point will result; otherwise, two intersecting points will result as
‖vLi→p‖+ ‖vR1→p‖ > ‖vLi→R1‖. An illustration is shown in Figure 2. �
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Theorem 2. If a given tag i of a known initial location Li with a relative two-dimensional coordinates (xLi , yLi)

has been sequentially or simultaneously detected at ranges of d1 and d2 from readers R1 and R2, respectively
(the relative two-dimensional coordinates of the readers are (x1, y1) and (x2, y2)), then, one solution of the
tag’s absolute location can be determined.

Proof. As long as the inertial sensor displacement vectors vLi→p and vp→q are available, trilateration of
the circle C1 centered at (xLi , yLi) with a radius of s3 = ‖vLi→p + vp→q‖, the circle C2 centered at (x1,
y1) with a radius of s2 = ‖vp→q‖, and the circle C3 centered at (x2, y2) with a radius of d2 = ‖vR2→q‖

will intersect in a single point Q, which is a point on all three circles if the intersection points between
C1 and C2 are not symmetrical around the vector passing through the initial location (xLi , yLi) and
current reader (x2, y2). An illustration is shown in Figure 3. �

It is worth mentioning that in a case of collinearity in the shifted readers’ centers, a unique solution
of the tag’s location may not be calculated and further detection(s) would be required. Figure 4
illustrates the collinearity effect on localization after two detections from the initial location.
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4.4. IBST Algorithm with Ideal Inertial-Magnetic and Range Readings

IBST is executed, as in Algorithm I, to maintain location estimation in fixed and dynamic reader
settings. The input is a number of asynchronous detections and the output is the updated Absolute
Tag Location (ATL) tables. In Algorithm I, inertial sensors readings are stored in the tags’ memories
between subsequent detections from readers (lines 2–4). Once the tag is detected by a reader, the reader
reads the Inertial Sensors (IS) records and updates the Detections table with the time of detection,
reader’s location, and range between the tag and the reader (lines 5–6). If the tag has been detected
previously by another reader, the current reader calculates the displacement vector from the previous
reader to the current one (lines 7–9).

Once the tag with a known initial location has three entries in the Detections table, trilateration
equations are applied to calculate the tag’s current location. The current location is the intersection of
three circles: the two circles around latest two Absolute Tag Location (ATL) entries (with radii that
are based on the shifts from inertial sensor vectors) and the circle around the current reader (with
estimated range as the radius). Once the location is calculated, the oldest detection entry has no
bearing since next detection will be the new third detection (line 15). If the trilateration results in one
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location (unique solution), the readings are not collinear, so the location is reported to central database,
and the ATL table in the tag is updated (lines 16–18). Otherwise, the three circles intersect in two
points (i.e., no unique solution), and further reading(s) would be needed to calculate a unique solution
(lines 19–20). If two entries are in the Detections table (including the current detection), the reader
calculates the intersection(s) between the circles around latest ATL entry (with radius that is based on
the shifts from inertial sensor vectors) and the circle around the current reader (lines 22–25). If less than
three entries are in the Detections table, including the current reader, the vector between the current
detection and the previous one is stored in the Tag Displacement Vector (TDV) table, and further
detection(s) are required to perform trilateration (lines 26–27).

Algorithm I. Ideal Inertial-Based Shifting Trilateration.

Input: Asynchronous readers’ detections, raw inertial sensor data
Output: Updated Absolute Tag Location (ATL)
1: initialize tag memory: empty Detections, IS, TDV, and ATL tables
2: while (tag is not detected)
3: Do record data from inertial sensors in IS table
4: End While
5: Read Detections and IS tables // a tag is detected
6: Update Detections table with lnk
7: If (Detections table has k > 0 entries)
8: Calculate displacement vector(s) v(k−1)→k based on IS table
9: End If
10: If (Detections table has k = 2) // check for enough detections to perform trilateration
11: C0 = Circle around ATL0 coordinates in ln0 by a radius of ‖v0→1 + v1→2‖

12: C1 = Circle around ATL1 coordinates in ln1 by a radius of ‖v1→2‖

13: C2 = the circle around the current reader by a radius of RSSI mapped detection range
14: Calculate the current absolute tag location by trilateration of C0, C1, and C2

15: Delete ln0 and v0→1; // delete first entry in Detections and TDV tables
16: If (solution is unique)
17: Report current ATL (ATLi) to a central database server
18: Update ATL table; go to 2 // add the new ATL to previous ATL entries
19: Else
20: go to 2
21: End If
22: Else (Detections table has k = 1)
23: C1 = Circle around L2 coordinates in ln2 by a radius of ‖v1→2‖

24: C2 = the circle around the current reader by a radius of RSSI mapped detection range
25: Calculate the current absolute tag location(s) by intersecting C1 and C2

26: Else
27: Update Detections table with lnk and TDV table with v(k−1)→k, go to 2
28: End If

Note that Algorithm I shows how the IBST works under the assumptions of perfect estimation of
range and inertial readings. Algorithm I (ideal IBST) is modified to Algorithm II (practical IBST) to
account for errors in inertial sensors, in addition to RSSI ranging errors.

4.5. IBST Algorithm with Incorporated Errors in Inertial and Range Readings

As mentioned in Section 3, the drift in inertial sensor readings will result in a margin of error
which renders the estimated location useless. RSSI ranging, including its error margin, will provide
a continuous reckoning of the estimated absolute location and will harness inertial sensor drifting error.
Algorithm II below is a modified version of Algorithm I to accommodate such drifts in IS readings and
RSSI ranging margins.
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Similar to Algorithm I, once a tag is detected, its Detections table is updated with time, reader’s
location, and two ranges of information, one based on mean RSSI and the other on RSSI and one
standard deviation in noise (σr) (see line 6).

In Algorithm I, the tag location calculation was based on ideal IS readings (i.e., exactly as the
actual tag trajectory); hence, trilateration will result in one unique solution as shown in Figure 3 (recall
that collinearity will result in two solutions.). With drifting errors in IS, trilateration may result in two
solutions (even when readers are not collinear) or no solution at all. Therefore, once a tag is detected
by the first reader, the first reader calculates the intersection between the two circles with centers of Li
and R1 and radii of s1 and d1, respectively. The resulting intersection points are at most two and both
are considered possible ATLs and denoted as ATL1,1 and ATL1,2, as illustrated in Figure 5. After the
first reader detection and updating the ATL table with all possible ATLs, the tag records the inertial
sensor information until the next reader detection.

Once the tag is detected by the second reader at an estimated distance of d2 from its center
coordinates, the reader fetches previous entries in the Detections table, ATL table, and IS table.
Based on the entries in the three tables, the reader defines three sets of circles:

1. Circle C0 with its center at the second latest ATL(s) and radius of s0 = ‖v1→2 + v2→3‖,
2. Circle C1 with its center at latest (i.e., most recent) ATL(s) and radius of s1 = ‖v2→3‖, and
3. Circle C2 with its center at the reader R2 and radius of d2.

Then R2 calculates the intersection points between circles C1 and C0. As shown in Figure 5,
the latest ATLs are ATL1,1 and ATL1,2, and the second, latest ATL is ATL0 = Li. Each circle in C1

may intersect with C0 at most in two points. For instance, the circle C1 around ATL1,1 intersects
with the circle C0 around ATL0 in two points denoted by the points A1 and A2. Similarly, C1 around
ATL1,2 and will intersect with C0 around ATL0 at the points A3 and A4. As will be described shortly,
these intersection points (i.e., A1 . . . A4) will be the means for selecting the next ATL(s).

R2 also calculates the intersection points between C1 and C2. The intersection points (noted as B
points) are the candidates for the current ATL (i.e., ATL2). In case of two points in the latest ATL (as in
the example in Figure 5 where latest ATL has ATL1,1 and L1,2), three possible cases may occur:

1. C2 intersects with one of the C1 circles (e.g., C1_2 as shown in Figure 5). In this case, ‖Ai − B j‖ will

be calculated for all A’s on C1_2 and B’s on C2. Then, B with min
(
‖Ai − B j‖

)
will be considered

ATL2.
2. C2 intersects with two C1 circles (e.g., C1_1 and C1_2 circles shown in Figure 6). In this case,

‖Ai − B j‖will be calculated for all A’s on C1_1 and B’s on C2. Then B with min
(
‖Ai − B j‖

)
will be

considered ATL2_1. Similarly, ‖Ai − B j‖ will be calculated for all A’s on C1_2 and B’s on C2. Then,
B with min

(
‖Ai − B j‖

)
will be considered ATL2_2. Since two points result from the intersection of

such a case, ATL2_1 and ATL2_2 replace ATL1,1 and ATL1,2.
3. C2 does not intersect with any of C1 circles as shown in Figure 7. ATL2 is considered the

intersection point between C2 and the line which connects A with the minimum distance to the
reader R2.

In the case of no intersection between C2 and C1 (third case shown in Figure 7), the resultant ATL
will be at a longer displacement from previous ATL than vATLi−1→ A. Therefore, the displacement vector
in the tag is updated by vATLi−1→ ATLi . An example of the displacement vector update is depicted in
Figure 8. The update will ensure that the displacement vector is on the borders of the current detecting
reader R2 and the precious reader R1.
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Figure 7. Example of the updating process of ATLi−1. (a) Selection of feasible point in C (b) based on
the selected C (C2 in this example = ATLi); ATLi−1 is updated by ATLi- v2→3 denoted by the yellow star.

Algorithm II. Inertial-Based Shifting Trilateration.

Input: Asynchronous readers’ detections, raw inertial sensor data
Output: Updated Absolute Tag Location (ATL)
1: initialize tag memory: empty Detections, IS, TDV
2: while (tag is not detected)
3: Do record data from inertial sensors in IS table
4: End While
5: Read Detections, IS, and TDV tables // a tag is detected
6: Update Detections table with current detection
7: If (Detections table has 2 entries)
8: Calculate displacement vector(s) v0→1 based on IS table
9: C0 = Circle around ATL0 coordinates in ln0 by a radius of ‖v0→1‖

10: C1 = the circle around the current reader by a radius of RSSI mapped detection range
11: Calculate the set of intersection points between C0 and C1

12: All intersection points I are reported to a central server as ATL1_i, i ∈ I
13: Else if (Detections table has 3 entries) // check for enough detections to perform IBST
14: Calculate displacement vector(s) v1→2 based on IS table
15: C0 = Circle around ATL0 coordinates in ln0 by a radius of ‖v0→2‖

16: C1 = Circle around ATL1 coordinates in ln1 by a radius of ‖v1→2‖

17: C2 = the circle around the current reader by a radius of RSSI mapped detection range
18: Calculate the set of intersection points A’s between C0 and C1

19: Calculate the set of intersection points B’s between C1 and C2

20: If (there are 2 intersections between C1 and C2)
21: ATL2 = B. of min (‖A1 − B1‖, ‖A1 − B2‖, ‖A2 − B1‖‖A2 − B2‖),
22: Else if (there are 4 intersections between C1 and C2)
23: ATL2_1 = B. of min (‖A1 − B1‖‖A1 − B2‖‖A2 − B1‖‖A2 − B2‖),
24: ATL2_2 = B. of min (‖A3 − B3‖‖A3 − B4‖‖A4 − B3‖‖A4 − B4‖),
25: Update Detections table with ln2 and TDV table with v1→2, go to 2
26: Else (there is no intersection between C1 and C2)

27: Find vector from
→

Di = Ai → R2, find Di = ‖Ai −R2‖ for i=1 to 4

28: ATL2 = R2 + d2.
→

Di of min Di,
29: End if
30: Report ATLi to a central database server
31: Update Detections table with ln3 and TDV table with v1→2, go to 2
32: Else
33: go to 2
34: End If



Sensors 2019, 19, 5204 12 of 19

Sensors 2018, 18, x FOR PEER REVIEW  11 of 19 

 

 

Figure 7. Example of the updating process of 𝑨𝑻𝑳𝒊−𝟏. (a) Selection of feasible point in C (b) based on 

the selected C (𝑪𝟐 in this example = 𝑨𝑻𝑳𝒊); 𝑨𝑻𝑳𝒊−𝟏 is updated by 𝑨𝑻𝑳𝒊- 𝒗𝟐→𝟑 denoted by the yellow 

star. 

In the case of no intersection between 𝐶2 and 𝐶1 (third case shown in Figure 7), the resultant ATL 

will be at a longer displacement from previous ATL than 𝑣𝐴𝑇𝐿𝑖−1→ 𝐴 . Therefore, the displacement 

vector in the tag is updated by  𝑣𝐴𝑇𝐿𝑖−1→ 𝐴𝑇𝐿𝑖
. An example of the displacement vector update is 

depicted in Figure 8. The update will ensure that the displacement vector is on the borders of the 

current detecting reader 𝑅2 and the precious reader 𝑅1. 

 

Figure 8. Example of the updating process of displacement vector when 𝐶2 and 𝐶1 do not intersect. 

The updated vector is  𝑣𝐴𝑇𝐿1,2→ 𝐴𝑇𝐿2
 (in blue), and inertial sensor reading vector is 𝑣𝐴𝑇𝐿1,2→ 𝐴3

 (in red). 

Algorithm II. Inertial-Based Shifting Trilateration  

Input: Asynchronous readers’ detections, raw inertial sensor data 

Output: Updated Absolute Tag Location (ATL) 

1 initialize tag memory : empty Detections, IS, TDV 
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Figure 8. Example of the updating process of displacement vector when C2 and C1 do not intersect.
The updated vector is vATL1,2→ ATL2 (in blue), and inertial sensor reading vector is vATL1,2→ A3 (in red).

In Figure 9, Algorithm II is applied to a scenario in which traditional trilateration is not feasible
since there is no intersection between any three readers. The tag track is set to pass through the four
readers R1 to R4, as in Figure 9a. Note that depending solely on ranging or inertial sensors will yield
no answer (in RSSI ranging) or high error margins from actual tag track (in inertial sensors readings).
In Figure 9b, it is assumed that the tag has a known initial location (i.e., ATL0) and moves from the
initial location to R1, where the intersection points ATL1,1 and ATL1,2 (the red diamond symbol) are
selected based on lines 7–12 in Algorithm II. When the tag is detected by R2 as shown in Figure 9c,
three entries will be in the tag Detections table and no intersection between circles C2 and C1 (lines
26–28 in Algorithm II), resulting in ATL2 and ATL1,1 being replaced by ATL1. In Figure 9d,e, there is
an intersection between circles C2 and C1, and lines 13–21 of Algorithm II are executed. The actual
track and the resultant track by IBST are marked, respectively, by green and red in Figure 9f; and for
comparison, Figure 9f shows the drift in inertial sensor readings (in purple) after four detections.
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Figure 9. Inertial-Based Shifting and Trilateration (IBST) example of a tag that moves in a path which
intersects the four readers R1 to R4.

5. Performance Evaluation

In this section, we analyze the performance of our proposed IBST system through extensive
simulations and validate the proposed scheme by comparing it with the following two previous
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methods: (1) RSSI localization system, which estimates the object’s position based on the trilateration
of RSSI values only [20]; and (2) INS system, which the results from the inertial and magnetic sensors
are used to determine tag location [19]. As will be shown, our proposed system gives precise and
stable localization results, even in sparse and random reader deployment scenarios.

5.1. Simulation Environment and Parameter Setting

In our numerical evaluation, we consider N mobile readers in an area of 100m by 100m. The tagged
object moves in two different paths within this track area. Readers are assumed to have a maximum
detection range of 20m. The simulation is executed under sparse and dense deployments of random
readers, with 5 and 20 readers, respectively. In addition, two paths are tested as tracks for the tag
a rectangular back-and-forth track and a circular track.

The rectangular back-and-forth track starts at the point (10,20) meters and the circle track starts
at (50,20) with respect to a relative Cartesian origin at the bottom left corner of the track area as in
Figure 10a,b and Figure 11a,b. The starting point is assumed to be stored in the tag memory; hence,
it will be known to the readers once the tag is detected. The values of σa and σv in the covariance matrix
Qk of the inertial sensors readings process noise are set to 0.1 m/s2 and 0.1 m/s [19]. The log-normal
shadowing path loss model is used as the signal propagation model and the value of the noise variance
in RSSI (σRSSI) is set to two meters with path loss exponent of 3. The selection of the above values is
based on the typical settings of low cost IMUs under indoor/outdoor walking speed conditions [19].
As the main focus of this paper is to provide an estimation of the absolute tag location based on
inertial sensors readings and overlapped and non-overlapped readers, providing more accurate RSSI
measurements or precise inertial sensors readings is beyond the scope of this work.

5.2. Simulation Results

The first scenario is the circular track of the tag with 500 steps to return to the starting x-y coordinate
of (50,20). We consider a dense reader deployment of 20 readers in the track area. The readers are
deployed randomly, and the tag advertises itself continuously to surrounding readers; if the tag is
detected by three or more readers, RSSI location can be estimated; otherwise, RSSI trilateration outage
is considered (i.e., location cannot be estimated). The tag in IBST will also advertise itself continuously
to the readers, however, as in Algorithm II, the detection by one or more readers will be enough to
provide a location estimation.

Figure 10a shows a scenario of dense and random deployment of 20 readers within a 100 m2

localization area. The actual circular track (in purple) and the tracks based on IMU, RSSI, and IBST
after 500 steps. Note that the drifting in the IMU readings is significant after two turns, and with
no referencing mechanism, the drift from the actual location will continue to accumulate. RSSI is
following the actual track whenever the track passes through three readers simultaneously. If an RSSI
localization outage occurs, once the tag passes by three or more readers again, the line connecting
between the current estimated location and the one before the outage is considered the track during
the outage. IBST track, on the other hand, is continuously referenced to the estimated intersection
points due to the dense coverage of the readers.

In Figure 10c, the mean error between the actual track and the track by RSSI, IMU, and IBST
is plotted. IMU error is accumulating due to the drift in inertial sensor readings, which causes
an incremental, yet cyclic, error as the number of steps increases. RSSI track error is non-cumulative;
however, the actual track is not always passing by points where at least three readers’ ranges exist.
Note that when RSSI trilateration is not available, a straight line is used to connect the last available
and next available locations, causing a deviation from the actual track, which in turn is represented in
periodic error areas. IBST error is none-cumulative and not constrained by three readers simultaneous
detection; hence, it is the lowest with continuous update to the displacement vector to follow the actual
track. The average mean errors for IMU, RSSI, and IBST from the simulation scenario in Figure 10c are
11.47 m, 3.66 m, and 1.43 m, respectively.
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Similarly, Figure 10b shows a sparse and random deployment of 5 readers, the tracks from inertial
sensors only, an actual track, and IBST. In this deployment scenario, the drifting in the IMU readings is
comparable to the one in Figure 10a as IMU readings are not influenced by the number of readers.
RSSI, on the other hand, had no estimated locations as the actual track does not pass by three or more
readers simultaneously. As a result, no track can be estimated based on RSSI trilateration. Conversely,
more deviation is observed in the IBST track from the actual track. This is due to the lower availability
of readers, which results in longer inertial sensors readings before finding an intersection point to
represent the estimated actual tag location. The effect of lack of any point within the test area that is
covered by three readers or more on the performance of IBST is less severe than the RSSI-based track.
In fact, the performance of IBST is significantly superior as shown in Figure 10d, with much lower
error than both RSSI and IMU. The average mean errors for IMU, RSSI, and IBST from the simulation
scenario in Figure 10d are 10.91 m, 32.84 m, and 2.34 m, respectively.
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Figure 10. Circular track scenario with dense and sparse and random reader deployment (a) The
resulting inertial measurement unit (IMU), RSSI, and IBST tracks in dense deployment. (b) The resulting
IMU, RSSI, and IBST tracks in sparse deployment. (c) Location error of IMU, RSSI, and IBST from
actual track in Figure 10a. (d) Location error of IMU, RSSI, and IBST from actual track in Figure 10b.
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Another example of a localization scenario is depicted in Figure 11a was a dense and random
deployment of 20 readers within 100 m2 localization area. The track starts at the point (10,20) and is
rectangular with sharp turns to emphasis the effectiveness of IBST over IMU. Note that the drifting in
the IMU readings is significant after two turns. Between steps 240 and 290, outage in RSSI localization
occurs, causing an increased localization error as shown in Figure 11c. The average mean errors for
IMU, RSSI, and IBST from the simulation scenario in Figure 11c are 10.25 m, 5.77 m, and 2.40 m,
respectively.

In Figure 11b, a scenario of sparse and random deployment of 20 readers within the localization
area. In this scenario, no points on the actual track are covered by three or more readers; hence, RSSI is
in an outage for all steps in the track as the estimated location is the start point (10,20). This is reflected
in high localization error as shown in Figure 11d. The error of IBST track is higher than the one in
Figure 11c as this scenario suffers from the lack of more than three readers to enhance the location
estimation. Nevertheless, the mean error is significantly lower than IMU and RSSI. The average
mean errors for IMU, RSSI, and IBST from the simulation scenario in Figure 11d are 10.47 m, 51.69 m,
and 1.69 m, respectively.
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Figure 11. Rectangular back-and-forth track scenario with dense and sparse and random reader
deployment (a) the resulting IMU, RSSI, and IBST tracks in dense deployment. (b) The resulting IMU,
RSSI, and IBST tracks in sparse deployment. (c) Location error of IMU, RSSI, and IBST from actual
track in Figure 11a. (d) location error of IMU, RSSI, and IBST from actual track in Figure 11b.
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The above circular and rectangular tracks were executed 1000 times each for:

(a) 5, 10, 20 readers
(b) 5, 20 m reader ranges

The mean error in meters (for 1000 runs) in addition to standard deviation of such mean are
provided in Tables 3 and 4, for circular and rectangular tracks, respectively. The superiority of the
IBST technique is evident. The number and range of readers affect the accuracy of both RSSI and
IBST. However, RSSI is more prone to localization errors in small and large numbers of readers with
high variance around the mean error. This is because of the dependency on passing through an area
covered by three or more readers. IBST, on the other hand, is less dependent on the number and range
of readers. The reason behind this stability of IBST mean error is that passing by a single reader will
provide a location that is near the actual track. IMU is independent of the number or range of readers.
However, the drifting in IMU readings without referencing causes a consistent high error in both
track scenarios.

Table 3. Average error (in meters) after 103 runs of circular track.

Reader Range ↓ Readers Number ↓ Location Estimation Method→ RSSI IMU IBST

5 m

5
Mean Error 31.9257 11.3720 5.5248

σerror 0.0000 1.5261 2.6642

10
Mean Error 31.9257 11.2789 3.0226

σerror 0.0000 1.6527 1.9542

20
Mean Error 31.8937 11.1036 2.2547

σerror 0.2023 1.1713 1.0244

20 m

5
Mean Error 31.3701 10.8083 2.3412

σerror 1.4106 1.5968 0.7357

10
Mean Error 25.2819 11.3305 1.8249

σerror 5.7351 1.4866 0.5001

20
Mean Error 6.4204 11.6785 1.3353

σerror 4.2260 2.1599 0.2438

Table 4. Average error (in meters) after 103 runs of rectangular track.

Reader Range ↓ Readers Number ↓ Location Estimation Method→ RSSI IMU IBST

5 m

5
Mean Error 51.7140 10.2056 6.3736

σerror 0.0002 1.5320 2.8419

10
Mean Error 51.6840 9.6237 4.0300

σerror 0.0005 1.0847 1.1185

20
Mean Error 49.4478 10.2517 3.5279

σerror 8.0887 1.5405 1.5634

20 m

5
Mean Error 39.5628 9.5347 2.0329

σerror 14.9362 1.6884 0.9439

10
Mean Error 18.2600 10.0687 1.8215

σerror 4.9584 1.4449 0.4552

20
Mean Error 5.7765 10.1530 1.6174

σerror 4.7883 1.4679 0.1680
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We would like to stress here that IBST is a location estimation algorithm that combines asynchronous
inertial and range readings to estimate the location; IBST is not an optimization algorithm of ranging
nor inertial sensor readings. Therefore, any improvement in ranging methods can replace RSSI in
this work (e.g., AoA, TDoA, hybrid RSSI-TDoA, etc.). Similarly, any enhancement in inertial sensors
accuracy or drift-reduction algorithms can replace the “IMU” results. Note that any reduction in
inertial sensor or ranging errors will improve the accuracy of IBST, as well.

6. Conclusions

Solutions proposed in the literature for of object localization require a minimum number of
simultaneous range information about the object at any given time. These minimum “sufficient”
readings are not always available, especially in IoT dynamic settings where providing centralized
and fixed infrastructure is infeasible. In this paper, we proposed a novel cooperative tag-localization
system called Inertial-Based Shifting and Trilateration (IBST). In IBST, we leverage crowdsourcing
to estimate RFID tag locations in both indoor and outdoor environments, even at the absence of
simultaneous reader detections to perform trilateration. IBST does not require any processing by the
low power tags, maintaining the system scalability. In our proposed system, crowdsourcing fixed
or mobile readers detect battery-assisted tags attached to mobile objects, read their current memory,
write detection information on these tags, and report the detected tags’ information to a backend
server responsible for users’ queries about objects of interest. IBST uses asynchronous detection
information and internal inertial sensor information to enhance localization when the concurrent
detection information is not sufficient to localize a tag. During any tag detection, IBST maintains into
the tag’s memory: temporal and spatial information w.r.t. itself, Absolute Tag Location (ATL) identified
by time of calculation, and Tag Displacement Vector (TDV) that are measured based on inertial sensors
(IS) records. At insufficient spatial information, IBST shifts (expands the radius) asynchronous RSSI
measures based on the tag’s IS records and the recent detection and uses those shifted measures,
along with the recent detection, to localize this tag.

We evaluate IBST’s performance through extensive simulations using MATLAB, and our findings
show that IBST outperforms other techniques in sparse and random reader deployment scenarios.
IBST can consistently estimate location and give precise and stable localization results in the absence
of synchronous detection information, typical scenarios in IoT settings. As future work, we plan to
account for non-circular antenna radiation patterns at tags and readers and to consider AoA and TDOA
ranging at readers. Furthermore, the incorporation of magnetic field sensors (in addition to inertial
sensors) to assist in determining displacement vectors orientation is a future direction to enhance
localization accuracy.
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