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Abstract: Velocity information from the odometer is the key information in a reduced inertial sensor
system (RISS), and is prone to noise corruption. In order to improve the navigation accuracy and
reliability of a 3D RISS, a method based on a tracking differentiator (TD) filter was proposed to track
odometer velocity and acceleration. With the TD filter, an input signal and its differential signal are
estimated fast and accurately to avoid the noise amplification that is brought by the conventional
differential method. The TD filter does not depend on an object model, and has less computational
complexity. Moreover, the filter phase lag is decreased by the prediction process with the differential
signal of the TD filter. In this study, the numerical simulation experiments indicate that the TD
filter can achieve a better performance on random noises and outliers than traditional numerical
differentiation. The effectiveness of the TD filter on a 3D RISS is demonstrated using a group of offline
data that were obtained from an actual vehicle experiment. We conclude that the TD filter can not
only quickly and correctly filter velocity and estimate acceleration from the odometer velocity for a
3D RISS, but can also improve the reliability of the 3D RISS.

Keywords: land vehicles navigation; reduced inertial sensor system; velocity estimation; tracking
differentiator filter; phase lag compensation

1. Introduction

Most current land vehicular navigation is highly dependent on the Global Positioning System
(GPS). However, in urban canyons, tunnels, and other GPS-denied environments, GPS service
may suffer from possible signal outages, jamming, and multi-path effects. To maintain positioning
availability and accuracy in such cases, GPS is augmented with the inertial navigation system (INS).
As a standalone approach, INS is inherently immune to external disturbances and is able to provide
continuous navigation solutions with short-term accuracy [1]. Therefore, one of the common solutions
for vehicular positioning during GPS outages is to augment GPS with INS [2,3].

For low-cost objectives, instead of integrating GPS with a full inertial measurement unit(IMU)
containing three accelerometers and three gyroscopes, the reduced inertial sensor system (RISS)
has gained more and more attention. Only one azimuth gyroscope and an odometer or wheel
encoders is integrated with GPS, referred to as 2D RISS, to provide 2D positioning solutions in planar
environments [1,4–7]. An integrated RISS/GPS module using a particle filter (PF) was proposed in [8]
to provide 2D navigation solutions. A 3D RISS [2,9] composed of a 2D RISS and two horizontal
accelerometers is another navigation solution suitable for all wheeled moving platforms, and could
obtain the pitch and roll angles of a land vehicle. An enhanced version of PF called the Mixture PF
was utilized in [10] to perform the tightly coupled integration of a 3D RISS with GPS. Currently, most
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studies on RISSs focus on the filters of RISS/GPS integration or on inertial sensor error correction
techniques because of the low cost and low precision of the utilized inertial sensors [5,11,12].

An odometer is a completely autonomous device, whose measurement error divergence speed
is slower than that of the inertial sensors. Therefore, the introduction of odometer measurement
information in a pure inertial navigation system could slow down the divergence speed of INS error to
a certain extent without decreasing the autonomous characteristics of the system.

In a 3D RISS, the derivative of velocity information from the odometers is used to calculate pitch
and roll angles, and the velocity information from the odometer is used to calculate the position
together with the inertial sensors. Additionally, during GPS outages, the velocity information from the
odometers is also used for the RISS/GPS integrated navigation to correct the performance degradation
with a Kalman filter (KF) [13–15]. However, in actual roadways, when the vehicle sideslips or jumps off

the ground, the output of the odometer will not represent the actual velocity of the vehicle. Meanwhile,
the output of the odometer is easily disturbed by random errors and some signal jumps because of
the quantization errors and measurement noises of the wheel encoders. In these conditions, the error
of the derivative of velocity information obtained in the classical numerical differential method is
significantly boosted, which will decrease the navigation accuracy and reliability of the vehicle greatly.
If the wrong velocity information is used in integrated RISS/GPS navigation, the error of the KF
will diverge rapidly without restraint, especially during GPS outages. Moreover, the precision of
the odometer for measuring the velocity of vehicles is low because of the cost of the odometers
and the civilian vehicles overall. Therefore, it is necessary to improve the measurement accuracy
and reliability of the odometer using error estimation technologies. Recently, many scholars have
proposed various algorithms and approaches to improve this problem based on KFs [16,17]. However,
KF and its improving algorithms need to build the object models to extract state information, but the
actual velocity error model parameters cannot be measured accurately. In [18], a filter was presented
that could achieve high-velocity estimation by fusing information from a magnetometer array with
visual-inertial navigation systems (VINS), although the complexity and cost of the whole navigation
system would be increased.

In engineering applications [19,20], it is common to encounter the requirements for extracting
true signals or their derivatives from signals contaminated with noise. There have been various
filtering methods proposed by researchers, such as the high-gain observer-based differentiator [21],
adaptive filters [22], linear time-derivative trackers [23], robust exact differentiator [19,24], and so
on. Actually, it is difficult to guarantee real-time performance because of the large computation
complexity of these complicated filtering technology. Tracking Differentiator (TD), originally proposed
by Han Wang [25], is mainly used to solve the problem of reasonably extracting continuous and
differential signals from measurement signals with discontinuous or random noises. It overcomes the
drawbacks of the classical differential algorithm and has a strong ability to suppress noises. Because
of its rigid proof in mathematics and good tracking ability for applications in engineering, it has
been widely used in various fields [26–28]. In [29], a method of extracting the velocity of a moving
vehicle from the output signal of an odometer was introduced using TD to improve velocity precision.
Compared with numerical differentiation, this method can not only restrain noise, but it also has a
strong anti-interference ability, a simple algorithm, convenient parameter adjustment, and good filter
effect. On the other hand, the phase lags and the differential output of the TD filter were not taken into
account in this study [29].

Inspired by previous studies, this paper attempts to introduce the tracking-differentiator filter
to extract proper velocities and their derivatives from odometers with noises, in order to improve
the navigation accuracy and reliability of 3D RISSs in GPS-denied environments. In this 3D RISS,
the original odometer velocity is filtered using a TD filter, the tracking signal output of the TD filter is
used as the velocity, and the differential output of the TD filter is used as the acceleration. Using a
group of offline data obtained from an actual vehicle experiment, the effectiveness of the TD filter on
the 3D RISS was demonstrated in simulation experiments.
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2. 3D RISS Mechanization and Error Analysis

2.1. 3D RISS Mechanization

A 3D RISS is comprised of one azimuth gyroscope providing the azimuth angular rate change,
two horizontal accelerometers for calculating the pitch and roll angles in a horizontal plan, and an
odometer with a moving velocity in a near-horizontal plan [2,6,10,30]. The 3D RISS mechanization
schematic diagram is shown in Figure 1.
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Figure 1. The schematic diagram of 3D RISS mechanization. 

During the 3D RISS mechanization process, the pitch angle of the vehicle is calculated by the 
forward accelerometer output information after error compensation. The pitch angle calculation 
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Figure 1. The schematic diagram of 3D RISS mechanization.

During the 3D RISS mechanization process, the pitch angle of the vehicle is calculated by the
forward accelerometer output information after error compensation. The pitch angle calculation
formula is yielded by Equation (1):

p = sin−1(
fy − aod

g
), (1)

where aod is the acceleration of the vehicle in a near-horizontal plan, and g is the Earth’s gravity.
aod is not directly measurable, and is obtained from the derivative of the odometer velocity νod.

Generally, aod at each time epoch can be calculated as

aod =
vod(k) − vod(k− 1)

dt
, (2)

where νod(k) refers to the νod at each time step, and dt is the sample epoch.
After that, the roll angle of the dynamic vehicle is calculated by the transversal accelerometer

information fx, the azimuth gyroscope measurement wz, and the odometer velocity information.
Therefore, the roll angle calculation formula is yielded by Equation (3):

r = − sin−1
(

fx + vodwz

g cos p

)
, (3)
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Simultaneously, the azimuth can be derived by Equation (4).

.
A = −

(
wz −wie sinϕ−

ve tanϕ
RN + h

)
, (4)

After the attitude calculation, the 3D velocity in the local level frame (LLF) can be derived using
Equation (5):

v =


ve

vn

vu

 =


vod sin A cos p
vod cos A cos p

vod sin p

, (5)

Finally, the 3D position can be obtained by integration. The step-by-step computation of the 3D
position is yield by

.
h = vu,

.
ϕ =

vn

R + h
,

.
λ =

ve

(R + h) cosϕ
, (6)

2.2. Errors Analysis

2.2.1. Attitude Errors Analysis

Differentiating Equations (1), (3), and (4), respectively, the attitude errors can be yield

δp =
δ fy − δaod

g cos p
−
( fy − aod)δg

g2 cos p
, (7)

δr = −
δ fx + δvodwz + vodδwz

g cos p cos r
+

( fx + vodwz)(δg cos p− gδp sin p)

(g cos p)2 cos r
, (8)

δ
.

A = −

δwz −wieδϕ cosϕ−
δve tanϕ+ veδϕ sec2 ϕ

RN + h
+

ve tanϕδh

(RN + h)2

, (9)

From Equation (7), the pitch error is determined by the forward accelerometer measurement error
δfy, the odometer’s forward accelerate error δaod, and the Earth’s gravity error δg. The roll error is
determined by the transversal accelerometer measurement error δfx, the odometer measurement error
δvod, the vertical gyroscope measurement error δwz, the pitch error δp, and also the Earth’s gravity error
δg. Assuming that the Earth’s radius R is a relative large value, the azimuth error can be simplified as

δ
.

A = −
(
δwz −wieδφ cosφ

)
, (10)

Therefore, the azimuth error is mainly determined by the vertical gyro measurement error δwz

and the latitude error δϕ.

2.2.2. Velocity Errors Analysis:

Differentiating Equation (5), the velocity errors can be yielded:

δve = δvod sin A cos p + δAvod cos A cos p− δpvod sin A sin p, (11)

δvn = δvod cos A cos p− δAvod sin A cos p− δpvod cos A sin p, (12)

δvu = δvod sin p + δpvod cos p, (13)
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2.2.3. Position Errors Analysis

Differentiating Equation (6), the position errors can be obtained:

δ
.
h = δvu, (14)

δ
.
ϕ =

δvn

R + h
−

vnδh

(R + h)2 , (15)

δ
.
λ =

δve + δϕve tanϕ
(R + h) cosϕ

−
veδh

(R + h)2 cosϕ
, (16)

In above analysis, the νod derived from the odometer is at least as important as the data from the
gyroscope or accelerometers. The derivative aod of νod is used to calculate the pitch and roll angles.
The νod is used to calculate the 3D position together with inertial sensors. Hence, in actual applications,
it is of great significant to improve the measurement accuracy and reliability of the odometer velocity.

3. Tracking Differentiator Filter

3.1. TD Filter Principle

In classical control theory, the differentiator is built using a small time-constant inertial unit.
The first-order derivate of the input signal U(s) can be obtained by following a linear, time-invariant,
continuous-time dynamic system like Equation (17):

Y =
s

Ts + 1
U =

1
T

(
1−

1
Ts + 1

)
U, (17)

where Y(s) and U(s) are the output and input, respectively; T is the time constant; and s is the Laplace
operator. In fact, when T is small enough, the inertia unit becomes an approximate time-delay unit.
That is to say, 1/(Ts + 1) ≈ e-Ts. The inertia unit in Equation (17) could be treated as a time-delay unit
with a small time constant. The inverse Laplace transform of Equation (17) is

y(t) ≈
1
T
(u(t) − u(t− T)) ≈

.
u(t), (18)

When signals u(t) are corrupted by noises, the noises are also amplified 1/T times; so,
the differentiator obtained by the classical method is not suitable for most engineering applications.
An improved differentiator of Equation (19) was proposed in [25].

Y(s) =
1

T2 − T1

(
1

T1s + 1
−

1
T2s + 1

)
U(s), (19)

The difference of the two inertia units is used as the differential to depress the noise amplification.
In order to obtain the differential by the fastest dynamic part, a resulting control law that drives any
initial state point to the origin in the minimum time is introduced to construct the noise-tolerant time
optimal control (TOC)-based TD [27].

The double-integral system is defined as{ .
x1 = x2
.
x2 = u

, (20)

where |u| ≤ r, and r is a constant constraint of the control input. It was proven in [24] that the resulting
feedback control law that drives the state from any initial point to the origin in the shortest time is

u = −R · sat(x1 − v +
|x2|x2

2R
, δ), (21)
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where ν is the desired value for x1.

sat(A, δ) =
{

sign(A), |A| > δ
A/δ, |A| ≤ δ, δ > 0

, (22)

where sign(·) is the Sign function, so the TD filter is constructed by using{ .
x1 = x2
.
x2 = −R · sat(x1 − v + |x2 |x2

2R , δ)
, (23)

where x1 is the desired trajectory and x2 is its derivative.
Via Euler’s method discretization, the discrete form of TD is given:

f h = fhan(x1(k) − v(k), x2(k), r, h0)

x1(k + 1) = x1(k) + h · x2(k)
x2(k + 1) = x2(k) + h · f h

, (24)

where ν is the input signal, x1 is the filter value of ν, x2 is the derivative of x1, r is the tracking velocity
of the TD filter, and h is the step size in simulation. The nonlinear switching function fhan (x1-ν, x2, r,
h0) is given by Equation (25):

f h = fhan(x1 − v, x2, r, h0)

d = rh0

d0 = h0d
y = x1 − v + h0x2

a0 =
√

d2 + 8r
∣∣∣y∣∣∣

a =

{
x2 + (a0 − d)sign(y)/2,

∣∣∣y∣∣∣ > d0

x2 + y/h0,
∣∣∣y∣∣∣ ≤ d0

fhan = −

{
rsign(a), |a| > d

ra/d, |a| ≤ d

(25)

The state x1 tracks the input signal ν in the maximum velocity r without oscillation due to the
function of fhan. The error between x1 and ν goes to zero. The larger the speed factor r is, the faster
the signal tracks. However, the larger of the speed factor r is, the stronger the noise amplification is.
Moreover, the noise will reduce by adjusting the filter parameter h0 (5~10 times of h). The larger the
filter factor h0 is, the better the filtering effect is. However, the larger the filter factor h0 is, the greater
the phase loss of the tracking signal. Therefore, in order to obtain a better filtering effect, coordinated
adjustment of r and h0 is required.

Generally, there is some phase lag on the output results of filters. Because TD can give the derivative
of the input signal, the phase lag of the TD filter could be compensated with the following equations:

v1(k) = v(k) + h1 · x2(k)
f h = fhan(x1(k) − v1(k), x2(k), r, h0),
x1(k + 1) = x1(k) + h · x2(k),
x2(k + 1) = x2(k) + h · f h,

, (26)

where ν1 is the new input signal composed of the original input signal ν, h1 is the forecast time of ν
with x2, and x1 is the filter value of ν1. The forecast time h1 is usually 1~1.5 times of h0.
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3.2. TD Filter Simulation Examples

3.2.1. Phase Compensation for Signal Filtering

Let y(t) = sin(20πt) be an original input signal. A TD filter is set with the given design parameters:
h = 0.005 s, h0 = 5 h, r = 30,000, and h1 = 1.2 h0. The original input signal y(t), the filtering result of
TD without phase compensation and the filtering result of TD with phase compensation are shown
in Figure 2a. As Figure 2a shows, the phase lag of the TD filter is obviously reduced by the phase
compensation. The numerical differential result of y(t), the differential result of TD without phase
compensation and the differential result of TD with phase compensation are shown in Figure 2b.
As Figure 2b shows, after half a cycle of y(t), the differential result of TD with phase compensation can
track the numerical differential result of y(t) very well. So, in the following part of this paper, TD refers
in particular to TD with phase compensation.
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Figure 2. Filtering result and differential result of TD.

3.2.2. Noise Reduction

A random noise with uniform distribution in [0,0.1] is added to y(t). The given design parameters
of the above TD filter remain unchanged. The original input signal y(t), the noisy signal and the
filtering result of TD are shown in Figure 3a. TD can extract the original signal from the noisy signal
with a small phase lag. The numerical differential result of original signal and noisy signal, and the
differential result of TD are shown in Figure 3b. Compared to the numerical differential result of the
original signal, the differential result of TD is obviously more accurate than the numerical differential
result of the noisy signal.
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3.2.3. Outliers Exclusion

Here, a hypothetical outlier point is magnified 10x from the noisy signal referred to in Section 3.2.2.
In addition, the given design parameters of the above TD filter remain unchanged. The original input
signal y(t), the noisy signal and the filtering result of TD are shown in Figure 4a. TD cannot only extract
the original signal from the noisy signal with a small phase lag, but is also hardly affected by the outlier
point. The numerical differential result of the original signal and noisy signal, and the differential
result of TD are shown in Figure 3b. The outlier point leads to the remarkable error of the numerical
differential result of the noisy signal. However, there is almost no effect caused by the outlier point on
the differential result of TD.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 16 

 

and the filtering result of TD are shown in Figure 3a. TD can extract the original signal from the noisy 
signal with a small phase lag. The numerical differential result of original signal and noisy signal, 
and the differential result of TD are shown in Figure 3b. Compared to the numerical differential result 
of the original signal, the differential result of TD is obviously more accurate than the numerical 
differential result of the noisy signal. 

 
(a) Filtering result of TD with noise 

 

 
(b) Differential result of TD with noises 

Figure 3. Filtering result and differential result of TD with noise. 

3.1.3. Outliers Exclusion 

 
(a) Filtering result of TD with random noises and outlier points. 

Figure 4. Cont.



Sensors 2019, 19, 4501 9 of 16
Sensors 2019, 19, x FOR PEER REVIEW 9 of 16 

 

 
(b) Differential result of TD with random noises and outlier point 

Figure 4. Filtering result and differential result of TD with random noises and outlier point. 

As Section 3 demonstrated, TD achieves a better performance on random noises and outliers 
than traditional numerical differentiation. Using the odometer velocity data of a 3D RISS as the input 
signal of a TD filter, the filtered value of the odometer velocity data can be obtained from x1 of this 
TD with noise reduction and outlier exclusion, and the acceleration data can also be obtained from x2 

of this TD filter rather than being calculated using the numerical differential method. 

4. Simulation Experiments 

In this section, a group of offline data prepared for a study of RISSs by the Navigation 
Instrumentation Research Group in Royal Military College of Canada is used to demonstrate the 
effect of velocity and acceleration estimation through an actual vehicular experiment based on TD. 
The 3D RISS mechanization is constructed from a low-grade Xbow IMU with the odometer output at 
10 Hz update rates, and high-end Novatel SPAN IMU mechanization results are used as the 
reference. The odometer velocity (preprocessed by an offline wavelet filter) of this group is used as 
the original odometer velocity. The original velocity is filtered through a TD filter set with the given 
design parameters: h = 0.1 s, h0 = 5 h, r = 20,000, and h1 = 1.4 h0. In the 3D RISS with the original 
odometer velocity filtered by TD, the x1 takes the place of the original velocity νod and the x2 takes the 
place of aod calculated by Equation (2). The errors in attitude, velocity, position, and 2D trajectory will 
be plotted for comparison. Finally, error analysis will be discussed. 

4.1. Validation of a 3D RISS with Velocity Filtered by TD  

The three navigation simulation results of the 3D RISS with the original odometer velocity 
without a TD filter, the 3D RISS with the original odometer velocity filtered by TD, and the Novatel 
IMU are compared in Figures 5–8. In Figures 5–8, “3D-RISS without TD” refers to the simulation 
results of the 3D RISS with the original odometer velocity without a TD filter, “3D-RISS with TD” 
refers to the simulation results of the 3D RISS with the original odometer velocity filtered by TD, and 
“Novatel” refers to the simulation results of the Novatel IMU. The standard deviations of the main 
navigation errors between the two 3D RISSs and Novatel IMU are listed in Table 1. 

Figure 5a depicts a comparison of the tri-axial attitude curves. The two attitude errors between 
the two types of 3D RISSs and the Novatel IMU are plotted in Figure 5b. The pitch and roll data of 
the two types of 3D RISSs have a similar variation tendency with the Novatel attitude reference and 
no divergence trend. However, the azimuth error curves are divergent with time, which is mainly 
caused by the vertical gyro measurement error δωz. According to the 3D RISS mechanization, the 
azimuth error divergence cannot be corrected with the odometer velocity. The standard deviations 
of the pitch and roll errors between the 3D RISS with the original odometer velocity and the Novatel 
IMU are 0.88° and 0.32°, respectively. The standard deviations of the pitch and roll errors between 
the 3D RISS with the original odometer velocity filtered by TD and the Novatel IMU are 1.16° and 
0.36°, respectively. Because of the filter phase lag, the horizontal attitude error with the TD filter is a 
little bigger.  

  

Figure 4. Filtering result and differential result of TD with random noises and outlier point.

As Section 3 demonstrated, TD achieves a better performance on random noises and outliers than
traditional numerical differentiation. Using the odometer velocity data of a 3D RISS as the input signal
of a TD filter, the filtered value of the odometer velocity data can be obtained from x1 of this TD with
noise reduction and outlier exclusion, and the acceleration data can also be obtained from x2 of this TD
filter rather than being calculated using the numerical differential method.

4. Simulation Experiments

In this section, a group of offline data prepared for a study of RISSs by the Navigation
Instrumentation Research Group in Royal Military College of Canada is used to demonstrate the
effect of velocity and acceleration estimation through an actual vehicular experiment based on TD.
The 3D RISS mechanization is constructed from a low-grade Xbow IMU with the odometer output at
10 Hz update rates, and high-end Novatel SPAN IMU mechanization results are used as the reference.
The odometer velocity (preprocessed by an offline wavelet filter) of this group is used as the original
odometer velocity. The original velocity is filtered through a TD filter set with the given design
parameters: h = 0.1 s, h0 = 5 h, r = 20,000, and h1 = 1.4 h0. In the 3D RISS with the original odometer
velocity filtered by TD, the x1 takes the place of the original velocity νod and the x2 takes the place
of aod calculated by Equation (2). The errors in attitude, velocity, position, and 2D trajectory will be
plotted for comparison. Finally, error analysis will be discussed.

4.1. Validation of a 3D RISS with Velocity Filtered by TD

The three navigation simulation results of the 3D RISS with the original odometer velocity without
a TD filter, the 3D RISS with the original odometer velocity filtered by TD, and the Novatel IMU are
compared in Figures 5–8. In Figures 5–8, “3D-RISS without TD” refers to the simulation results of
the 3D RISS with the original odometer velocity without a TD filter, “3D-RISS with TD” refers to the
simulation results of the 3D RISS with the original odometer velocity filtered by TD, and “Novatel”
refers to the simulation results of the Novatel IMU. The standard deviations of the main navigation
errors between the two 3D RISSs and Novatel IMU are listed in Table 1.

Figure 5a depicts a comparison of the tri-axial attitude curves. The two attitude errors between
the two types of 3D RISSs and the Novatel IMU are plotted in Figure 5b. The pitch and roll data of the
two types of 3D RISSs have a similar variation tendency with the Novatel attitude reference and no
divergence trend. However, the azimuth error curves are divergent with time, which is mainly caused
by the vertical gyro measurement error δωz. According to the 3D RISS mechanization, the azimuth
error divergence cannot be corrected with the odometer velocity. The standard deviations of the pitch
and roll errors between the 3D RISS with the original odometer velocity and the Novatel IMU are 0.88◦

and 0.32◦, respectively. The standard deviations of the pitch and roll errors between the 3D RISS with
the original odometer velocity filtered by TD and the Novatel IMU are 1.16◦ and 0.36◦, respectively.
Because of the filter phase lag, the horizontal attitude error with the TD filter is a little bigger.
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Figure 5. RISS attitude and attitude errors with the original odometer velocity filtered by TD.

Figure 6a depicts a comparison of the tri-axial velocity curves. The two velocity errors between
the two types of 3D RISSs and the Novatel IMU are plotted in Figure 6b. As the azimuth error increases,
the east velocity VE error and the north velocity VN error of the two RISSs also increases. While the
pitch is not divergent, neither is the error of the vertical velocity VU. The results of the VE, VN, and VU

of the two 3D RISS do not coincide with each other. The standard deviations of the VE, VN, and VU

errors between the 3D RISS with the original odometer velocity and the Novatel IMU are 2.40 m/s,
2.13 m/s, and 0.28m/s, respectively. The standard deviations of the VE, VN, and VU errors between the
3D RISS with the original odometer velocity filtered by TD and the Novatel SPAN IMU are 2.41 m/s,
2.13 m/s and 0.35 m/s, respectively.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 16 

 

  

(a) Attitude curves of the three systems (b) Attitude errors between the two RISSs and the 
reference 

Figure 5. RISS attitude and attitude errors with the original odometer velocity filtered by TD. 

Figure 6a depicts a comparison of the tri-axial velocity curves. The two velocity errors between 
the two types of 3D RISSs and the Novatel IMU are plotted in Figure 6b. As the azimuth error 
increases, the east velocity VE error and the north velocity VN error of the two RISSs also increases. 
While the pitch is not divergent, neither is the error of the vertical velocity VU. The results of the VE, 
VN, and VU of the two 3D RISS do not coincide with each other. The standard deviations of the VE, 
VN, and VU errors between the 3D RISS with the original odometer velocity and the Novatel IMU are 
2.40 m/s, 2.13 m/s, and 0.28m/s, respectively. The standard deviations of the VE, VN, and VU errors 
between the 3D RISS with the original odometer velocity filtered by TD and the Novatel SPAN IMU 
are 2.41 m/s, 2.13 m/s and 0.35 m/s, respectively. 

(a) Velocity curves of the three systems 
(b) Velocity errors between the two RISSs and 

the reference 

Figure 6. RISS velocity and velocity errors with the original odometer velocity filtered by TD. 

Figure 7a depicts a comparison of tri-axial position curves. The two position errors between the 
two types of 3D RISSs and the Novatel SPAN IMU are plotted in Figure 7b. As the horizontal velocity 
error increases, the latitude and longitude errors of the two RISSs also increase. The two altitude 
errors of the two 3D RISSs have the same divergence tendency from the beginning of the 3D RISS 
mechanization, which is because of the open loop characteristic of the 3D RISS mechanization in the 
vertical channel. Similar to the velocity results, the positions of the two 3D RISSs coincide with each 
other as well. The standard deviations of latitude and longitude errors between the 3D RISS with the 
original odometer velocity and the Novatel SPAN IMU are 0.029107° and 0.052164°, respectively. The 
standard deviations of latitude and longitude errors between the 3D RISS with the original odometer 
velocity filtered by TD and the Novatel SPAN IMU are 0.029109° and 0.052155°, respectively. The 
position results of the 3D RISS with the original odometer velocity filtered by TD are slightly better 
than those of the 3D RISS with the original odometer velocity. 

Pi
tc

h 
(°

)
R

ol
l (

°)
Az

im
ut

h 
(°

)

Pi
tc

h 
Er

ro
r (

°)
R

ol
l E

rro
r (

°)
Az

im
ut

h 
Er

ro
r (

°)

Ve
 /(

m
/s

)
Vn

 /(
m

/s
)

Vu
 /(

m
/s

)

Ve
 E

rro
r /

(m
/s

)
Vn

 E
rro

r /
(m

/s
)

Vu
 E

rro
r /

(m
/s

)

Figure 6. RISS velocity and velocity errors with the original odometer velocity filtered by TD.

Figure 7a depicts a comparison of tri-axial position curves. The two position errors between
the two types of 3D RISSs and the Novatel SPAN IMU are plotted in Figure 7b. As the horizontal
velocity error increases, the latitude and longitude errors of the two RISSs also increase. The two
altitude errors of the two 3D RISSs have the same divergence tendency from the beginning of the 3D
RISS mechanization, which is because of the open loop characteristic of the 3D RISS mechanization
in the vertical channel. Similar to the velocity results, the positions of the two 3D RISSs coincide
with each other as well. The standard deviations of latitude and longitude errors between the 3D
RISS with the original odometer velocity and the Novatel SPAN IMU are 0.029107◦ and 0.052164◦,
respectively. The standard deviations of latitude and longitude errors between the 3D RISS with the
original odometer velocity filtered by TD and the Novatel SPAN IMU are 0.029109◦ and 0.052155◦,
respectively. The position results of the 3D RISS with the original odometer velocity filtered by TD are
slightly better than those of the 3D RISS with the original odometer velocity.
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Figure 7. RISS position and position errors with the original odometer velocity filtered by TD.

The three 2D trajectory simulation results of the 3D RISS with the original odometer velocity,
the 3D RISS with the original odometer velocity filtered by TD, and the Novatel IMU are compared
in Figure 8. The two trajectory errors between the two types of 3D RISSs and the Novatel IMU are
almost identical.

As Figures 5–8 and Table 1 show, the two navigation errors of the 3D RISS with the original
odometer velocity and the 3D RISS with the original odometer velocity filtered by TD occur at the
same level. Using the original odometer velocity, TD could quickly and correctly filter the velocity and
estimate the acceleration for a 3D RISS.
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Figure 8. 2D trajectories comparison between the two RISSs and the reference.

Table 1. Standard deviations of main navigation errors between the two 3D RISSs and the Novatel IMU.

Error 3D RISS with Original
Odometer Velocity 3D RISS with Original Odometer Velocity Filtered by TD

pitch 0.88◦ 1.16◦

roll 0.32◦ 0.36◦

VE 2.40 m/s 2.41 m/s
VN 2.13 m/s 2.13 m/s
VU 0.28 m/s 0.35 m/s

latitude 0.029107◦ 0.029109◦

longitude 0.052164◦ 0.052155◦
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4.2. Anti-Interference Ability of a 3D RISS with Velocity Filtered by TD

In order to demonstrate the anti-interference effect of TD on a 3D RISS, a white Gaussian noise
(with 0.002 variance and a 0 mean value) and a hypothetical outlier point (2 times amplitude and 100 s
interval) are added to the original odometer velocity. The white Gaussian noise model is in accordance
with our Kalman filter for the RISS/GPS integration, and the hypothetical outlier point is to simulate
the odometer velocity error caused by vehicle sideslips or jumps off the ground. The given design
parameters of the above TD filter remain unchanged. The results in Section 4.1 of the 3D RISS with the
original odometer velocity are used as the reference. The three navigation simulation results of the 3D
RISS with a noisy odometer velocity without a TD filter, the 3D RISS with a noisy odometer velocity
filtered by TD, and the 3D RISS with the original odometer velocity are compared in Figures 9–12.
In Figures 9–12, “3D RISS with noise” refers to the simulation results of the 3D RISS with a noisy
odometer velocity without a TD filter, and “3D RISS with TD” refers to the simulation results of the 3D
RISS with a noisy odometer velocity filtered by TD, and “Original 3D RISS” refers to the simulation
results of the 3D RISS with the original odometer velocity. The standard deviations of the navigation
errors between the two 3D RISSs with a noisy odometer velocity and the reference are listed in Table 2.

Figure 9a depicts a comparison of the tri-axial attitude curves. The two attitude errors between
the two 3D RISSs with noisy odometer velocities and the reference are plotted in Figure 9b. Because
the aod is in the calculation of the pitch, the pitch errors are most obviously affected in the comparison
of attitude curves. The max pitch error between the 3D RISS with the original odometer velocity and
the 3D RISS with a noisy odometer velocity reaches 91◦. However, the max pitch error between the 3D
RISS with the original odometer velocity and the 3D RISS with a noisy odometer velocity filtered by
TD is 11◦. The standard deviations of the pitch and roll errors between the 3D RISS with the original
odometer velocity and the 3D RISS with a noisy odometer velocity are 10.61◦ and 0.065◦, respectively.
The standard deviations of the pitch and roll errors between the 3D RISS with the original odometer
velocity and the 3D RISS with a noisy odometer velocity filtered by TD are 1.75◦ and 0.18◦, respectively.

Figure 10a depicts a comparison of the tri-axial velocity curves. The two velocity errors between the
two 3D RISSs with noisy odometer velocities and the reference are plotted in Figure 10b. The standard
deviations of the VE, VN, and VU errors between the 3D RISS with the original odometer velocity
and the 3D RISS with a noisy odometer velocity are 24.95 m/s, 24.19 m/s, and 34.79 m/s, respectively.
The standard deviations of the VE, VN, and VU errors between the 3D RISS with the original odometer
velocity and the 3D RISS with a noisy odometer velocity filtered by TD are 0.26 m/s, 0.25 m/s,
and 0.64 m/s, respectively. Due to the excellent filtering performance of TD in velocity estimation,
the velocity results of the 3D RISS with a noisy odometer velocity filtered by TD is hardly influenced
by the hypothetical noises.

Figure 11a depicts a comparison of the tri-axial position curves. The two position errors between the
two 3D RISSs with noisy odometer velocities and the reference are plotted in Figure 11b. The standard
deviations of latitude and longitude errors between the 3D RISS with the original odometer velocity
and the 3D RISS with a noisy odometer velocity are 0.0021◦ and 0.0029◦, respectively. The standard
deviations of latitude and longitude errors between the 3D RISS with a noisy odometer velocity filtered
by TD and the 3D RISS with the original odometer velocity are 0.000039◦ and 0.000077◦, respectively.
Similarly, the differences of the above two velocity errors are reflected in the two position errors.
The three 2D trajectory simulation results of the three types of 3D RISS are compared in Figure 12.

As Figures 9–12 and Table 2 show, with the hypothetical significant noises introduced into the
original odometer velocity, the divergence speed of navigation errors of the 3D RISS with odometer
velocity filtered by a TD filter is much slower than the pure 3D RISS. Thus, the reliability of a 3D
RISS is obviously improved by a TD filter used for estimating velocity and acceleration. Additionally,
the velocity filtered by TD is favorable to reduce the error divergence risk of the integrated navigation
Kalman filter.
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Table 2. Deviations of the main navigation errors between the two 3D RISSs with noisy odometer
velocities and the reference.

Error 3D RISS with Noisy
Odometer Velocity 3D RISS with Noisy Odometer Velocity Filtered by TD

pitch 10.61◦ 1.75◦

roll 0.065◦ 0.18◦

VE 24.95 m/s 0.26 m/s
VN 24.19 m/s 0.25 m/s
VU 34.79 m/s 0.64 m/s

latitude 0.0021◦ 0.000039◦

longitude 0.0029◦ 0.000077◦

5. Conclusions

Compared to a lot of studies on RISSs that have focused on filters of RISS/GPS integration or on the
error correction of inertial sensors, there have seldom been studies on odometer velocity for a 3D RISS.
However, in 3D RISS mechanization and error analysis, velocity information and its derivatives are at
least as important as the information from the other inertial sensors of the RISS. Velocity information
from an odometer is prone to noise corruption, which further leads to the noise amplification of
acceleration information in a conventional differential method. This paper has presented a solution for
odometer velocity and acceleration estimation using a 3D RISS based on a TD filter.

A TD filter does not depend on an object model and has less computation. With a TD filter,
an input signal and its differential signal are estimated fast and accurately. Additionally, using the
differential signal output by the TD filter, the filter phase lag can be decreased with the prediction
method. As Section 3 demonstrated, TD achieves better performance on random noises and outliers
than traditional numerical differentiation.

Using a group of offline data obtained from an actual vehicle experiment, the effectiveness of a
TD filter on a 3D RISS was demonstrated through simulation experiments. With the odometer velocity
data of a 3D RISS as the input signal of a TD filter, the filtered value with noise reduction and the
exclusion of outlying odometer velocity data can be obtained from tracking the signal output from this
TD, and the acceleration data can be obtained from the derivative output of this TD also, rather than
calculated using the numerical differential method. As the results show, a TD filter could not only
correctly and quickly filter the velocity and estimate the acceleration from the odometer velocity using
a 3D RISS, but could also improve the reliability of a 3D RISS.

The future work will be to transform the TD filter algorithm into a navigational computer program
of an actual 3D RISS.
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