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Abstract: We address wideband direct coherent localization of a radio transmitter by a distributed
antenna array in a multipath scenario with spatially-coherent line-of-sight (LoS) signal components.
Such a signal scenario is realistic in small cells, especially indoors in the mmWave range. The system
model considers collocated time and phase synchronized receiving front-ends with antennas
distributed in 3D space at known locations connected to the front-ends via calibrated coaxial cables or
analog radio frequency over fiber links. The signal model assumes spherical wavefronts. We propose
two ML-type algorithms (for known and unknown transmitter waveforms) and a subspace-based
SCM-MUSIC algorithm for wideband direct coherent position estimation. We demonstrate the
performance of the methods by Monte Carlo simulations. The results show that even in multipath
environments, it is possible to achieve localization accuracy that is much better (by two to three
orders of magnitude) than the carrier wavelength. They also suggest that the methods that do not
exploit knowledge of the waveform have mean-squared errors approaching the Cramér–Rao bound.

Keywords: wideband direct position estimation; distributed antenna array; spatial coherence;
phase of arrival; indoor localization; 5G; mmWave; massive MIMO

1. Introduction

Localization in cellular systems has been attracting much interest in the research community for
many years. The key challenge of localization is to improve the accuracy from hundreds of meters
in the second generation (2G) (a list of abbreviations can be found at the end of the paper) to 1 cm or
better in 5G [1]. If one can accomplish this in indoor environments, location-based services (LBS) will
be improved considerably. Localization can also be used for LAC (location-aided communication),
where one takes advantage of the information about terminal locations in different ways to improve
the communication links [2]. This paper focuses on methods that achieve accuracy much better than
the carrier wavelength, which can be used both for LAC and LBS.

The classical two-step localization methods, based on measuring received signal strength (RSS),
time of arrival (ToA), time difference of arrival (TDoA), and angle of arrival (AoA), as well as the
one-step method called direct position determination (DPD) [3,4] provide root-mean-squared errors
(RMSE) that are greater than the carrier wavelength. The reason for this relatively high inaccuracy is
that these methods are adapted to environments/systems where phase differences between distant
antennas either carry no transmitter location information (the full spatial coherence across the entire
distributed receiving system is not assumed) or that this information is simply ignored.
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With spatial coherence, the accuracy of localization can be much improved. The authors
in [5,6] analyzed the accuracy gains of coherent localization in passive systems and multiple-input
multiple-output (MIMO) radars (active localization), respectively. Unlike [6], in which the receiving
system was synchronized to the transmitters that are at known locations (radar/active localization),
in our paper, the receiving system is not synchronized to a transmitter, and the transmitter is at an
unknown location (passive localization). Some practical implementations of passive localization were
described in [7,8]. It is important to point out that the methods in [5–8] relied on spatial coherence for
increased accuracy, but are suited to narrowband signals.

In [9,10], it was shown that the accuracy of TDoA estimation could be significantly increased
by exploiting the carrier phase of arrival. Since direct localization is implicitly based on TDoAs,
this suggests that the localization accuracy could also benefit significantly from exploiting the carrier
phases in spatially-coherent scenarios. The 5G of cellular networks is expected to include a wide range
of disruptive technologies for large performance improvements. Some of these are millimeter-wave
(mmWave) technologies, as described in [11–17], and massive MIMO systems [18,19]. There are also
methods for cooperative localization in cellular systems and approaches to using distributed massive
MIMO systems for resolving the ambiguity problem, which is inherent to coherent localization [20].

Coherent localization presents a great promise in 5G systems because it is expected to be carried
out with mmWave and in small cells. Further, the experimental results from [11] showed that the
non-line-of-sight (NLoS) components were at least 10 dB below the line-of-sight (LoS) component
in the 60-GHz range. Further, one can expect large bandwidths in 5G systems, which is why it is
important to formulate practical methods that extract the information in the carrier phases and that
are suited to wideband signals.

In this paper, we introduce methods for direct and coherent localization of transmitters of arbitrary
wideband signals by a distributed receiving antenna array (the TDoA between any two of the array’s
antennas may be larger than the inverse of the signal bandwidth). The receiving channels are phase
and time synchronized, but the alignment of the transmitter’s time axis to the one of the receiving
system is not required (unlike for ToA-based methods such as in [6]). In contrast to, for example [5,6],
our signal model is both frequency-wideband and spatial-wideband. The effects of spatial-wideband
and frequency-wideband signals are discussed in detail in [21,22]. We assume multipath propagation
with LoS components. Some of the antennas in the receiving array may be grouped into subarrays of
small apertures, but the mathematical model does not use the plane wave approximation across these
subarrays (it assumes spherical wavefronts).

The methods in this paper achieve accuracy that is two or three orders of magnitude better than
the carrier wavelength. The purpose of having such accuracy in the estimate of a user terminal’s
location is to improve drastically the system performance by focusing energy towards the terminal
on the down-link and increasing sensitivity on the up-link so that the terminal can transmit at much
lower power (the LAC concept).

The main contributions of this paper are as follows. We propose two maximum-likelihood-type
(ML) algorithms (for the LoS-only scenario) and one steered covariance matrix-based MUSIC-type
(SCM-MUSIC) algorithm for wideband direct position estimation. The methods are proposed for a
signal model that is both spatial-wideband and frequency-wideband, according to [21,22]. These two
papers discussed the importance of wideband modeling even for collocated massive antenna arrays.
As a consequence, wideband modeling is critical in distributed systems. One of the ML algorithms
builds on the knowledge of the waveform (sequence), whereas the other two do not. Despite not using
this knowledge, these two algorithms are statistically efficient for the LoS-only scenario, which we
demonstrate by Monte Carlo simulations. We also show that they perform well even in multipath
settings. The algorithms do not exhibit a pronounced threshold effect and achieve accuracy better than
the carrier wavelength even for four-sample-long sequences.

The rest of this paper is organized as follows. Section 2 introduces the model of the signals and
the system used for localization. In Section 3, we propose two ML and one MUSIC-type estimation
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algorithm. We discuss the results of Monte Carlo simulations in Section 4 and provide concluding
remarks in Section 5. The ML algorithms are derived in the Appendix A.

2. System and Signal Model

2.1. System Model

A distributed receiving antenna array that performs the localization has M stationary
elements/channels, Rxm, m ∈ {1, 2 . . . M}, where the antenna Rxm is at a known position
~rm = (xm, ym, zm); see Figure 1. An active stationary transmitter, Tx, is at an unknown position
~r = (x, y, z). All receive and transmit antennas are arbitrarily distributed in the 3D area of interest
for which we assume spatial coherence of the LoS components across the entire distributed receiving
array. The coherence can be established if the carrier phase difference between any two of the receiving
antennas, Rxm and Rxl , can be obtained from the difference in the distances between them and the Tx.
In mathematical terms, we have:

ϕcm − ϕcl = 2πνc (dl − dm) /c̃ (mod 2π) , (1)

where ϕcm and ϕcl are the carrier phases of the mth and lth receiving antennas, respectively; νc is the
carrier frequency in Hz; dm is the distance between Tx and Rxm antennas, dm = ‖~dm‖, ~dm =~r−~rm,
where ‖·‖ is the Euclidean norm; c̃ is the speed of propagation (c̃ = 3 · 108 m/s). The distributed
receiving antennas are connected to M collocated receiving channels (front-ends) by calibrated cables
(coaxial or fiber optic) for two reasons. The first is that fine time, frequency, and phase synchronization
between the receiving channels is easier to achieve with collocated than with distributed front-ends.
The second reason it that a centralized (specifically, direct or one-step) localization algorithm is a
natural choice in this setup. All antennas act as “isotropic”, and their polarizations are aligned.
Deviations from this in practice can be taken into account if there are additional attenuations and
phase shifts and whose values are determined by the antenna design. The positions of the receiving
antennas, ~rm, are known in the sense that the antennas must be positioned with accuracy greater
than the localization accuracy itself (with an error much smaller than the carrier wavelength). In the
proposed system model, in practice, some antennas could be used for localization and the others for
down-link communication with Tx.

Figure 1. The topology of the studied system.
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2.2. Signal Model

The Tx transmits an RF signal (approximately) band-limited to (νc − B/2, νc + B/2), where B
is the signal bandwidth in Hz, i.e., the complex form of the transmitted sequence/waveform is
band-limited to (−B/2, B/2). The signal received at the Rxm antenna, m ∈ {1, 2 . . . M}, which is an
attenuated and delayed version of the transmitted signal, after down-conversion and A/D conversion
at the Nyquist rate νs = B, is represented in a complex form um(n) as:

um(n) = amsm(n) + uNLoSm(n) + ηm(n),

sm(n) = exp (−jωc (t0 + τm)) s (n− t0 − τm) ,

uNLoSm(n) =
L

∑
l=1

am,ls (n− τm,l) ,

(2)

where n denotes discretized time normalized with 1/νs, i.e., n ∈ {0, 1 . . . N − 1}; am is a real-valued
attenuation factor for the LoS component; ωc = 2π fc, fc = νc/B are the normalized angular and
natural carrier frequencies, respectively; the unknown value t0 models the fact that the Tx is not
time synchronized with the Rx system (we always use the Rx time axis); the normalized propagation
delays from the Tx to the antenna Rxm are τm = dm/c, where the normalized propagation speed is
c = c̃/νs; uNLoSm(n) denotes all of the multipath components of the Tx signal except the LoS; ηm(n)
is the noise; am,l is an unknown complex-valued attenuation factor of the lth component received by
the mth Rx channel, and τm,l is an appropriate time delay; the acquired samples are um(n). Note that
t0, dm/c, and τm,l are fractional dimensionless values (the propagation time delays do not have to be
integer multiples of the sampling interval) and that the sequence/waveform s(·) is defined in the
entire (continuous) range R since it has been transformed into a continuous waveform inside the Tx.

A signal model on a large antenna array can be frequency- and spatial-wideband, and the effects
of these phenomena are discussed in detail in [21]. The model has to be spatially wideband, if the
propagation time across the aperture of the receiving array is greater than the inverse of the signal
bandwidth, 1/B. It models envelope shifts between the signals in the receiving channels in addition
to carrier phase shifts (Strictly speaking, the signals have to be modeled as spatially wideband, if the
approximation s (n− t0 − τm) ≈ s (n− t0 − τl) does not hold for some m, l ∈ {1, 2 . . . M}. The signal
is spatially narrowband if s (n− t0 − τm) ≈ s (n− t0 − τl), (∀m, l ∈ {1, 2 . . . M}).). It is well known
that, if the signal model is spatially wideband, then the localization methods have to be formulated
in the spectral domain. Our signal model does not limit the signal bandwidth, so, in the context
of [21], our model is both frequency-wideband and spatial-wideband (Consider a numerical example
in the mmWave band. If a signal with bandwidth B = 100 MHz at a carrier frequency νc = 60 GHz is
transmitted in a conference room equipped with an antenna array with an aperture of, say, 6 m, then the
propagation time across the array would be two sampling intervals. This shows the importance of
wideband modeling.).

We scale the signal um(n) in a preprocessing step by 1/am to obtain um(n). We note that the
signal-to-noise ratios (SNRs) and noise powers are considered known to the receivers. Thereby,
the useful signals in all the receiving channels have the same power. Then, we have:

um(n) = sm(n) + uNLoSm(n) + ηm(n), (3)

where uNLoSm(n) = uNLoSm(n)/am, ηm(n) = ηm(n)/am, ηm(n) ∼ CN (0, σ2
m) is a circular-complex

zero-mean Gaussian random process (the noise) with variance σ2
m, independent across time samples

and channels and independent of the useful signal s(t). The variabilities of the propagation
attenuations are modeled by σ2

m, but the model considers that no information about the transmitter
location is contained in the attenuations. We assumed this because, in practice, location estimation
based on phases is more robust than estimation based on attenuations. Additionally, this reduces the
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number of dimensions of the search grid in the proposed algorithms. However, the algorithms use the
SNRs for channel weighting. We define the SNR in channel m as SNRm = 1/(Nσ2

m)∑N−1
n=0 |s(n)|

2.
We implement the time shifting of an RF signal by performing operations in the discrete Fourier

transform (DFT) domain on its complex envelope, and therefore, strictly speaking, the signal has to be
periodic with period N (the length of the observation interval). However, this does not have to be the
case if the error created by a cyclic time shift, compared to the regular time shift, is negligible, which is
important for the random sequence scenario.

If the (h, q)th entry of a matrix A is Ah,q, define the (h, q)th entry of exp (A) as exp(Ah,q).
Furthermore, for any vector v, let Diag {v} be the diagonal matrix whose elements on the main
diagonal are the elements of v. Then, the discrete-time matrix form of the signal model (3) is:

um = FHDt0+dm/cFs + uNLoSm + ηm, (4)

F = 1/
√

N exp(−j2π/N · kn>), (5)

Dτ = exp (−jωcτ)Diag {exp (−j2π/N · kτ)} (∀τ) , (6)

n = [0, 1, . . . , N − 1]> , (7)

k = [−N/2,−N/2 + 1, . . . , N/2− 1]> , (8)

where um = [um(0), um(1), . . . , um(N − 1)]>, s = [s(0), s(1), . . . , s(N − 1)]>, and ηm = [ηm(0), ηm(1),
. . . , ηm(N − 1)]>; F is a modified Fourier transform matrix; Dτ is the delay-by-τ operator, for any τ;
(·)> and (·)H denote transpose and conjugate transpose, respectively. In the known signal scenario,
the conditions that the continuous waveform s(t) is band-limited to (−1/2, 1/2) and that it is periodic
with period N imply that, given the samples in s, the signal in the entire (continuous) range t ∈ R is
s(t) = 1/N ∑N/2−1

k=−N/2 S(k) exp (j2πkt/N), where S(k) = ∑N−1
n=0 s(n) exp (−j2πkn/N). In the random

signal scenario, s(n), n ∈ Z, is a circular-complex zero-mean Gaussian random process with variance
σ2

s , so that SNRm = σ2
s /σ2

m.
The goal is to estimate~r given the observations um, m ∈ {1, 2 . . . M}.

3. Localization Algorithms

3.1. Maximum Likelihood Algorithms

For simplicity, we derive the ML algorithms for uNLoSm(n) = 0. We later show that they are
applicable in multipath propagation conditions as well. If Qm = FHDt0+dm/cF and ‖·‖F is the Frobenius
norm, then the signal in channel m is um = Qms + ηm and the log likelihood function (without the
additive constant) multiplied by −1 becomes:

fLL =
M

∑
m=1

1
σ2

m
‖um −Qms‖2

F, (9)

where s and ηm are defined in Section 2. According to the ML method, the estimate of the vector of
unknowns, α = (t0, x, y, z), is the one that minimizes fLL. We formulate two algorithms.

ML algorithm for a known sequence (ML-KS): If the sequence s is considered known, the estimate
of α is the one that maximizes the criterion function:

fKS2 = Re
M

∑
m=1

1
σ2

m
uH

mQms. (10)

One possible implementation of the ML-KS is given in Algorithm 1. Reliance on the knowledge
of the waveform requires that the local carrier is coupled with the A/D (or D/A) converter clock in
each receiving and transmitting channel.
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ML algorithm for an unknown sequence (ML-US): If s is considered unknown, then the estimate
of α = (x, y, z) (without loss of generality, we can set t0 = 0 in this case) is the one that maximizes the
criterion function:

fUS2 =
M

∑
l=1

M

∑
m=1

1
σ2

l σ2
m

uH
l FHDdl /c−dm/cFum. (11)

The derivation details are provided in the Appendix A and an implementation in Algorithm 2.
The criterion function fUS2 can also be written in the following matrix form. The weighted signals

in the DFT domain are given by U′m = wmFum, where the weighting coefficients are wm = 1/σ2
m,

m ∈ {1, 2, . . . , M}. Let the signals compensated for the propagation delays for a hypothetical Tx
location in the search grid,~r, be Um,comp = DτCM−dm/cU′m, where τCM is arbitrarily chosen and constant
across the channels. To reduce numerical errors, we define τCM as the mean (center of mass) of dm/c,
m ∈ {1, 2, . . . , M}. If Ucomp =

[
U1,comp, U2,comp, . . . , UM,comp

]
, the steered covariance matrix can be

written as R (~r) = UH
compUcomp ∈ CM×M. Finally, we have fUS2 = vHR (~r) v, where v is a column

vector composed of elements equal to one.
Note that the ML-US algorithm cannot estimate t0, since this is only possible if it knows the

sequence. This, however, reduces the number of dimensions in the search grid by one. The product
Fum is the DFT spectrum of the signal in channel m, and Fum/σ2

m can be calculated only once per
channel during the preprocessing to optimize the algorithm numerically. If an algorithm does not rely
on the knowledge of the waveform, the requirements for the transmitter hardware are relaxed, so that
any off-the-shelf transmitter can be localized. Furthermore, the applications of this type of localization
also include non-cooperative cases.

Algorithm 1 An implementation of the ML-KS algorithm

1. input~rTi (Np position vectors for hypothetical transmitter locations in the search grid), t0 (a vector

with Nt0 values for t0 to be searched for), c, M, N, fc, s,~rm, σm, um, for m ∈ {1, 2, . . . , M}
2. Calculate the spectrum of the known sequence s, S = Fs
3. for each gridpoint along the t0 dimension of the grid, j = 1 to Nt0 do

4. Calculate Dt0(j) according to (6)
5. end for
6. for each Rx antenna, m = 1 to M do

7. Um = 1
σ2

m
Fum

8. end for
9. for each gridpoint along the spatial dimensions of the grid, i = 1 to Np do

10. for each Rx antenna, m = 1 to M do

11. dm = ‖~rm −~rTi‖
12. Calculate Ddm/c according to (6)
13. end for
14. for each gridpoint along the t0 dimension of the grid, j = 1 to Nt0 do

15. Calculate the criterion function fij = ∑M
m=1 Re

(
UH

mDdm/cDt0(j)S
)

16. end for
17. end for
18. (i0, j0) = arg max

i,j
fij

19. return ~̂r =~rTi0 , t̂0 = t0(j0)
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Algorithm 2 An implementation of the ML-US algorithm

1. input~rTi (Np position vectors for hypothetical transmitter locations in the search grid), c, M, N, fc,

~rm, σm, um, for m ∈ {1, 2, . . . , M}
2. for each Rx antenna, m = 1 to M do

3. Um = 1
σ2

m
Fum

4. end for
5. for each gridpoint along the spatial dimensions of the grid, i = 1 to Np do

6. for each Rx antenna, m = 1 to M do

7. dm = ‖~rm −~rTi‖
8. Calculate Ddm/c according to (6)
9. end for

10. Calculate the criterion function fi = ∑M
l=2 ∑l−1

m=1 Re
(

UH
l Ddl/cDH

dm/cUm

)
11. end for
12. i0 = arg max

i
fi

13. return ~̂r =~rTi0

Note that the identities Ddm/c+t0(j) = Ddm/cDt0(j) and Ddl/c−dm/c = Ddl /cDH
dm/c were used to

optimize the algorithms numerically. Furthermore, note that S = Fs is equivalent to the command
S = fftshift(fft(s))/sqrt(N) in MATLAB.

3.2. Steered Covariance Matrix-Based MUSIC-Type Algorithm

A method for AoA estimation of wideband acoustic signals based on a steered covariance matrix
approach was proposed in [23]. The method is more efficient for short observation intervals than the
spectral focusing AoA approach proposed in [24]. A method for direct position estimation of baseband
UWB signals was proposed in [25]. It is based on the steered covariance matrix approach as well.

In this paper, we generalize the steered covariance matrix approach for direct position estimation
of wideband bandpass radio signals by introducing the SCM-MUSIC algorithm. This algorithm
uses preprocessed signals defined by U′m = wmFum, where wm = 1/σm. This means that, after this
step, the noise powers are equal across the channels. Starting from U′m, the steered covariance
matrix, R (~r), is obtained in the same way as by the ML-US algorithm. The noise subspace matrix
En (~r) ∈ CM×(M−1) is formed from R (~r) in the same way as in [23,26]. Namely, it is a block matrix,
En (~r) = [ve2, ve3, . . . , veM], where vem is the norm-one eigenvector of R (~r) corresponding to its
eigenvalue λm, where λ1 ≥ λ2 ≥ . . . ≥ λM. The matrix has M − 1 columns when there is a single
active transmitter. The estimated location is the one that maximizes the criterion function:

fSCM-MUSIC =
vHv

vHEn (~r)EH
n (~r) v

, (12)

where v = [1/σ1, 1/σ2, . . . , 1/σM]>. Algorithm 3 provides an implementation of the SCM-MUSIC.
Even though the criterion function (12) has a similar form as the original MUSIC in [26],

the differences of the SCM-MUSIC algorithm relative to the ones in the literature are as follows.
In our approach, the unknown parameters (the location of the Tx) are contained in the covariance
matrix (this is the steered covariance matrix approach), whereas in [5,26], they were contained in
the steering vector, which limits the application to narrowband signals. We model bandpass signals,
unlike [23,25], where the signals are in the baseband ([23] is for acoustic signals), and our antenna
array is distributed, unlike [23,26]. Instead of changing the attenuations over the search grid, we used
channel weights based on the received SNRs, unlike [5,25].
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Algorithm 3 An implementation of the SCM-MUSIC algorithm

1. input~rTi (Np position vectors for hypothetical transmitter locations in the search grid), c, M, N, fc,

~rm, σm, um, for m ∈ {1, 2, . . . , M}
2. Calculate v = [1/σ1, 1/σ2, . . . , 1/σM]>

3. for each Rx antenna, m = 1 to M do

4. wm = 1/σm
5. U′m = wmFum
6. end for
7. for each gridpoint along the spatial dimensions of the grid, i = 1 to Np do

8. for each Rx antenna, m = 1 to M do

9. dm = ‖~rm −~rTi‖
10. end for
11. Calculate the steered-covariance matrix R
12. Perform eigendecomposition of R to obtain vem, m ∈ {1, 2, . . . , M}
13. Form the noise subspace matrix En = [ve2, ve3, . . . , veM]
14. Calculate the criterion function fi = 1/

(
vHEnEH

n v
)

15. end for
16. i0 = arg max

i
fi

17. return ~̂r =~rTi0

Note that vem is the norm-one eigenvector of R corresponding to its eigenvalue λm, where
λ1 ≥ λ2 ≥ . . . ≥ λM.

3.3. Noncoherent Algorithms

The algorithms proposed in this section are computationally intensive when applied to the
entire distributed array, and so, we can adopt a suboptimal method to narrow the search grid first.
We applied the idea used in [3] to define the maximum covariance matrix eigenvalue (MCME)
algorithm. Its criterion function is equal to the largest eigenvalue of the covariance matrix R (~r)
defined for the previous algorithms, as opposed to the criterion function in (11), which is equal to the
sum of the elements of R (~r). The MCME algorithm does not use the spatial coherence between the
signals received by the distributed antenna array.

3.4. Numerical Complexity of the Algorithms

We now address the number of operations, NO, of the proposed algorithms. We write:

NO = NOPP +
A
Q
×NOGP, (13)

where NOPP is the number of operations in the preprocessing step, A/Q is the number of points in the
search grid, and NOGP is the number of operations for a single grid point. The size of the area that the
search grid spans is A, which is either a surface for 2D or a volume for 3D localization. The resolution
cell of the grid is Q = ∆x∆y or Q = ∆x∆y∆z (2D or 3D). A coherent algorithm requires a very fine
grid, so that ∆x, ∆y, and ∆z are in the order of λc/1000, whereas a noncoherent algorithm can work
with a much coarser grid, where ∆x, ∆y, and ∆z are in the order of c̃/B/1000. Thanks to the FFT (fast
Fourier transform) algorithm, we have that NOPP = M× ((1 + N/2 log2 N)mC + N log2 NaC), where
mC is a single complex multiplication and aC is a single complex addition. The number of operations
in the preprocessing step for coherent methods is expected to be negligible compared to the search
over the grid, because of a large number of grid points. Further, we have that each grid point requires:

NOGP = M×NOMD + NOAS (14)
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operations, where NOMD is the number of operations for the calculation of the main diagonal of the
matrix Ddm/c, and NOAS is an algorithm-specific value, which for the ML-KS algorithm is:

NOAS = Nt0 (M (3NmC + NaC)− aC) , (15)

where Nt0 is the number of points along the t0 dimension of the search grid, for the ML-US algorithm is:

NOAS = MNmC +
M(M− 1)

2
N (mC + aC)− aC, (16)

and for the SCM-MUSIC algorithm, based on the numerical complexity in [27], is:

NOAS ≈ MNmC +
M(M− 1)

2
(NmC + (N + 1)aC) +

13
3

M3 (mC + aC) + M2mC. (17)

Note that the two extreme cases for the matrix Ddm/c are to either calculate it each time or to
read it from a memory, which has been filled in advance with values calculated offline for the entire
grid. There are also possibilities in between these two extreme cases. Furthermore, note that, when
the signals are narrowband, in the limit, multiplying a signal vector by Dτ reduces to multiplying
the vector by a simple scalar exp (−jωcτ). In the general wideband case and when the matrix Ddm/c
is calculated each time, we have that NOMD = NmC + NeC, where eC is a single (scalar) complex
exponential function.

All in all, the approximate numerical complexity of the ML-KS, ML-US, and SCM-MUSIC
algorithms, respectively, is given by:

NOML-KS ≈M log2 N (N/2mC + NaC)

+
A
Q

(MNmC + MNeC + Nt0 (M (NaC + 3NmC)− aC)) , (18)

NOML-US ≈M log2 N (N/2mC + NaC)

+
A
Q

(
2MNmC + MNeC +

M(M− 1)
2

N (mC + aC)
)

, (19)

NOSCM-MUSIC ≈M log2 N (N/2mC + NaC)

+
A
Q

(
2MNmC + MNeC +

M(M− 1)
2

(NmC + (N + 1)aC)

+
13
3

M3 (mC + aC) + M2mC

)
. (20)

Table 1 shows approximate values of the numerical complexity of the proposed methods for a
specific example with parameters M = 5, N = 64, νc = 60 GHz, i.e., λc = 5 mm; the resolution cell
along the t0 dimension of the grid (for ML-KS) is 1/ (1000νc), and the span of these t0 values is the
propagation time across an array aperture of 6 m (an indoor scenario). The numerical complexity
of the preprocessing step, which is executed before the grid search (thus, it is independent of the
number of points on the grid), is 960 multiplications and 1920 additions. The table shows the numerical
complexity of the search for a single grid point, and as expected, the preprocessing step has negligible
numerical complexity because the number of points in the search grid is typically large. The table also
shows that ML-KS has a much higher numerical complexity than ML-US because of the search for
t0. Further, note that SCM-MUSIC has a higher complexity than ML-US, but their complexities are
still comparable.
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Table 1. An example of the numerical complexity of the proposed algorithms.

Algorithm Number of Multiplications Number of Additions Number of Exp Functions

ML-KS 1.15× 109 3.83× 108 320
ML-US 1280 640 320

SCM-MUSIC 1847 1192 320

We can reduce the numerical complexity of ML-KS in the following way. Since t0 is expected
to be much larger than the propagation times, dm/c, we can use the procedure explained in [20]
(Equations (20)–(23) and the explanations provided with them) to find the total delay (t0 + dm/c) of
the known sequence relative to the beginning of the observation interval by performing a 1D search for
each Rx channel. In this way, we can reduce the span of possible t0 values from [0, N) (or [−N/2, N/2))
to an interval as short as the propagation time across the aperture of the receiving array.

We point out that there are other more sophisticated methods for numerical optimization
of the cost function and, thus, for localization. One such iterative method, which combines the
gradient-descent and particle filters, efficiently searches for the maximum of an ML criterion function,
but it does not guarantee finding the global maximum [28]. Investigating optimization methods for
maximizing the likelihood functions from Section 3.1 is outside the scope of the paper.

Since a coherent algorithm requires a very fine grid, evaluating its criterion function over the
entire area A of interest may be prohibitively complex. Using the mentioned idea to narrow down the
search grid first by a noncoherent algorithm, we get a reduced number of operations, NORDC, as:

NORDC = NOPP +
A

QNCOH
×NOGP,NCOH +

ARDC

QCOH
×NOGP,COH, (21)

where QNCOH and QCOH are the resolution cells for the noncoherent and coherent algorithms,
respectively, NOGP,NCOH and NOGP,COH are the appropriate numbers of operations for each grid
point, and ARDC is, for example, a 0.95-confidence interval around the noncoherent location estimate.
A coarse grid spans the entire area A, whereas a fine grid spans a much smaller grid ARDC.

4. Simulations

This section presents numerical results of Monte Carlo simulations performed using the
algorithms explained in Section 3 and three distributed receiver antenna array geometries. Throughout
this section, we assume that the power of the LoS components decreases with the squared distance
from the transmitter. The carrier frequency is νc = 60 GHz.

4.1. Experimental Setup and Criterion Functions

Geometry G5 consists of five antennas in the horizontal plane z = 0 (see Figure 2) with x and
y coordinates of the antennas in meters (−2.65,−1.32), (−1.28,−2.55), (2.77,−0.87), (2.04, 2.07),
and (−1.30, 2.46), represented by white triangles in the figures. The geometry was chosen by hand
in order to be irregular. Figures 2–4 show the criterion functions for different Tx locations, random
Gaussian signals, and parameters B = 100 MHz, and N = 64. The true Tx location is marked by a
circle with a cross and the estimated location by a square. The same colormap was used for all of the
displayed criterion functions.
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Figure 2. The criterion function for G5 and T1 for the MCME algorithm.

Figure 3. The criterion functions for G5 and T1 for (a) ML-US (magnitude in linear scale) and
(b) SCM-MUSIC (magnitude in logarithmic scale).

Figure 4. The criterion functions for G5 and T2 for (a) ML-US (magnitude in linear scale) and
(b) SCM-MUSIC (magnitude in logarithmic scale).
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The criterion function of the MCME method is shown in Figure 2 for G5, T1 = (0, 0, 0),
SNR0 = 10 dB (which means the SNRs in the channels were approximately 1 dB). This particular
criterion function is not influenced by carrier phases, has no side lobes, is immune to phase
synchronization errors, and varies slowly across space, and so, a coarse grid can be used. This method
offers relatively low accuracy (comparable to c̃/νs). It is useful for selecting a smaller and finer grid for
the other criterion functions in this paper to reduce their computational complexity.

Figures 3 and 4 show the criterion functions for ML-US and SCM-MUSIC, for G5, SNR0 = 10 dB,
over a small area around the Tx at two characteristic locations, T1, randomly chosen near the “center”,
and T2 = (−1.5, 1.5, 0), randomly chosen near the edge of the array, respectively. The main lobes
(the lobes where the true locations are) are marked in these figures. The other lobes are side lobes,
and they represent the ambiguity problem, which is inherent to coherent methods. The distance
between adjacent lobes is in the order of the carrier wavelength, λc. These two algorithms have lobes
at the same locations; however, the SCM-MUSIC criterion function contains narrower lobes and lower
side lobes. Note that the array is relatively inexpensive in terms of hardware and signal processing,
but it suffers from the ambiguity problem, which can be seen in Figure 4a; the estimated location
(denoted by the white square) is at one of the side lobes in this particular Monte Carlo run. On the other
hand, the estimates in Figures 3a,b and 4b were within the main lobe. If a side lobe has approximately
the same magnitude as the main lobe, we call it a grating lobe. There is a non-negligible probability
that an estimate would be within a grating lobe, as a result of the ambiguity problem. Figures 3 and 4
show the criterion functions over small areas (the criterion functions are zoomed-in) so that the lobe
structure can be seen. Note that the lobe structure is determined by the geometry of the receiving array.

If the main lobe is at a point A, a grating lobe appears at any other point B that has the same
relative (between the Rx antennas) propagation distances modulo λc as a point A. More formally, if dAm
is the distance between A and the Rxm antenna and similarly for dBm, then a grating lobe appears at B
if (dAm − dA1 − dBm + dB1) /λc ∈ Z (∀m). As a result, the side lobe patterns are different for T1 and
T2, as can be seen in Figures 3 and 4.

The geometry G10 consists of five antenna subarrays of two antennas separated by
λc/2 at νc = 900 MHz, with x and y coordinates in meters (−79.49,−54.68), (−79.37,−54.8),
(−38.48,−91.52), (−38.33,−91.58), (83.18,−41.23), (83.26,−41.09) (61.06, 47.08), (61.19, 46.97),
(−38.94, 58.77), and (−38.81, 58.87). The aperture of this geometry is large and so is suitable for
outdoor environments. We applied coherent methods to each subarray and then summed the criterion
functions of each subarray. As we did not require the subarrays to be phase synchronized with each
other, we called the resulting method a semicoherent method. Figure 5 shows the subarray criterion
functions in (a–e) and their sum for the ML-US algorithm in (f). Similar results, but for the SCM-MUSIC
algorithm, are shown in Figure 6. The criterion functions of these methods have no side lobes; they
are not influenced by carrier phases or phase synchronization errors between different subarrays;
and they vary relatively slowly across space. Consequently, we can use coarse grids in exploring them.
The accuracy of the semicoherent variant is comparable to that of the DPD, [3] and is lower than the
accuracy of coherent localization. Despite having lower accuracy, semicoherent localization methods
can be used to solve the ambiguity problem and to optimize the search grid (to reduce numerical
complexity) of the coherent methods (as previously explained for noncoherent methods). Note that
the criterion functions of subarrays with collocated antennas show that the localization methods act as
AoA estimation methods.
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Figure 5. ML-US criterion functions for fc = 4500 (νc = 900 MHz) and νs = 200 kHz applied to
(a–e) individual two-element subarrays in G10 and (f) the sum of these functions.

Figure 6. SCM-MUSIC criterion functions for fc = 4500 (νc = 900 MHz) and νs = 200 kHz applied to
(a–e) individual two-element subarrays in G10 and (f) the sum of these functions.
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The metric we used to evaluate the accuracy of the algorithms was the mean squared miss distance
(the distance between the estimated location and the true location of the transmitter), i.e., MSE. We also
used the RMSE.

Figure 7 shows the summary distribution of the SNRs at antennas of the array G5 for all simulated
transmitter locations (Tx grid points) for SNR0 = 10 dB. The figure shows that the actual SNRs in most
of the channels were between −5 and 10 dB.

Figure 7. Distribution of SNRs at the antennas for simulated Tx locations for SNR0 = 10 dB.

4.2. Results

The contour plots in Figures 8–10 were generated over Tx grids of uniformly-spaced points in
the plane z = 0. For every Tx grid point, we performed 8192 Monte Carlo runs. The parameters were
B = 100 MHz, SNR0 = 10 dB, and N = 64. The simulations were carried out using realizations of a
random Gaussian process or a known deterministic sequence, the first of the modulatable orthogonal
sequences proposed in [29] for a given N. However, the results for the deterministic sequence scenario
are not shown for brevity, as they were very similar to those for the random Gaussian signal scenario.

Figures 8 and 9 show the results for the ML-US algorithm over a Tx grid of 64× 64 points that
covers most of the area inside the array. Figure 8 shows the RMSE (RMS error or the RMS of the
distance between the estimated and the true location) values normalized by the carrier wavelength, λc,
for the random Gaussian signal scenario. For this relatively low SNR and fairly short sequence length,
an accuracy of two orders of magnitude better than λc can be achieved. As expected, the accuracy was
higher in the inner part of the array aperture and lower near the edge of the aperture. Nevertheless,
the accuracy was much better than the carrier wavelength in the entire area in Figure 8. Figure 9 shows
the statistical efficiency of the algorithm (the MSE-to-CRB ratio; CRB, Cramér–Rao bound) for the
random Gaussian signal scenario. We observed that the efficiency did not depend on the Tx location
on the grid and that it was close to one. The figure shows a slight variation over space in the interval
[0.995, 1.04], as can be seen from the color bar, but this was due to the randomness in the simulations.
The results for the SCM-MUSIC algorithm were very similar to those of the ML-US algorithm.
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Figure 8. RMSE/λc of the ML-US for random Gaussian signals.

Figure 9. ML-US MSE/CRB for random Gaussian signals.
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Figure 10. MCME RMSE/λc for random Gaussian signals.

Figure 10 shows the RMSE values relative to λc, for the random Gaussian signal scenario for the
MCME algorithm, over a 23× 23 grid that covers a smaller area compared to the one used for the ML
and SCM-MUSIC algorithms. This is because MCME starts to behave as an AoA estimation algorithm
for some Tx locations near the edge of the array. In that case, the miss distance is not an appropriate
metric, and so, we chose not to evaluate it in those areas. The RMSE values inside the array were much
greater than for the previous algorithms (they exceeded 27λc inside the array), because this algorithm
did not use the information contained in the carrier phase. However, we can use this criterion function
to perform computations over a coarse grid before exploring another criterion function over a finer
grid, as explained at the end of the numerical complexity Section 3.4. This accuracy was around
0.04c̃/νs, which was similar to the accuracy of the conventional methods (those that did not use the
carrier phase differences between the received signals).

The statistical efficiency of the ML-US, averaged over a grid of 32× 32 uniformly-distributed
points covering an area similar to the one in Figure 8, versus SNR0, is shown in Figure 11. The curves
are shown for different combinations of sequence length N ∈ {64, 256, 1024} and normalized frequency
fc ∈ {600, 3000, 12000}, i.e., B ∈ {100, 20, 5}MHz, for both deterministic and random Gaussian signals.
For the ML-US algorithm, the statistical efficiency for the random Gaussian scenario was close to one
in the observed SNR range, whereas for the deterministic scenario, it started to diverge at lower SNRs
in the given range. The results for the SCM-MUSIC algorithm are not shown because its statistical
efficiency was similar to that of the ML-US in the observed SNR range, and in the worst case, it was by
about 15% higher.
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Figure 11. Statistical efficiency of the ML-US as a function of SNR0.

Figure 12 shows the performance of the algorithms for fc = 600, SNR0 = 10 dB, and different
sequence lengths, averaged over the same area as for Figure 11. The curves do not feature a pronounced
threshold. This means that even short sequences can be used for localization, which enables spectrum
sensing to have a quick response.

Figure 12. The RMSE/λc vs. N for different methods and scenarios.

We finally point out that in the respective experiments, we worked with other Rx configurations
that surrounded the Tx by placing the Rx antennas at different locations and obtained results that were
no different than the ones already presented.

4.3. Experiments with Subarrays of Antennas

As the previous results showed, G5 suffered from the ambiguity problem (high side lobes), so we
introduced a distributed massive-MIMO-like geometry, suited for installation and localization in a
single room. Geometry G90 is a 90-element array formed by replacing every antenna in G5 with a
subarray of an 18-element acoustic camera [30] geometry scaled by a factor of 17/3. Each subarray
was rotated so that it was in a vertical plane, displayed by a rectangle in Figure 13, and its broadside
direction pointed to the center of the total array. According to the system model, the signals from all
the G90 antennas were processed as if they were a single large array; however, grouping antennas into
subarrays can simplify the mechanical design and the installation of the system. We give results for Tx
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at T1 = (0, 0, 0) and different scenarios regarding the presence/absence of multipath and interfering
signals. The parameters of the LoS component were B = 100 MHz, SNR0 = 10 dB, and N = 64.
The statistical results were averaged over 8192 simulation runs. All of the magnitudes in the figures
showing the results are in (dB). Similarly to G5, SNR0 = 10 dB means that the SNRs in the channels
were around 1 dB.

Figure 13. The Rx array geometry G90.

Figure 14 shows the criterion functions in a single-user LoS-only scenario for both the ML-US
and SCM-MUSIC algorithms. The ML-US side lobes were 8 dB below the main lobe, whereas the
SCM-MUSIC side lobes were 33 dB below the main one. We used this scenario as a baseline to compare
the results with multipath propagation and multiple transmitters against it.

Figure 14. One-user LoS setting: top views of the criterion functions for G90 and T1 for (a) ML-US,
(b) SCM-MUSIC, and the corresponding side views in (c,d) with the magnitude in dB.
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4.4. Experiments with a Cluster of Scatterers and a Reflector

Figures 15 and 16 show the results for scenarios with a small cluster of scatterers and an ideal
reflector, respectively, positioned at (0.025,−0.025, 0) (denoted by a diamond). We modeled the cluster
of scatterers as a point scatterer with randomized constant phase terms in the reflected (scattered) signal
components. The power of the reflected signal components was pessimistically modeled to be inversely
proportional to the squared sum of the distances the signal traveled before and after reflection. The only
difference was that the carrier phases were modeled as random (uniformly distributed on [0, 2π]) and
deterministic, respectively. In the former scenario (Figure 15), the algorithms did not detect the reflector
because the carrier phase of the reflected component was randomized. However, the waveform of the
NLoS component was correlated with the useful (LoS) component, so the effect was an increase in
side lobe magnitudes. Even though the shape of the criterion function was (qualitatively) similar to
the one without multipath propagation as in Figure 14, the suppression of the side lobes was lower;
it was roughly 6 dB and 4 dB for the ML-US and SCM-MUSIC algorithms respectively, instead of
8 dB and 33 dB, as in the LoS-only scenario in Figure 14. In the latter scenario (Figure 16), there was
no notable increase in side lobes, but the reflector was detected as a separate source. SCM-MUSIC
requires knowledge of the number of “sources”, so it is assumed known in the simulations. These
setups represent extreme cases, and one may expect something in between in practice.

Figure 15. One user with a cluster of scatterers scenario: top views of the criterion functions for G90 and
T1 for (a) ML-US, (b) SCM-MUSIC, and the corresponding side views in (c,d) with the magnitude in dB.
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Figure 16. One user with an ideal reflector scenario: top views of the criterion functions for G90 and T1

for (a) ML-US, (b) SCM-MUSIC, and the corresponding side views in (c,d) with the magnitude in dB.

Table 2 shows the statistical performance of the algorithms for these experiments, but since we
wanted to emphasize the effects of multipath components, we increased SNR0 to 20 dB. The results are
presented for different power ratios between the NLoS components and the LoS component, denoted
δNLoS. For the sake of comparison, the results for the setting with only the LoS component are shown.
The algorithms behaved similarly in these scenarios as their performance deteriorated due to multipath,
but the RMSE was still well bellow λc. For NLoS levels of 10 dB or more below the LoS component,
which are realistic for the indoor environments in the mmWave, according to [11], the RMSE was
by two orders of magnitude smaller than λc. This accuracy is important, because it enables the base
station to focus energy to the Tx for down-link communication after the Tx is localized. Additionally,
we generated the results for different scatterer/reflector positions inside the array (farther away from
the Tx), as well as for N = 512, but the results were only slightly different.

Table 2 shows that the localization methods proposed in the paper could achieve an accuracy
much better than the carrier wavelength. On the other hand, the existing two-step localization methods,
such as energy-based methods applied in mmWave massive MIMO systems, have drastically lower
accuracies: the error is higher than the carrier wavelength, e.g., it is in the order of a meter [1,31]
and 8 mm, [32]. However, the energy-based methods are easier to implement than coherent methods,
especially in terms of synchronization (they can work with very rough synchronization).
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Table 2. RMSEs in the presence of multipath propagation and SNR0 = 20 dB. IR, ideal reflector; CS,
cluster of scatterers.

δNLoS
ML-US SCM-MUSIC

IR CS IR CS

0 dB λc
45.21

λc
40

λc
45.09

λc
39.67

−5 dB λc
76.29

λc
71.26

λc
75.95

λc
70.31

−10 dB λc
131.3

λc
126.3

λc
130.7

λc
124.1

−15 dB λc
225.2

λc
221.7

λc
223.8

λc
220.1

−20 dB λc
380.6

λc
371.7

λc
380.4

λc
375.9

LoS
only λc

1090
λc

1070

4.5. Experiments with Two Transmitters

We performed also experiments with two transmitters with equal transmit powers and located
at (0.025,−0.025, 0), thus separated by 7.07λc. Figure 17 shows the results, and they suggest that
both algorithms distinguish the transmitters. Note that the side lobe suppression is approximately
the same as in the LoS-only scenario in Figure 14. In Figure 18, we plot the results of an experiment
where the other user is at a (0.008,−0.008, 0) (2.26λc distance) and with a 10 dB greater transmit power.
ML-US could not estimate the position of the first Tx because its main lobe was lost in the side lobes
corresponding to the interferer. SCM-MUSIC, however, localized the two sources successfully.

Figure 17. Experiments with two transmitters in LoS and with equal powers: top views of the criterion
functions for G90 and T1 for (a) ML-US, (b) SCM-MUSIC, and the corresponding side views in (c,d) with
the magnitude in dB.
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Figure 18. Experiments with two transmitters in LoS with a 10-dB difference in powers: top views
of the criterion functions for G90 and T1 for (a) ML-US, (b) SCM-MUSIC, and the corresponding side
views in (c,d) with the magnitude in dB.

Table 3 shows the statistical performance of the algorithms when the interferer was located at
(0.025,−0.025, 0) for different power ratios between the interferer and the Tx, denoted δIF. We used
SNR0 = 20 dB for the same reason as in the multipath scenarios. For δIF ≤ 0 dB, both algorithms
performed well, with SCM-MUSIC performing almost as if the interfering signal were not present.
For δIF ≥ 10 dB, ML-US failed to localize the Tx (see Figure 18), whereas SCM-MUSIC performed
well even when it was 30 dB below the interferer. This is one advantage of SCM-MUSIC over
ML-US, which justified its use despite the fact that ML-US was less complex. In other words,
the SCM-MUSIC method was more robust in conditions with large differences in transmitted power
between different transmitters.

Table 3. RMSEs for scenarios with an interferer and SNR0 = 20 dB.

δIF ML-US SCM-MUSIC

+30 dB N/A λc
604.6

+20 dB N/A λc
1019

+10 dB N/A λc
1061

0 dB λc
248.2

λc
1059

−10 dB λc
776.3

λc
1063

no interf. λc
1090

λc
1070

We note one important consequence of the spatial selectivity of the methods discussed in the
previous text. If a base station can use its distributed antenna array to distinguish between (and localize)
two antennas of the same user terminal, separated by 5 cm, then the base station can send two
independent data streams toward these antennas, effectively increasing the throughput in the downlink
toward that user in the same time-frequency resource.
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As an alternative to G90, we introduced geometry G18, which also suppresses side lobes, but is
less expensive, both in terms of hardware and processing cost. Geometry G18 is the acoustic camera
geometry [30] scaled by a factor of 12, placed in the plane at z = 0 (see Figure 19a). Figure 19b–d
shows the results for G18 and a source at T3 = (0.152, 0.033,-1.2), which corresponds to a setup when
the array is attached to the ceiling of a room and there is a transmitter 1.2 m below. The SNR0 was
set to 12 dB, which entailed that the SNRs in the channels were between 4 and 10 dB. The search grid
was in the plane z = −1.2 m, which contained the true location of the transmitter. The CRB for the Tx
location was 2.93× 10−9 m2, whose square root corresponded to 0.011λc. The criterion function side
lobes were suppressed (at least 43 dB lower than the main lobe).

The proposed methods were based on a model that treats the signal wavefront as spherical (they
do not use the planar wave assumption). We now show that they were not only able to estimate the
AoA of the received signal, but also to localize the transmitter using a collocated massive antenna
array. We performed simulations for a uniform rectangular array with 16× 16 antennas spaced λc/2
apart at νc = 60 GHz, centered at (0, 0, 0) and lying in the yz-plane. The array aperture was then
7.5 cm. We simulated a transmitter on the x-axis at a distance of 1, 2, 4, and 8 apertures away from
the array. The criterion functions for these four Tx locations are shown in Figure 20a–d, respectively.
The RMSE values along the x-axis for 8192 Monte Carlo runs for these locations were 0.048λc, 0.18λc,
0.7λc, and 2.8λc, respectively. The RMSE values along the y-axis were 0.0042λc, 0.008λc, 0.016λc,
and 0.032λc, respectively. We concluded that the accuracy along the y-axis was better than the carrier
wavelength, whereas along the x-axis, it was worse, but localization was still possible, thanks to the
curvature of the wavefront. Furthermore, the RMSE along the x-axis increased with the distance from
the array. To make the comparison fair, we chose different SNR0 for these Tx locations to make the
actual SNRs in the receiving channels be around 4.5 dB for each of the locations.

Figure 19. Results of localization for G18: (a) Rx array geometry and Tx position, (b) ML-US criterion
function over a smaller area, (c) ML-US over a larger area, (d) SCM-MUSIC over a smaller area with
the magnitude in dB.
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Figure 20. SCM-MUSIC criterion functions for localization of a transmitter at a distance of (a) 1, (b) 2,
(c) 4, and (d) 8 apertures from the collocated massive antenna array.

5. Conclusions

In this paper, we analyzed wideband direct localization of a transmitter in a multipath
scenario with spatially-coherent LoS signal components. The signal model in this paper was both
spatial-wideband and frequency-wideband, unlike most of the models in the existing literature.
The same goes for the proposed localization algorithms. The simulation results for the proposed
algorithms showed that they were statistically efficient. Further, they showed that the LoS-only
localization RMSE could be two to three orders of magnitude lower than the carrier wavelength (even
as accurate as one thousandth of the carrier wavelength) for a reasonable number of receiving antennas
and system parameters, such as SNRs, the bandwidth, and the number of samples (such as 16 samples).
The simulations also showed that localization RMSEs are two orders of magnitude lower than the
carrier wavelength even in multipath and multiuser scenarios. Furthermore, relatively high accuracy
can be achieved even for low SNR conditions and short observation intervals. Overall, the proposed
methods were still numerically complex, and their further numerical optimization is a part of future
research. The SCM-MUSIC algorithm had higher numerical complexity, but it was more robust in
conditions with large differences in transmitted signal power from different sources; and it worked
even in some cases when the ML-US algorithm did not. If a base station can localize two antennas
in LoS conditions as separate sources, it can send two independent data streams toward them in the
same time-frequency resource, while reducing interference to other points in the area. These results
suggest that the performance (throughput, interference cancellation) of future wireless cellular systems,
especially distributed massive MIMO, can dramatically improve. The presented results indicated that
such systems have a great potential for location-aided communication, which is not fully recognized
in the existing literature.
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Abbreviations

The following abbreviations are used in this manuscript:

2G second generation
3D three-dimensional
5G fifth-generation
A/D analog-to-digital
AoA angle of arrival
CRB Cramér–Rao bound
D/A digital-to-analog
DFT discrete Fourier transform
DPD direct position determination
FFT fast Fourier transform
LAC location-aided communication
LBS location-based services
LoS line-of-sight
MCME maximum covariance matrix eigenvalue
MIMO multiple-input multiple-output
ML maximum likelihood
ML-KS maximum likelihood known sequence
ML-US maximum likelihood unknown sequence
mmWave millimeter-wave
MSE mean-squared error
MUSIC multiple signal classification
NLoS non-line-of-sight
RF radio frequency
RMSE root-mean-squared error
RSS received signal strength
SCM-MUSIC steered covariance matrix multiple signal classification
SNR signal-to-noise ratio
TDoA time difference of arrival
ToA time of arrival

Appendix A. Derivation of Maximum Likelihood Algorithms

If Qm = FHDt0+dm/cF and ‖·‖F is the Frobenius norm, then the signal in channel m is given
by um = Qms + ηm, and the log likelihood function (without the additive constant) multiplied
by −1 becomes:

fLL =
M

∑
m=1

1
σ2

m
‖um −Qms‖2

F

=
M

∑
m=1

1
σ2

m

(
uH

m − sHQH
m

)
(um −Qms) .

(A1)

According to the ML method, the estimate of the vector of unknowns, α, is the one
that minimizes fLL. For convenience, define u =

[
uH

1 /σ1, uH
2 /σ2 . . . uH

M/σM
]H ∈ CMN×1 and

Q =
[
QH

1 /σ1, QH
2 /σ2 . . . QH

M/σM

]H
∈ CMN×N .

ML-KS: If the sequence s is considered known, then the estimate of α = (t0, x, y, z) is the one
that minimizes:

fKS1 = fLL = ‖u−Qs‖2
F

= uHu− 2 Re
(

uHQs
)
+ ζsHs,

(A2)
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where QHQ = ∑M
m=1 QH

mQm/σ2
m = ∑M

m=1 Q−1
m Qm/σ2

m = IN ∑M
m=1 1/σ2

m = ζIN . Since ζ, the first term,
and the third term in (A2) are constants, minimizing fKS1 is equivalent to maximizing:

fKS2 = Re
(

uHQs
)

= Re
M

∑
m=1

1
σ2

m
uH

mQms.
(A3)

ML-US: If s is considered unknown, then the estimate of α = (x, y, z) is the one that minimizes:

fUS1 = ‖u−Qŝ‖2
F, (A4)

where ŝ is the value of s that minimizes fLL for a given (x, y, z), or more formally ŝ = arg min
s

fLL.

The solution is:
ŝ = Q†u =

(
QHQ

)−1
QHu =

1
ζ

QHu. (A5)

The criterion function is then:

fUS1 =
(

uH − ŝHQH
) (

u−Qŝ
)

= uHu− 1
ζ

uHQQHu.
(A6)

The first term is a constant, so minimizing fUS1 is equivalent to maximizing:

fUS2 = uHQQHu. (A7)

Since QHu = ∑M
m=1

1
σ2

m
QH

mum, we have:

fUS2 =
M

∑
l=1

M

∑
m=1

1
σ2

l σ2
m

uH
l QlQ

H
mum

=
M

∑
l=1

M

∑
m=1

1
σ2

l σ2
m

uH
l FHDdl /c−dm/cFum.

(A8)
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