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Abstract: Given that current Internet of Things (IoT) applications employ many different sensors to
provide information, a large number of the Bluetooth low energy (BLE) devices will be developed
for IoT systems. Developing low-power and low-cost BLE advertisers is one of most challenging
tasks for supporting the neighbor discovery process (NDP) of such a large number of BLE devices.
Since the parameter setting is essential to achieve the required performance for the NDP, an energy
model of neighbor discovery in BLE networks can provide beneficial guidance when determining
some significant parameter metrics, such as the advertising interval, scan interval, and scan window.
In this paper, we propose a new analytical model to characterize the energy consumption using all
possible parameter settings during the NDP in BLE networks. In this model, the energy consumption
is derived based on the Chinese remainder theorem (CRT) for an advertising event and a scanning
event during the BLE NDP. In addition, a real testbed is set up to measure the energy consumption.
The measurement and experimental results reveal the relationship between the average energy
consumption and the key parameters. On the basis of this model, beneficial guidelines for BLE
network configuration are presented to help choose the proper parameters to optimize the power
consumption for a given IoT application.

Keywords: Bluetooth low energy; neighbor discovery; energy consumption analysis; Internet
of Things

1. Introduction

Bluetooth low energy (BLE) is a personal LAN technology designed by Bluetooth special interest
group (SIG). The specialty of BLE is as a short-range, cellular Internet of Things (IoT) wireless solution
geared for a wireless world that demands ultra-low power usage [1].

As the number of the BLE devices increases, the performance of the neighbor discovery process
(NDP) could have a significant impact on users’ experiences and devices’ life spans. It is validated
that the parameters in the NDP, such as advertising interval, scan interval, and scan window, have
a critical impact on two interdependent performance metrics: the discovery latency and the energy
consumption. Both BLE 4.0 and BLE 5.0 provide a wide range of parameter options that support the
requirements of IoT applications. To maximize the lifetime of the devices and meet the requirements
of a given application, it is necessary to provide a method that can appropriately select parameters. As
a result of its practical importance, academic efforts have been devoted to proposing analytical models
that can optimize the parameter settings in the BLE NDP and obtain the best possible performance.

In [2,3], Cho et al. proposed a discovery latency and energy consumption model to analyze the
performance of BLE neighbor discovery protocol. In contrast to other models, multiple advertisers
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were considered in the network. The simulation results showed that the parameters and the number
of advertisers had a significant impact on the NDP performance. However, the analysis was given
under the assumption of a continuous scanning scenario.

In [4], Liu et al. revealed, for the first time, the relationship between the discovery latency and
the parameter settings in BLE neighbor discovery. The analyzed model was based on the effective
scan window and was further enhanced in [5] to analyze the energy consumption during the neighbor
discovery process. However, the model was constrained by the parameter range and only applied
with the condition that the scan window was longer than advertising interval.

In [6], Philipp et al. proposed a sensitivity analytical model of different parameters on the energy
consumption and evaluated the accuracy of the model using both discrete event simulations and
actual measurements. In [7], Liendo et al. presented an extension of the model in [6] and a parameter
optimization method to obtain the best parameter settings according to the application requirements.

In [8], a new analytical model was presented to characterize the performance of the BLE NDP
with respect to the whole discovery time and energy consumption to provide the best parameter
settings. Meanwhile, Liendo et al. proposed the neighbor discovery parameter optimization method
to minimize the energy consumption for a wider range of IoT use cases in [9].

The above research was all based on probabilistic models, which, in some cases, limited the
performance analysis. These probabilistic models could not capture the peaks in the advertising events,
which exist in the measurements. Therefore, the probabilistic models’ results have accuracy problems.

An analytical model was suggested in [10] to obtain an upper bound for the discovery capacity.
According to the measurements, additional scanning gaps that reduced the discovery capabilities were
found in the scanning process. On the basis of the measurement and simulation results, the paper
provided a guideline to select the desired parameter values.

Similar to [10], considering the scanning gaps, the real device behavior of BLE scannable
undirected advertising events were experimentally modeled in [11], based on the new features of BLE
5.0 to characterize this new device discovery process. The discovery probability and discovery latency
were fully analyzed under several advertising and scanning scenarios.

As described in [12], according to the Chinese remainder theorem (CRT), it was proved that two
nodes would have some overlapping radio on-time within a bounded number of periods, even if they
were running under the asynchronous neighbor discovery protocol.

The authors of [13] were the first to apply CRT to analyze the bounded latency of the BLE NDP
for in-vehicle networks. The experiments in [13] showed that the BLE with coprime parameter values
had a low discovery latency. However, there were no detailed energy performance analyses on the
impact of parameter settings.

The most recent work using the CRT to model the NDP in [14] enhanced the analysis of the mean
discovery latency and the energy consumption. However, the model is also based on the effective scan
window, which only works when the advertising interval is smaller than the effective scan window.

Enlightened by the experimental models and CRT models in [12,14], this paper proposes
an analytical energy model of the BLE NDP based on CRT to optimize the parameter settings for
energy-sensitive IoT applications. The main contributions of this paper are listed as follows:

• Most previous works regarding the performance analysis of NDP used the probabilistic method.
In this paper, we apply the Chinese reminder theory to model the neighbor discovery protocol in
BLE networks, which is an effective way to solve the periodic interval problem;

• Unlike the previous work in [14], we introduce an energy consumption expression related to CRT
for both an advertising event and a scanning event, and characterize the energy consumption
covering all parameter ranges, including the case when the advertising interval is larger than the
scan interval;

• Instead of using the effective scan window model proposed in previous works, we apply CRT to
the distributed channels, without the constraint of the parameter settings;
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• In order to validate the model, a real testbed was set up to measure the discovery latency and
average current during the NDP.

The remainder of the paper is organized as follows. Section 2 briefly reviews the basic NDP
(B-NDP) that is specified in [15] and the advanced NDP (A-NDP) in BLE 5.0 [16]. In Section 3,
we propose an analytical energy model based on CRT and derive the average energy consumption
for the NDP. The statistics results from the model and the measurement results are presented and
discussed in Section 4. Finally, the paper concludes with Section 5.

2. Background

According to BLE 4.0 [1], the nodes in BLE networks have different roles based on their discovery
states. Advertisers are the devices working in advertising mode, and scanners and initiators are the
devices in scanning and initiating modes, respectively. In the advertising mode, the devices advertise
packets in the advertising channels periodically, and then listen for responses from scanners with the
channel order of 37-38-39. With the same channel order, the scanners periodically scan and wait for the
advertising packets. Once the scanner receives the advertising information and is ready to connect
with the advertisers, it turns into the initiator.

Figure 1 shows the basic neighbor discovery process based on the BLE 5.0 [16]. Advertisers
and scanners utilize the three primary channels (37-38-39) to send advertising packages and scan.
Meanwhile, the key difference between the two versions is that during an AdvInterval period, each
advertising packet Adv_PDU only contains ADV_EXT_IND and AuxPTR. These packages provide
offset and channel messages instead of advertising data. Scanners will receive AUX_ADV_IND
packages according to the offset on one specific data channel X (from Channel 0 to Channel 36).
An AUX_ADV_IND package containing advertising data is a new package that is defined in BLE 5.0.

Figure 1. The process of Bluetooth low energy (BLE) neighbor discovery based on BLE 5.0.
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The BLE 5.0 specifies a wider range of feasible parameter values for the NDP than BLE 4.0, such as
the AdvInterval, ScanWindow, and ScanInterval.

AdvInterval TADV is one of the key parameters in neighbor discovery configuration, which
determines the interval time between two consecutive advertising events. In an advertising event,
the advertisers transmit the packets in the three predefined channels respectively. The time that the
advertiser spends in each channel is denoted as τwa. The fixed interval ωAI and a pseudorandom delay
µ are two parts of the AdvInterval.

ScanInterval TSIN denotes the period time that the scanning event happens in the three advertising
channels. ScanWindow ωSW is a fixed duration for scanners to scan and listen in the scanning state.
Table 1 shows the list of the significant parameters for neighbor discovery that are specified in BLE 5.0,
and these parameters have a wide range thus providing the BLE network with the abilities necessary
to support a variety of applications.

Table 1. BLE significant parameters and recommended values.

Item Notation Value

Fixed Interval ωAI 20 ms ≤ ωAI ≤ 10,485.759375 s
AdvDelay µ 0 ≤ µ ≤ µMAX ≤ 10 ms

AdvInterval TADV ωAI + µ
Advertising period per channel τwa 0 ≤ τwa ≤ 10 ms

ScanWindow ωSW 0 ≤ ωSW ≤ TSIN
ScanInterval TSIN 0 ≤ TSIN ≤ 10.24 s

As a result, the wide range of parameters cause problems in terms of finding the appropriate
initial settings to meet the requirements of different BLE applications. The focus of our study is to
analyze the impact of the parameters on the performance of neighbor discovery of BLE.

3. Modeling the Neighbor Discovery Process

In this section, we apply CRT to the BLE neighbor discovery process to model the energy
consumption for advertising events and scanning events. We first present a study of asynchronous
neighbor discovery based on CRT. Then, we discuss the energy consumption during the BLE NDP
according to the measurement waveform. In what follows, we propose an analytical energy model to
explore the relationship between energy consumption and parameter setting.

3.1. Asynchronous Neighbor Discovery and CRT

CRT [12] is a mathematical theorem that states that there exists an integer x satisfying the pair of
simultaneous congruences for any two coprime numbers ni and nj:

X ≡ mi(modni),

X ≡ mj(modnj),
(1)

where mi and mj are two integers. For example, the pair of simultaneous congruences x ≡ 1(mod3)
and x ≡ 2(mod7) has the solution x = 16 + 21k, k ∈ Z+.

According to CRT, we pick two numbers, ni and nj, which denote the interval time that two nodes
wake up from a sleeping state. Then, at the (c− 1) ∗ ni + 1 slot, the nodes discover each other if ni and
nj are relatively prime, as illustrated in Figure 2. Therefore, at least one discovery is guaranteed at slot
x within a period ninj, regardless of the phase offsets of mi and mj due to their asynchronous clocks.
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Figure 2. Discovery with asymmetric cycles (ni = 9,nj = 4).

We can express x as
X = x0 + kninj, k ∈ Z+. (2)

When x = x0, the nodes are turned on and can discover each other. Therefore, according to (2), x0

denotes the first time when the two nodes meet. Furthermore, when ni and nj are coprime, the duty
cycle can be expressed as

DC =
1
ni
(1 +

1
c
) +

1
nj
(1− 1

c
). (3)

3.2. Energy Consumption in BLE NDP

In this section, we present the energy consumption waveform during an advertising event and
a scanning event. As the measurement in [5,6], an energy consumption waveform can be presented as
shown in Figure 3.

Figure 3. The energy consumption in the BLE neighbor discovery process (NDP).

In order to establish the energy model during the NDP, Table 2 shows the operation and the
energy constants of each state based on [6].
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Table 2. The operation and the energy constants of each state.

State Operation Constants

wake up the device wakes up from sleeping Ewake
pre the BLE protocol stack prepares for sending and listening Epre

pre-tx the device turns on in preparation for advertising Epre−tx
Tx the device transmits an advertising packet ETx
Rx the device listens for a packet ERx

Tx-Rx the state transfers from Tx to Rx ETx−Rx
CH37-CH38 the advertising event on Channel 37 transfers to Channel 38 Einter−ch
CH38-CH39 the advertising event on Channel 38 transfers to Channel 39 Einter−ch

post the BLE protocol stack prepares for the next advertising event Epost
scanning the device listens for an advertising packet Escanning
Dis-rx-tx the states when the device receives an advertising packet Edis−rx−tx

In the advertising event, the advertiser periodically broadcasts and listens on Channels (37, 38,
and 39), which is reflected with the Tx, Rx, and Tx to Rx peaks in Figure 3. In addition, besides
the advertising event, one advertising period includes the wake up state, transfer state, and some
preparation states. Therefore, we can express the energy consumption with a period Eadv−p as

Eadv−p = Ewake + Epre + Epre−tx + 3Etx + 3Erx + 3Etx−rx + 2Etrans + Epost. (4)

Furthermore, the energy consumption on specified channel n with a period En could be
expressed as

E37 = Ewake + Epre + Epre−tx + Etx + Erx + Etx−rx + Epost

E38 = Ewake + Epre + Epre−tx + 2Etx + 2Erx + 2Etx−rx + Etrans + Epost

E39 = Ewake + Epre + Epre−tx + 3Etx + 3Erx + 3Etx−rx + 2Etrans + Epost.

(5)

The energy consumption during a scanning event can be calculated as well as the advertising
event. It should be pointed out that the scanning event contains two options: events with no reception
and events with ADV_PDU packets.

Therefore, as shown in Figure 3, the charge that is consumed in a scanning period can be
expressed as

Escan−no−re = Ewake + Epre + Escanning + Epost

Escan−re = Ewake + Epre + Epre−tx + Escanning′ + Edis−rx−tx + Epost,
(6)

where Escanning′ denotes the energy that is consumed during the active scanning and in the packet
processing phase, Escan−no−re denotes the consumed energy during the scanning events with no
reception, and Escan−re denotes the consumed energy during the scanning events with received
ADV_PDU packets.

As discussed in the previous section, we have the energy consumption Eadv−n for the advertiser
on Channels (n = 37, 38, 39):

Eadv−37 = (c− 1) ∗ Eadv−p + Eadv−37

Eadv−38 = (c− 1) ∗ Eadv−p + Eadv−38

Eadv−39 = c ∗ Eadv−39.

(7)

In addition, the charge consumed by a scanner Escan is

Escan = Escan−re + (c′ − 1) ∗ Escan−no−re, (8)



Sensors 2019, 19, 4997 7 of 13

where c′ denotes the number of periods of the scanning events.

3.3. Analytical Energy Model of BLE NDP

In order to determine the relationship between the parameter settings and the energy consumption,
in this section, we present an analytical energy model based on CRT, as an extension of the study
in [17].

Instead of using the effective scan window to model the NDP, we proposed a distributed neighbor
discovery analytical model for BLE networks, and applied CRT to three separated channels. On the
basis of CRT, it could be ensured that there is at least a slot in which two nodes wake up together.

To separate the three channels, the NDP in a cycle is separated into three components based on
the channel number according to the same timeline. As shown in Figure 4, both the entering time and
the periodic time of the advertising events and scanning events changed on the separated channels.
If we assume that the advertiser entered the advertising mode at time t0, and the scanner entered the
scanning mode at time t1, then, consistent with the advertising order, the advertising start time and
the scanning start time for channel 38 is t0 + τwa and t1 + TSIN , respectively, and those for channel 39
are t0 + 2τwa and t1 + 2TSIN , respectively.

Figure 4. Distributed neighbor discovery analytical model in BLE.

Another key parameter for CRT is the duty cycle. Different from the entering time, the advertiser
and the scanner have the same duty cycle for all channels. As shown in Figure 4, the duty cycle of the
advertiser could be expressed as τwa

TADV
, and for scanners, the duty cycle is ωSW

3TSIN
(TSCAN = 3TSIN).

Table 3 shows the key parameters for each channel based on CRT.

Table 3. Key parameters of the distributed neighbor discovery model.

Item CH37 CH38 CH39
1
ni

(advertiser duty cycle) τwa
TADV

τwa
TADV

τwa
TADV

1
nj

(scan duty cycle) ωSW
3TSIN

ωSW
3TSIN

ωSW
3TSIN

mi (advertiser phase offset) t0 t0 + τwa t0 + 2τwa
mj (scanner phase offset) t1 t1 + TSIN t1 + 2TSIN

According to Table 3, we can develop the solution x for the CRT described by our model as

x37
on = Γ(t0, t1,

TADV
τwa

,
3TSIN
ωSW

)

x38
on = Γ(t0 + τwa, t1 + TSIN ,

TADV
τwa

,
3TSIN
ωSW

)

x39
on = Γ(t0 + 2τwa, t1 + 2TSIN ,

TADV
τwa

,
3TSIN
ωSW

).

(9)
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Thus, the smallest slot among all matching slots is x0 = min(x37
on, x38

on, x39
on). Let θ(t0, t1) denote

the interval from the initiation time of the advertiser to x0. Let φ(t0, t1) denote the interval from the
initiation time of the scanner to x0. Then,

θ(t0, t1) = x0 − t0

φ(t0, t1) = x0 − t1.
(10)

Therefore, as defined in Figure 2, it is noticed that c and c′ can be expressed as

c =
θ(t0, t1) ∗ τwa

TADV

c′ =
φ(t0, t1) ∗ωSW

3TSIN
.

(11)

Meanwhile, we can calculate the energy consumption Ex
adv when the advertising events stop in

the cth period on the channels as

E37
adv = (

θ(t0, t1) ∗ωwa

TADV
− 1) ∗ Eadv−p + Eadv−37

E38
adv = (

θ(t0, t1) ∗ωwa

TADV
− 1) ∗ Eadv−p + Eadv−38

E39
adv =

θ(t0, t1) ∗ωwa

TADV
∗ Eadv−39.

(12)

To simplify the equation, the energy consumption for advertisers Ex
adv can be expressed as

Ex
adv = (

θ(t0, t1) ∗ωwa

TADV
− 1) ∗ Eadv−p + Eadv−x

x = 37, 38, 39
. (13)

In addition, the same as advertising events, the scanner energy consumption Escan could be
given as

Escan = Escan−re +
φ(t0, t1) ∗ωSW

3TSIN
− 1 ∗ Escan−no−re. (14)

Finally, we assume that the advertiser and scanner initially start at any slot within [0, TADV ] and
[0, 3TSIN ], respectively, independently and with the same probability. As a result, the average energy
consumption for advertisers and scanners during the BLE NDP is

Eadv =
1

TADV

TADV

∑
t0=0

Ex
adv, x = 37, 38, 39

Escan =
1

3TSIN

3TSIN

∑
t1=0

Escan.

(15)

4. Experimental Results

In this section, to validate the analytical models, we have developed a BLE energy measurement
program, which fully complies with the BLE specification 4.2, on a real testbed using the Texas
Instruments SimpleLink Bluetooth low energy CC2540dk-mini kit with the Software Development
Kit BLE-Stack [18]. The included key fob board operates as a BLE peripheral device, and contains
modifiable software that can be tailored towards different parameters. A CC2540 USB Dongle acting
as a master connects to a PC’s USB port. Using BTool (Windows PC application) along with the
included CC2540 USB Dongle, the BLE stack can be tested and verified while developing the custom
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test program. When the devices being tested are set up properly, a few simple hardware modifications
are required to implement the current measurement. The detailed implementation steps can be found
in [19]. The architecture of the testbed is shown in Figure 5.

Figure 5. The architecture of the testbed.

During the measurement experiments, we use the USB Dongle and the BTool to capture the BLE
packets, and utilize a DC power analyzer to measure the current and record the time of advertising
events during the discovery process [20]. Since the average current is the value that is highly dependent
on the parameter settings, the average power consumption can be calculated from the average current
consumption for the advertising and the discover latency. In the experiments, the central device starts
at a random time to discover the advertiser. The typical experimental procedure is to fix two parameters
and to vary the other one. The measurements for every parameter setting is repeated 30 times to
calculate the average current.

In the experiments, the starting times of the scanner and the advertiser are randomly chosen from
the intervals [0, TADV ] and [0, 3TSIN ]. The other default parameter configurations are given according
to [5,6] in Table 4.

Table 4. The default parameters set in the measurements.

Parameters Value Parameters Value

τwa 7.46 ms Ewake 2.40 mA·ms
Epre 4.40 mA·ms Epre−tx 2.00 mA·ms
ETx 6.55 mA·ms ETx−Rx 0.77 mA·ms
ERx 2.01 mA·ms Einter−ch 1.11 mA·ms
Epost 7.03 mA·ms Edis−rx−tx 6.84 mA·ms

Escanning 11.33 mA·ms

Figure 6 shows the modeled statistics of the average energy consumption for the advertiser during
the NDP, with AdvInterval ranging from 0.02 to 10.24 s; ScanInterval TSIN = 1.28 s, 2.56 s, 5.12 s, 10.24 s;
and ScanWindow ωSW = 1.28 s.
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Figure 6. Average energy consumption of the advertisers according to AdvInterval. (TADV ∈ [0.02 s,
10.24 s], TSIN = 1.28 s, 2.56 s, 5.12 s, 10.24 s, ωSW = 1.28 s).

Figure 7 shows the detailed results of both the measured and modeled statistics with AdvInterval
ranging from 0.02 to 4 s. The measurement results show the same pattern as the results that were
obtained from the model.

Figure 7. Average energy consumption results of the model and the measurements. (TADV ∈ [0.02 s,
4 s], TSIN = 1.28 s, 2.56 s, 5.12 s, 10.24 s, ωSW = 1.28 s).

Figures 6 and 7 reveal some interesting results. Contrary to the intuition that more frequent
advertising leads to larger energy consumption, periodic high energy consumption could be observed
in the analysis results and the measurements. In addition, increasing the value of the AdvInterval
does not increase the energy if peaks are avoided. However, a higher ScanInterval leads to a larger
range of maximums and minimums of the peaks. Using CRT, it can be shown that the largest solution
is for a pair of advertisers and scanners in a duty cycle, which happens periodically in every ninj.
Furthermore, in this case when ωSW � TSIN , there is a possibility that the scanner missed the
advertiser during the specific scan period, and the energy consumption of the idle advertising when
Tidle = TSIN −ωSW increases significantly, as showed in Figure 7 when ScanWindow ωSW = 1.28 s and
ScanInterval TSIN = 10.24 s.

Consequently, the peaks show a very large average energy consumption, which should be avoided
during the configuration. Similar results were observed in the previous discovery latency analysis
works of [6,7,17]. In addition, it is noted that the larger ScanInterval can lead to a larger range
between the maximum value and the minimum value of the average energy consumption with a fixed
ScanWindow. As a result, one should be more cautious and choose the AdvInterval accordingly if the
requirement needs a large ScanInterval.
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Figure 8 shows the results compared with the model in [14] when ScanInterval TSIN = 10.24 s
and ScanWindow ωSW = 1.28 s. It is obvious that the results from the model proposed in this paper
has a higher accuracy than the model in [14], especially when TADV ≥ ωSW . This is because the
model in [14] was based on the effective ScanWindow de. In model [14], the effective ScanWindow
de = ωSW − da, and da denotes the advertising time on one channel during an advertising event.
When da ≥ ωSW , it leads to the failure of the analysis in the model based on the effective ScanWindow.

Figure 8. Average energy consumption results of the models.

Figure 9 shows the expected energy consumption of the advertiser during a discovery process by
varying the ScanInterval for different ScanWindows and with a fixed AdvInterval of TADV = 5.12 s.
As can be seen, the results from the measurement and results that were obtained from the model are
close. The curves show that for each ScanWindow, the energy consumption steadily increases when
the ScanInterval increases from 0.02 to 10.24 s. Meanwhile, from the comparison of the three situations,
when TADV = ωSW , it is easy to achieve a low energy consumption for advertisers. Furthermore,
for larger ScanWindows, the ScanInterval has less impact on the energy consumption of advertisers.
The reason is that the larger ScanWindow reduces the energy of idle advertising events.

Figure 9. Average energy consumption of scanners according to the scanInterval (TADV = 5.12 s, TSIN ∈
[1.28 s, 10.24 s], ωSW = 1.28 s, 2.56 s, 5.12 s).

Figure 10 illustrates the results of the energy consumption versus varied ScanWindows ranging
from 0 to TSIN for different ScanIntervals and a fixed AdvInterval of TADV = 5.12 s. We compared the
results from the model to the measurements, and they are also close.
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Figure 10. Average energy consumption with respect to the ScanWindow. (TADV = 5.12 s, TSIN = 1.28 s,
2.56 s, 5.12 s, 10.24 s, ωSW ∈ [0, TSIN ]).

The figures clearly show that as the ScanWindow increases, the energy consumption has a steep
decrease when ωSW ≤ 0.2 s. This can be explained by the fact that the ScanWindow mainly affects the
chance for advertisers and scanners to cross on one of the advertising channels. When the ScanWindow
is large enough, the ScanWindow has a simple impact on the energy consumption. However, when the
ScanWindow is less than one specific value, the larger ScanInterval will require more energy from the
advertisers due to the higher frequency of idle advertising.

In summary, the experimental results validate the model and characterize the energy consumption
for the BLE parameters. In the meantime, from the experimental results, it can be stated that there
is a principle to properly set the parameters to meet the requirements of a given IoT application.
For devices with frequent advertising events, a good trade-off is to set TADV ≥ TSIN , and if a large
scanInterval is needed, we suggest using continuous scanning to achieve the fastest possible discovery
and the smallest possible energy consumption. For devices that are expected to achieve the longest
life spans with longer idle-advertising, a good choice is to set TADV < TSIN and possibly a lower
ScanInterval.

5. Conclusions

We proposed an analytical energy model to characterize the energy consumption during the NDP
in BLE networks. In this model, the energy consumption for an advertising event and a scanning event
is calculated based on CRT. The model is validated using real testbed measurements, and we show that
the average energy consumption varies with all possible standard parameter settings. Accordingly,
on the basis of the given requirements of the IoT applications, parameter setting guidance could be
derived using the model.
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