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Abstract: The maximum power point tracking (MPPT) technique is often used in photovoltaic (PV)
systems to extract the maximum power in various environmental conditions. The perturbation and
observation (P&O) method is one of the most well-known MPPT methods; however, it may face
problems of large oscillations around maximum power point (MPP) or low-tracking efficiency. In this
paper, two reinforcement learning-based maximum power point tracking (RL MPPT) methods are
proposed by the use of the Q-learning algorithm. One constructs the Q-table and the other adopts the
Q-network. These two proposed methods do not require the information of an actual PV module
in advance and can track the MPP through offline training in two phases, the learning phase and
the tracking phase. From the experimental results, both the reinforcement learning-based Q-table
maximum power point tracking (RL-QT MPPT) and the reinforcement learning-based Q-network
maximum power point tracking (RL-QN MPPT) methods have smaller ripples and faster tracking
speeds when compared with the P&O method. In addition, for these two proposed methods, the
RL-QT MPPT method performs with smaller oscillation and the RL-QN MPPT method achieves
higher average power.

Keywords: maximum power point tracking (MPPT); photovoltaic (PV) system; reinforcement
learning; Q-learning; Q-network

1. Introduction

Sustainable energy such as solar energy is often seen as one of the solutions to reduce pollution
caused by thermal power generation. A photovoltaic (PV) module is able to convert solar energy
into electrical energy without generating greenhouse gases and coal dust, and it is wildly used since
the deployment is relatively easy compared to other sustainable energy sources such as tidal energy
and biogas energy. However, low efficiency is the main drawback of a PV system. Therefore, several
maximum power point tracking (MPPT) methods are proposed in order to extract maximum power
from the PV module. The perturbation and observation (P&O) method is one of the most common
MPPT methods and can be implemented model-free [1,2]. However, a large size perturbation setting
will lead to large oscillations near the maximum power point (MPP), while a small step size perturbation
setting will slow down the tracking speed. Therefore, several adaptive methods are proposed to
improve the P&O method [3–5]. The adaptive P&O method basically modifies the step size based
on the amount of the power difference between two perturbations. However, to achieve the best
performance, the ratio between the step size and power difference needs to be tuned according to
the actual model. Additionally, several fuzzy P&O methods are proposed to perform the MPPT [6,7].
Although fuzzy logic control is a model-free control method, expert knowledge is required when
designing the fuzzy parameters.
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Capable of performing model-free control, reinforcement learning (RL) [8] is widely used in
solving control problems because it can learnt by interacting with the system without prior knowledge
of the system model. There are two similar MPPT methods based on RL for PV system proposed in [9]
and [10], and a Markov decision process (MDP) is used as the framework to describe the problem.
The states are defined by the moving direction and the position of the operating point relative to the
MPP. The action is the choice of variable step sizes, and the reward is defined as the power difference
before and after the action is taken. Kofinas et al. [11] also proposed a solar MPPT method based on
RL. The discretized current and voltage value and a parameter of judging whether the operating point
is at MPP are used as the system description. The perturbation step size can be chosen appropriately
according to the interacting experience with the system. The MPPT method in [11] is similar to one of
the proposed methods, reinforcement learning-based Q-table maximum power point tracking (RL-QT
MPPT), however, it is designed to be learnt online, which causes several oscillations during the tracking
process. In addition, the above mentioned solar MPPT methods approached by RL are all implemented
by constructing the Q-table, which may lead to the problem of generalization representation. Using a
neural network as an approximation of the Q-table was first introduced by [10], and the experience
replay technique is also proposed by [12]. Mnih et al. [13] proposed a fixed target Q-network technique
to stabilize the training process. In this paper, two RL MPPT methods are proposed by using the
Q-learning algorithm. One constructs the Q-table (RL-QT MPPT) and the other adopts the Q-network
(RL-QN MPPT). These two proposed methods do not require the information of an actual PV module
in advance and can track the MPP through offline training in two phases, the learning phase and the
tracking phase. From the simulation and experimental results, it is expected to outperform the P&O
method since the step size can be chosen according to the learned perturbation experience.

At first, this paper will introduce the model of the PV module in Section 2. Then the P&O method
and proposed reinforcement learning-based MPPT methods are described in Section 3. In Section 4,
the simulation and experimental results show the comparison of the traditional P&O method and the
proposed methods to prove its performance. Finally, the conclusion is given in Section 5.

2. Model Description of PV Module

When a PV module is exposed to the sunlight, the electrons inside it will absorb the energy and
jump to a higher energy state. Some free mobile electrons will be released through a connected wire
and thus form a current. This phenomenon is known as the photovoltaic effect [14].

A solar cell is a device to generate electrical power based on the photovoltaic effect. Figure 1
shows the single-diode model [15] of a solar cell, where Iph is the photo-generated current, IDS is the
current through the diode Ds, VDS is the voltage across Ds. Ish is the current through shunt resistor Rsh,
and I is the current through series resistor Rs. In addition, I and V are the output current and output
voltage of the solar cell, respectively.

Figure 1. Single-diode model of a solar cell.

According to Kirchhoff’s current law, the output current can be expressed as

I = Iph − IDS − Ish = Iph − IDS −
V + IRS

Rsh
. (1)
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The current IDS can be expressed by the Shockley equation below:

IDS = I0

(
e

qVDS
ηKT − 1

)
= I0

(
e

q(V+RSI)
ηKT − 1

)
(2)

where I0 represents the reverse saturation current, q is the elementary charge, K is Boltzmann’s constant,
T is the temperature and η is the diode ideality factor. Note that η = 1 ∼ 2 and η = 1 for an ideal
diode [16].

Substituting (2) into (1) yields the I-V characteristic expression of a solar cell model shown as

I = Iph − I0

(
e

q(V+RSI)
ηKT − 1

)
−

V + IRS
Rsh

. (3)

The photo-generated current Iph is affected by solar irradiance S and environment temperature T
as below:

Iph =
S

1000
[Iscr + Ki(T − Tr)] (4)

where Iscr is the short circuit current, Ki is the temperature coefficient of the short circuit current, and Tr

is the reference temperature.
A PV module usually consists of several solar cells in series or in parallel, i.e., composed of M

rows and N columns of solar cells as depicted in Figure 2. The output voltage Vsm of M solar cells in
series and the output current Ism of N solar cells in parallel are respectively given as

Vsm = MV (5)

Ism = NI. (6)

Figure 2. Equivalent circuit of a photovoltaic (PV) module.

Substituting (5) and (6) into (3) yields:

Ism = NIph −NI0

e
q( Vsm

M +Rs
Ism
N )

ηKT − 1

− N
M Vsm − IsmRs

Rsh
, (7)

which is the I–V expression of an M×N PV module.
As described in (7), the I–V curve of a PV module is strongly affected by environmental factors,

including the variance of the solar irradiance and the module temperature. Figure 3a shows the I–V
curves with different temperatures under the same irradiance condition. As the temperature rises, the
curve moves left and vice versa. In addition, the plot of I–V curves under several distinct irradiance
conditions with a constant temperature is presented in Figure 3b. It is obvious that the escalation of
solar irradiance will cause a raise in the I–V curve, correspondingly. From Figure 3a,b, the maximum
power point changes as the irradiance and module temperature vary, thus the variance of irradiance
and module temperature will be considered in the proposed MPPT.
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Figure 3. I–V curves of a PV module with (a) different temperature and (b) different irradiance.

3. Maximum Power Point Tracking (MPPT) Control

As previously mentioned, the input impedance of the converter can be tuned by varying the
duty ratio. If a PV module’s output impedance is matched with the converter’s input impedance, the
maximum power can be extracted. As illustrated in Figure 4, the operating point of a PV module is the
intersection of the I–V curve and the load line. The purpose of maximum power point tracking (MPPT)
is to reach the operating point where the PV module has maximum power output. In this paper, the
MPPT is implemented by adjusting the duty ratio of the converter. The P&O method will be discussed
in Section 3.1, and the RL MPPT methods will be proposed in Section 3.2.

Figure 4. Load line and operating point.

3.1. Perturbation and Observation (P&O) Method

Figure 5 briefly illustrates the concept of the perturbation and observation method (P&O method),
which is one of the well-known tracking methods. At time t, a fixed-sized perturbation is performed
according to the measured power difference ∆Pt−1 and voltage difference ∆Vt−1. Then the change
of the power and the voltage will be observed. With a new power difference ∆Pt and a new voltage
difference ∆Vt, the system can be perturbed accordingly.

Figure 5. Concept of the perturbation and observation (P&O) method.

To drive the operating point toward the MPP, the system first measures the present power P(n)
and voltage V(n) and then calculates the difference of power and the difference of voltage. If ∆P > 0,
there are two cases, operating points A and B, as depicted in Figure 6a. To move toward the MPP, the
duty ratio should be decreased for point A with ∆V > 0, and increased for point B with ∆V < 0.
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Figure 6. (a) Positive power difference condition; (b) negative power difference condition.

On the other hand, if ∆P < 0, there are two cases, operating points C and D, as depicted in
Figure 6b. To move toward the MPP, the duty ratio should be decreased for point C with ∆V < 0,
and increased for point D with ∆V > 0.

3.2. Design of the Reinforcement Learning MPPT System

Sequential decision-making is a common problem in real life, for example, an infant trying to
walk by stretching a leg forward and move his body. By taking a series of actions, the infant will have
a chance to reach his goal (keep moving forward). The Markov decision process (MDP) provides a
systematic framework for describing this sequential decision-making problem. To solve an MDP, a
reinforcement learning (RL) method is proposed by [8]. Learning by interacting with the environment
is a human’s intuitive learning skill. When facing an unknown system, the human will interact with
it according to their own understanding of the system, and then receive feedback. This feedback
signal provides a criterion for judging how “good” or “bad” an action is under a specific circumstance.
The actions with better outcomes will have a larger chance to be chosen, i.e., they are reinforced, while
the actions with worse outcomes will have smaller chance of being done in the future.

With the description of RL provided above, the concept of the variable step size tracking method
based on RL is shown in Figure 7. The perturbation size can be chosen according to the observed
system state and the previous experiences. Once the perturbation is done, the system change including
the change of the state and the feedback signal will be observed and the interaction experience will
be learned.

Figure 7. The concept of reinforcement learning-based maximum power point tracking (RL MPPT).

To provide a detailed description of the RL MPPT, the background knowledge of RL will be
described from Section 3.2.1 to Section 3.2.5, including the description of the system, the interaction,
and the evaluation of the interaction experience. Finally, the design of the RL MPPT methods, including
the RL-QT MPPT method and the RL-QN MPPT method will be proposed in Section 3.3.

3.2.1. Markov Decision Process and Reinforcement Learning Problem

A Markov decision process (MDP) [17,18] consists of S, A, T, and R, where S represents the set
of environment’s state description, and A is the set of available actions the agent can take. T is the
transition function, which indicates the system’s probability distribution of jumping from any state to
all possible states after applying all available actions, and it is denoted as T : S×A× S→ [0, 1] . For
example, the probability of jumping from the state s ∈ S to state s′ ∈ S after applying the action α ∈ A
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can be written as T(s, a, s′). For an MDP, the Markov properties hold. Consider a discrete-time series
t = 1, 2, . . ., the next state st+1 only depends on the current state st and the current action at, as shown
below:

P(st+1|st, at, st−1, at−1, . . . ) = P(st+1|st, at ) = T(st, at, st+1). (8)

A reward R is a scalar numerical signal received from doing an action at a state, and the reward
function R can be formally represented as R : S×A× S→ R .

In RL, the one who actively takes actions that affect the environment is called an agent, and the
environment is an object that reacts passively to the agent. The interaction between the agent and
the environment can be described under the MDP framework. The agent–environment interface is
shown in Figure 8. The agent and the environment interact discretely in a time series t = 0, 1, 2, 3. For
each time step t, the description of the environment’s current condition st is obtained by the agent.
The agent will decide which action at should be taken based on some rules. Then a numerical reward
signal rt+1 and a new state st+1 are brought out by the environment.

Figure 8. The agent–environment interface.

Figure 9 is a common representation of describing the interaction between the agent and the
environment. The white circles represent the states and the black dots are the actions. The top white
circle is the current state, and the middle black dots are all of the available actions. The possible
succeeding states are the white circles in the middle, and the corresponding available actions are listed
at the bottom of the diagram.

Figure 9. Sequential agent–environment interaction diagram.

The rule followed by an agent is called a policy. Formally, an agent’s policy π is the mapping of
the current state to the selection probability of the available actions. Hence, the probability of selecting
at when the agent is at the state st can be denoted as πt(at|st). For example, under a policy π, the
probability of selecting a1 at state s can be written as π(a1|s), as shown in Figure 10. With the experience
(such as the tuple (st, at, rt+1, st+1)) gathered, the policy can be modified. The goal of reinforcement
learning is to obtain a policy, such that the received cumulative rewards are maximized.
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Figure 10. Example of the policy.

3.2.2. Long Term Rewards

The expected return Gt is the sum of the discounting rewards the agent expected to receive at
time t, as below:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . = rt+1 + γGt+1 (9)

where γ is the discounting parameter, 0 ≤ γ ≤ 1. The rewards are discounted in order to avoid infinite
cumulated rewards. With a smaller γ, the agent focuses on the recent rewards more, while a larger γ
will make the agent be farsighted, and thus long term rewards will be considered. Also, the expected
return can be written as an iterative form, which indicates that the current return is equal to the sum of
the immediate reward rt+1 and the successor state return Gt+1.

3.2.3. Action Value and Optimal Action Value

The action value is the agent’s expected return starting from the state s, with the action a chosen
and thereafter following the policy π, as described in (10):

qπ(s, a) = Eπ[Gt|st = s, at = a ] =
∑
s′,r

p(s′, r|s, a )

r + γ
∑

a′
π
(
a′
∣∣∣s′ )qπ(s′, a′)

 (10)

where r is the immediate reward received by doing action a, and γ
∑
a′
π(a′|s′ )qπ(s′, a′) is the discounted

action value starting from all possible next states s′.
The backup diagram of the action value is shown in Figure 11. The top white circle and black dot

are the state s and the action a being chosen under the state s, respectively. r is the reward received
consequently. The white circles in the middle are the successor states s′ the agent may obtain after
doing action a. After that, the agent does actions according to the policy π, and the black dots in the
bottom are the possible actions a′ being chosen.

Figure 11. The backup diagram of action value function.

To an action value function, a policy π is better than the other policy π′, or π > π′, if and only
if qπ(s, a) ≥ qπ′(s, a),∀s ∈ S, a ∈ A. There always exists a policy that is better or equal to all the other
policies and that is an optimal policy. The optimal action value function is defined as the expected
return starting from the state s with the action a chosen, thereafter following the optimal policy, such
that the expected returns in the following states are maximized, as shown in (11)

q∗(s, a) = max
π

qπ(s, a) =
∑
s′,r

p(s′, r|s, a )
[
r + γ max

a′
q∗(s′, a′)

]
(11)
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where, max
a′

q∗(s′, a′) is the optimal action value function of the next state s′ with optimal action a′

chosen. The backup diagram of the optimal action value function is depicted in Figure 12 with the
blue background. The arc between different a′ is a representation of choosing the optimal a′ such that
the return starting from s′ is maximized.

Figure 12. The backup diagram of the optimal action value function.

3.2.4. Introduction to Q-learning

Q-learning [19] is a model free temporal difference (TD) method to perform RL. A Q-table
is constructed through bootstrapping to store the optimal action value of any state-action pair.
The one-step update of Q-learning is shown as below:

Q(s, a)← Q(s, a) + α

[
r + γ max

a_∈A(s′)
Q( s′, a_) −Q(s, a)

]
(12)

where Q(s, a) directly approximates the optimal action value q∗ and is independent of the policy
followed. For the state s′, an optimal action a_ is expected to be selected within action set A(s’) so
that the Q value at s′ can be maximized, i.e., max

a_∈A(s′)
Q( s′, a_). The updating rate of the Q value is

α, 0 ≤ α < 1, and Q has been proven to converge to q∗ with a probability 1 by [19]. The backup
diagram of Q-learning is depicted in Figure 13 with a blue background. Through actual interactions,
the experiences (s, a, r, s′) can be acquired. According to the interaction experiences, the Q values can
be updated by (12) and stored in a tabular form, which is called a Q-table.

Figure 13. The backup diagram of Q-learning.

Once the Q-table is fully constructed, the optimal policy can be extracted by greedily choosing the
action with the largest optimal action value for each state, i.e., argmax

a∈A(s)
Q(s, a). Table 1 is an example

of policy extraction from a well-constructed Q-table. The agent will take the action A3 when it is at
the state S1 since argmax

a∈{A1,A2,A3}
Q(S1, a) = A3. Similarly, A1 should be taken at states S2 and S4, and A2

should be taken at state S3.
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Table 1. Q-table example.

Q(s,a) A1 A2 A3
S1 Q(S1,A1) = 0.5 Q(S1,A2) = 1 Q(S1,A3) = 1.5
S2 Q(S2,A1) = 3 Q(S2,A2) = −1 Q(S2,A3) = 2
S3 Q(S3,A1) = 3 Q(S3,A2) = 5 Q(S3,A3) = 0.5
S4 Q(S4,A1) = −1 Q(S3,A2) = −5 Q(S4,A3) = −2

One of the issues in RL is the exploration–exploitation trade-off [8]. For some RL problems, the
policy changes with time, thus off-line learning is not suitable for them. Therefore, for each time step,
the system is designed to be ε-greedy, i.e., choosing actions randomly to explore new possible rules in
a probability ε and otherwise following the learned policy and always choosing the action with the
largest Q value.

The algorithm of Q-learning is shown in Algorithm 1. First, the elements in the Q-table are
initialized. The ε-greedy, the learning rate α and the discount factor γ are also initialized. Note that
for a non-episodic MDP, there is no ending state, therefore, γ should be less than 1 to avoid infinite
expected return.

The agent observes the current state first. With a probability ε, the agent will randomly choose
the available actions, otherwise, it will choose the action with the largest Q value according to the
Q-table. After applying the action, the environment will generate the reward signal rt+1, and then a
new state st+1 can be observed. With (st, at, rt+1, st+1) obtained, the element Q(st, at) in the Q-table can
be updated using (34). Finally, the current state st is replaced by the new state st+1, and one step of an
update is completed.

Algorithm 1: Non-episodic Q-learning algorithm

Initialize Q(s, a),∀s ∈ S, a ∈ A
Initialize ε,α,γ, 0 ≤ ε ≤ 1, 0 ≤ α < 1, 0 < γ < 1
Observe st

Repeat (for each time step t)
randomly choose at probability ε

at = argmax
a_∈A(st)

Q( st, a _) otherwise

Apply at, observe rt+1 and st+1

Q(st, at)← Q(st, at) + α

[
rt+1 + γ max

a_∈A(st+1)
Q( st+1, a _) −Q(st, at)

]
st ← st+1

An example of the agent–environment model with the Q-table is illustrated in Figure 14. The state
representation generated by the environment is required to be discretized to perform table lookup on
the Q-table, which is impractical in some cases, such as the state space is too large or the state space is
continuous. Therefore, an approximation of the Q-table using a neural network, named Q-network [13],
has been implemented in this paper.

3.2.5. Q-Learning with Neural Network Approximation

The Q-table in Figure 14 can be approximated as the Q-network in Figure 15. The state
representation can be directly used as the input of the Q-network without discretization. The number of
input nodes is the dimension of the state representation. The output of the Q-network Q(s, a;θ) is used
to approximate the optimal action value q∗, where θ is the weight of the network, i.e.,Q(s, a;θ) ≈ q∗(s, a).
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Figure 14. An example of agent–environment model with Q-table.

Figure 15. An example of the agent–environment model with the Q-network.

The loss function, also known as the cost function [20], of the Q-network in iteration i is defined as:

Li(θi) =

 yi
}

target Q value

− Q(s, a;θi)
}

estimate Q value


2

(13)

where yi = r+ γmax
a′

Q(s′, a′;θi−1) is the target Q value based on the current reward r and the maximum

Q value at the next step S′ generated by the Q-network in iteration i− 1, and Q(s, a;θi) is the estimated
Q value provided by the Q-network in iteration i. For every i, (13) should be minimized in order
to approximate the estimate Q value to the target Q value. The target Q-network parameter of the
previous iteration, θi−1, should hold fixed during the training in iteration i. This may cause the
oscillation or divergence of the policy since the target Q value is affected immediately after updating
the Q-network for every iteration.

To stabilize the learning process, a fixed target Q-network technique is proposed by [13], and the
loss function is written as

Li(θi) = (yi −Q(s, a;θi))
2 =


(
r + γmax

a′
Q̂(s′, a′;θ−)

)
}

target Q value

− Q(s, a;θi)
}

estimate Q value


2

(14)

where θ− is the old parameter several iterations before, and it will update to the current value for every
CT iterations, CT > 1. Therefore, the frequent update of the Q-network Q will have less effect on the
target Q value Q̂, and the training process will be more stable.
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To break down the correlation between training samples, the experience replay technique is
proposed by [12]. For each time step t, an experience sample is gathered and stored by the agent into a
data set E = {e1, . . . et}, where et = (st, at, rt+1, st+1). For each learning iteration, several samples are
taken randomly as a mini-batch

(
s j, a j, r j+1, s j+1

)
to perform mini-batch gradient descent [21], and the

loss function can be rewritten as

L j(θ) =
(
y j −Q

(
s j, a j;θ

))2
=


(
r j+1 + γmax

a_
Q̂
(
s j+1, a_;θ−

))
}

target Q value

− Q
(
s j, a j;θ

)
}

estimate Q value


2

(15)

Finally, a Q learning algorithm using a Q-network as the function approximation is shown in
Algorithm 2. The parameter of Q and Q̂, θ and θ−, are initialized. The target Q parameter update
period CT, the experience data set E, the ε-greedy policy, the learning rate α, the discount factor γ and
the experience replay threshold pth are also initialized. The agent then observed the current state st.
With a probability ε, the agent will do the action randomly, otherwise, it will choose the action with the
largest Q value according to the output of the Q-network, i.e., at = argmax

a_
Q(st, a_;θ). After applying

an action, the agent observed the reward and the representation of the next state, and (st, at, rt+1, st+1)

will be stored into E. After cumulating enough experiences, an experience replay can be performed
by sampling a mini-batch of experiences

(
s j, a j, r j+1, s j+1

)
from E randomly. The mini-batch target Q

values y j are calculated by the Q̂ instead of Q because of the performing of the fixed target Q-network
technique, and then a mini-batch gradient descent [21] is applied to minimize the loss function shown
in (37). The target Q-network parameter θ− will be updated for every CT iterations. Finally, the state is
updated, and a new iteration will begin.

Algorithm 2: Q-learning using Q-network approximation with fixed target Q-networks and experience replay

Initialize CT, E,θ,θ−, ε,α,γ, pth, 0 ≤ ε ≤ 1, 0 ≤ α < 1, 0 < γ < 1
Observe st

Repeat (for each time step t)
randomly choose at probability ε

at = argmax
a_∈A(st)

Q(st, a_;θ) otherwise

Apply at, observe rt+1 and st+1

Store (st, at, rt+1, st+1) in E
If t > pth

Randomly Sample mini-batch
(
s j, a j, r j+1, s j+1

)
from E

Calculate loss function as (15)
Perform mini-batch gradient descent to optimize the loss function

Every CT step update Q̂← Q
st+1 ← st

3.3. Design of an RL MPPT System

To perform MPPT based on RL, the system must be able to be described by MDP. The element
needed in the RL MPPT system is defined in Table 2. The PV module and the converter can be seen as
the environment, and the controller is the agent as depicted in Figure 16. The goal of the agent is to
reach the MPP through interacting with the environment.
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Table 2. RL MPPT system element selection.

Parameter Needed to Perform RL Parameter Selection in Solar MPPT System

Environment PV module and converter

Agent controller

State (irradiance, temperature, duty ratio)

Action ∆D

Reward ∆P = P′ − P

Figure 16. Agent and environment defined in the RL MPPT system.

The system’s condition, the state, is described by the solar irradiance, the module temperature
and the duty ratio D since the I-V curve is affected by the solar irradiance and the module temperature
as mentioned previously. The system’s operating point is at the intersection of the I–V curve and the
load line, and the load line is controlled by the duty ratio of the converter.

In this study, the action is defined as a set of duty ratio changing step ∆D with different step sizes.
Therefore, the tracking progress can be seen as a sequential decision-making problem, i.e., the MPP of
the system can be reached by applying a series of variable step sizes ∆D appropriately.

The reward is a numerical signal that helps the agent judge how “good” or “bad” an action is.
The action that moves the operating point close to the MPP is better than the action that moves the
operating point away from the MPP. Therefore, the power difference ∆P = P′ − P is defined as the
reward since it provides not only the moving direction of the operating point but also the numerical
scaling representation of the effect caused by applying the action, for example, a larger step size may
lead to a larger power difference.

Also, the Markovian property holds since the current state is only affected by the state and the
action taken one step before. Through combining the elements of the MDP model designed in Table 2
and the concept of the RL MPPT shown in Figure 7, the detail of the RL MPPT can be described as
Figure 17.
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Figure 17. Simple workflow of the RL MPPT.

The perturbation step size is chosen according to the Q value of the current irradiance, temperature,
and duty ratio D. After applying the change of D, the power difference ∆P and the new state description
s′ can be observed. In the Q-table approach, the experience will be used to update the Q value
immediately, but in the Q-network approach, it will be stored to perform experience replay. With the
simple workflow of the RL MPPT described as above, the flowcharts of the RL MPPT using Q-table
(RL-QT MPPT) and the RL MPPT using Q-network (RL-QN MPPT) are shown in Figures 18 and 19.
The flowcharts essentially follow the Q-learning algorithms provided in Algorithm 1 and Algorithm
2, respectively.

Figure 18. Flowchart of the RL MPPT using the Q-table (RL-QT MPPT).
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Figure 19. Flowchart of the RL MPPT using the Q-network (RL-QN MPPT).

The proposed RL MPPT methods in this paper include two phases, the learning phase and
tracking phase. In the learning phase, the experiences are learned, i.e., the Q-table or the Q-network
is updated. However, to speed up the tracking speed, the update process is skipped in the tracking
phase. The description of the learning phase and the tracking phase of the RL-QT MPPT and RL-QN
MPPT are shown below:

(a) Learning Phase of RL-QT MPPT

First, the Q-table, the discount factor γ, the learning rate α, the ε-greedy policy, and the duty ratio
D are initialized, and the solar irradiance and the temperature of the PV module are sensed to form
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the state representation (irradiance, temperature, D). The output power of the PV module is sensed
and stored as P. With a probability of ε, the agent will randomly choose an action and change the
perturbation step size. Otherwise it will follow the Q-table and choose the action with the largest Q
value. After applying the new duty ratio, the irradiance, the temperature and the output power P′
are sensed again. Therefore, the succeeding state s′ is obtained, and the reward r can be calculated as
P′ − P. Finally, with (s, a, r, s′), the corresponding element in the Q-table, i.e., Q(s, a), can be updated
by (34).

(b) Tracking Phase of RL-QT MPPT

In the tracking phase, the agent selects the action by looking up the Q-table, and D is changed
accordingly. Then the iteration ends without updating the Q-table.

(c) Learning Phase of RL-QN MPPT

The RL-QN MPPT is similar to the RL-QT MPPT. First, the fixed target Q-network update iteration
CT, the experience dataset E, the network parameters θ and θ−, the experience replay threshold pth,
the discount factor γ, the learning rate α, the ε-greedy policy, and the duty ratio D are initialized,
and the iteration counter is also initialized. Then the state (irradiance, temperature, D) is obtained
by acquiring the solar irradiance data and the module temperature data. The output power of the
PV module is calculated as P = VI. Under the ε-greedy policy, the action will be chosen randomly
in a probability ε, otherwise the action with the largest Q value will be taken. The subsequent state
representation s′ and the reward r can be obtained after changing the duty ratio of the converter.
The experience (s, a, r, s′) is stored in E, and if the experiences in E are enough, the experience replay
techniques will be performed. For every CT step, the fixed target Q-network weight θ− will be updated,
and finally, it will be increased to move onto the next iteration.

(d) Tracking Phase of RL-QN MPPT

In the tracking phase, the agent follows the policy approximated by the Q-network, i.e., always
choose the action with the largest Q value. Then D is modified by ∆D. The system’s operating point is
changed, but the experience is not stored to speed up tracking. Then a new iteration will begin.

4. Results

4.1. System Configuration

The environment configuration of both simulation and experiment is shown in Table 3,
including the description of the PV module and the parameter of the DC–DC boost converter.
The agent configuration is shown in Table 4, which is identical for both simulation and experiment.
The corresponding hardware structure is depicted in Figure 20. For the environment described in
Table 3, the configuration of the PV module, the DC–DC boost converter and the resistive load are
identical for both simulation and experiment, while two large resistor R1 and R2 are added into the
actual circuit as a voltage divider to measure the voltage, as shown in Figure 20.

Table 3. Environment configuration of simulation and experiment.

PV Module Power = 50 W, Voc = 21.24V, Isc = 3.05A,
(Test Condition: 25 ◦C, 1000 W/m2)

L 1.1 mH

C 330 µF

RLoad 100 Ω

Cin 1000 µF
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Table 4. Agent–configuration of simulation and experiment.

RL-QT MPPT RL-QN MPPT

D range 0.2~0.9

Sampling time 1 s

∆D (action) {0, ±0.01, ±0.05, ±0.1}

State (irradiance, temperature, D)

Reward ∆P

ε 1

γ 0.3

Q value storing type Q-table
4260*7

Q-network
3-40-40-40-7

α 0.9 0.0001

CT
N/A

100

E No limit

pth 16

Figure 20. Hardware structure of the proposed system.

As for the configuration of the agent, the range of the duty ratio is set between 0.2 and 0.9
due to the limit of the hardware. The P&O method and the RL MPPT methods are performed
one time per second for both simulation and experiment. ∆D of the P&O method is fixed at
0.05, while the RL MPPT methods provide a set of actions with different step sizes, i.e., A =

{∆D = 0, ∆D = ±0.01, ∆D = ±0.05, ∆D = ±0.1}. The state, reward, ε-greedy, and the discount factor γ
are the same in the RL-QT MPPT and RL-QN MPPT. However, the discretization of the state is needed
to perform in the RL-QT MPPT method. For the RL-QT MPPT method, the irradiance is discretized
into 10 levels between 0 and 1000 W/m2, and the temperature is divided into 6 levels, which are below
20 ◦C, 20~30 ◦C, 30~40 ◦C, 40~50 ◦C, 50~60 ◦C, and beyond 60 ◦C, respectively. The level of D is
discretized by 0.01, the minimum value of non-zero ∆D, and is limited between 0.2~0.9 as mentioned
before. Therefore, the size of the Q-table can be obtained by calculating the size of the state space and
the action space, which is 4260*7.

A multi-layer perceptron is used as the Q-network in this study. After several attempts and
adjustments, a 5-layer structure with 3 hidden layers is applied in both simulation and experiment.
The input layer consists of 3 neurons, which are the irradiance, the temperature, and duty ratio input,
respectively. Each hidden layer is constructed by 40 neurons, and the output layer has 7 neurons,
which represent the Q value of 7 actions,∆D = 0, ∆D = ±0.01, ∆D = ±0.05, ∆D = ±0.1, respectively.
The learning rate α is 0.9 in RL-QT MPPT method and 0.0001 in RL-QN MPPT method. CT, E and pth
are also initialized for the Q-network method to perform the experience replay and the fixed target
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Q-network techniques. The total amount of experiences gathered by RL-QN MPPT in the learning
phase are 18,646 and 26,838 for the simulation and the experiment, respectively.

4.2. Simulation Result

The performance of the P&O, RL-QT MPPT, and RL-QN MPPT methods are simulated by
MATLAB and Simulink R2017b with AMD Ryzen Threadripper 1920X processor, 3.50 GHz, 64 GB of
DRAM memory and Microsoft Windows 10 operating system. With the irradiance and the temperature
signal and the simulation configuration provided in Figure 21, Tables 3 and 4, the P-t graph and the
D-t graph of the P&O method, RL-QT MPPT and RL-QN MPPT methods are shown in Figures 22–24,
respectively. For the RL MPPT methods, larger step sizes are chosen when the operating point is far
away from the MPP, and the smaller step sizes are selected when the operating point is near the MPP.
Consequently, the RL MPPT methods outperform the P&O method since both of the RL-QT MPPT and
the RL-QN MPPT provide smaller ripples and faster tracking speeds.

Figure 21. Irradiance and temperature simulation conditions.

Figure 22. P-t graph and D-t graph of the P&O simulation result.
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Figure 23. P-t graph and D-t graph of the RL-QT MPPT simulation result.

Figure 24. P-t graph and D-t graph of the RL-QN MPPT simulation result.

4.3. Experimental Result

The hardware specification for the actual experiment setup are listed in Table 5. An analog to
digital converter (ADC) is needed since there is no built-in ADC in Raspberry Pi 3 Model B [22].
The voltage is measured by the ADC, and the analog output of the current sensor is transferred into
the digital signal by the ADC as well. An ambient light sensor module MAX44009 GY-49 is used to
measure the illuminance, which can be converted to the solar irradiance with a ratio of 0.0079 W/m2

per lux [23]. To measure the temperature, an infrared thermometer non-contact module MLX90614
GY-906 is used to measure the surface temperature of the PV module. The power MOSFET IRF840 is
driven by the photocoupler TLP250. With a high current capability, 1N5408 is an appropriate choice
for the diode D1 in the boost converter. Finally, the actual experiment setup is shown in Figure 25.
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Table 5. Hardware specification of the experiment.

Hardware Specification

Development board Raspberry Pi 3 Model B

ADC ADS1115

Voltage sensor ADS1115

Current sensor ACS723

Irradiance sensor MAX44009 GY-49

Temperature sensor MLX90614 GY-906

MOSFET driver TLP250

Diode D1 1N5408

Figure 25. Overview of the hardware setup.

The experiments of the P&O method, the RL-QT MPPT method, and the RL-QN MPPT method
were conducted under similar environmental conditions. The irradiance was about 650 W/m2, and the
surface temperature of the PV module was about 48 ◦C. The result is shown in Figures 26–28. Similar
to the simulation result, the step sizes are selected appropriately by the RL MPPT methods during the
tracking process, which leads to a better performance comparing to the P&O method.

Figure 26. P-t graph and D-t graph of the P&O experiment result.
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Figure 27. P-t graph and D-t graph of the RL-QT MPPT experiment result.

Figure 28. P-t graph and D-t graph of the RL-QN MPPT experiment result.

Table 6 shows the comparison of the experiment results of the three solar MPPT tracking methods.
Both the RL-QT MPPT and the RL-QN MPPT are capable of tracking the MPP with fewer tracking
steps than the P&O method and remain stable near the MPP. The average power around MPP of the
two RL MPPT methods are near that of the P&O method, which indicate that the proposed methods
are able to track the MPP.

Table 6. Comparison of the experimental results.

P&O RL-QT MPPT RL-QN MPPT

Tracking steps (Sec) 9 5 5

Oscillation range (Watt) 14.7436 1.503 2.5974

Average power around MPP (Watt) 31.7478 31.144 31.4977

5. Conclusions

In this paper, two MPPT methods based on model-free reinforcement learning are proposed.
The tracking process can be seen as a sequential decision-making problem since the MPP can be
achieved through selecting an appropriate perturbation step size for every time step. Therefore, an
MDP model is suitable for describing the interaction between the circuit connected to the PV module
and the controller which is able to choose ∆D and change the duty ratio D of the circuit. An MDP
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model consists of four elements, which are state, action, transition, and reward. With the MDP model
described, an RL-QT MPPT method is proposed by constructing the Q-table to perform MPPT control.
However, the state representation is needed to be discretized for the tabular method, which may cause
the loss of MPPT control accuracy. Therefore, a Q-network-based MPPT method is proposed. In the
RL-QN MPPT method, the Q-table is approximated by a neural network, so that the discretization of
the states are not needed. For both RL-QT MPPT and RL-QN MPPT, the tracking method consists of
the learning phase and the tracking phase, which is able to expedite the tracking process since the Q
value will not be updated in the tracking phase. A conclusion can be drawn from the simulation and
experimental results that the RL MPPT methods are more effective than the traditional P&O method
to track the MPP since the proposed RL MPPT methods possess smaller ripples and faster tracking
speeds. Furthermore, for the proposed RL MPPT methods, the RL-QT MPPT method performs with
smaller oscillations and the RL-QN MPPT method achieves a higher average power.
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