
sensors

Article

UAV Flight and Landing Guidance System for
Emergency Situations †

Joon Yeop Lee ‡ , Albert Y. Chung ‡, Hooyeop Shim ‡ , Changhwan Joe ‡ , Seongjoon Park
and Hwangnam Kim *

School of Electrical Engineering, Korea University, Seoul 136-713, Korea; charon7@korea.ac.kr (J.Y.L.);
aychung@korea.ac.kr (A.Y.C.); hooyp@korea.ac.kr (H.S.); chjoe01@korea.ac.kr (C.J.); psj900918@korea.ac.kr (S.P.);
* Correspondence: hnkim@korea.ac.kr; Tel.: +82-2-3290-4821
† This mansucript is extension version of the conference paper: Chung, A.Y.; Lee, J.Y.; Kim, H. Autonomous

mission completion system for disconnected delivery drones in urban area. In Proceedings of the 2017 IEEE
7th Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017.

‡ These authors contributed equally to this work.

Received: 30 August 2019; Accepted: 14 October 2019; Published: 15 October 2019
����������
�������

Abstract: Unmanned aerial vehicles (UAVs) with high mobility can perform various roles such
as delivering goods, collecting information, recording videos and more. However, there are many
elements in the city that disturb the flight of the UAVs, such as various obstacles and urban canyons
which can cause a multi-path effect of GPS signals, which degrades the accuracy of GPS-based
localization. In order to empower the safety of the UAVs flying in urban areas, UAVs should be
guided to a safe area even in a GPS-denied or network-disconnected environment. Also, UAVs must
be able to avoid obstacles while landing in an urban area. For this purpose, we present the UAV
detour system for operating UAV in an urban area. The UAV detour system includes a highly reliable
laser guidance system to guide the UAVs to a point where they can land, and optical flow magnitude
map to avoid obstacles for a safe landing.

Keywords: UAV; laser guidance; emergency landing; particle filter; optical flow

1. Introduction

The unmanned aerial vehicle (UAV) has a wide operating radius and can be equipped with
diverse sensing and actuation devices [1]. Through these advantages, UAVs can perform various
roles and missions. Recently, a variety of studies have been carried out to apply UAV to real life,
such as collecting vehicle traffic information [2,3], surveillance systems for cities [4–6], constructing
network infrastructure [7,8], and delivering products [9]. In particular, many companies are investing
in the field of delivery systems using UAV. Amazon Prime Air patented a UAV delivery system [10];
DHL tested its parcel copter in Germany; and various delivery companies such as UPS, USPS, Swiss
Post, SF Express and Ali Baba started researches related to UAV delivery system. These delivery
systems often deliver small items ordered by people, so UAVs often operate in densely populated
cities. This is possible because UAV can move freely in three dimensions, so it can deliver goods to
destinations in high-rise buildings or apartments.

However, the city has many elements that interfere with the UAVs’ flight. Buildings make it
difficult to obtain a line of control (LOC) for UAV control and degrade the accuracy of GPS-based
positioning. There are studies that the use of UAV is difficult due to the low stability of GPS in
urban areas [11,12]. Without GPS, the autonomous waypoint flight of the UAV is not possible. Also,
if wind drift occurs, UAV will not be able to calibrate its position. UAV can hardly plan its flight
for missions when GPS service is degraded. In addition, RF interference and multi-path effects can
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interfere with the flight of UAV in the urban area [13]. In this case, the signal for manipulating the UAV
is disturbed, so that the operator cannot maneuver the UAV remotely. UAVs that are thus disturbed
during their flight are more likely to cause accidents in urban areas. Therefore, we need a flight and
landing guidance system for public safety against UAVs that lose connection and position (and even
malfunctioned UAVs).

For these purposes, we propose the UAV detour system that satisfies the following conditions.

• UAV should be allowed to continue its mission in situations where GPS is not available or the
network is disconnected;

• The system that guides the UAVs’ flight should be able to overcome multi-path fading and
interference that may occur in urban areas;

• When the UAV is landing, the UAV must be able to land safely while avoiding obstacles.

The UAV detour system that satisfies the aforementioned conditions has two subsystems. The first
is the flight guidance system, and the second is the safe landing system. The flight guidance system
can guide UAV to desired landing points using laser devices that are free of multi-path effects and
other interference common in radio waves. When a UAV with flight guidance system detects a laser,
the UAV moves in the direction of the incoming laser. Also, the flight guidance system is based on a
particle filter. The other system, safe landing system provides obstacle avoidance for UAV. The safe
landing system was developed based on our previous work [14]. In addition, it has been improved for
the use of optical flow magnitude maps, which make it more stable on a low-power computing board
in UAV than in previous work. When the UAV is flying or landing, the UAV can extract the optical
flow from the images taken by the mounted camera. The safe landing system analyzes the optical flow
magnitude map to identify obstacles and maneuver the UAV away from obstacles. Overall, the safe
landing system allows UAV to safely land without collisions even when GPS or network assistance is
unstable. The UAV detour system was installed on a real UAV and tested in an actual environment to
see if it could steer UAV and land it safely in urban area [15–17].

The rest of the paper is organized as follows. Section 2 reviews related work and background
theory. Detailed explanation of the UAV detour system is described in Section 3. Section 4 describes
the detailed implementation of the UAV detour system, and Section 5 presents the experiments and
evaluation of the proposed system. Section 6 describes the limitations of UAV detour system and plans
to improve it. Finally, Section 7 concludes the paper.

2. Preliminaries

2.1. Related Work

There have been a number of previous studies related to the unmanned aerial vehicle (UAV)
detour system. Descriptions of related techniques are described below.

2.1.1. Laser Guidance Systems

Lasers have the advantage of being able to distinguish easily from other light sources. Focusing on
the advantages of lasers, there have been studies to use lasers in the guidance of UAV.

Vadim et al. proposed a system for delivering GPS-based flight information to the UAVs via a
laser [18]. The information transmitted through the laser includes both flight path and landing location
information. However, the authors did not implement the system on real UAVs. The system proposed
by Shaqura et al. aims to detect the laser point by applying image processing on images taken by the
camera mounted on the UAV. The laser guides UAV to landing point [19]. However, since these works
provide flight information based on the UAVs’ GPS, it is difficult to expect successful operation in an
environment where the GPS signal is degraded due to the environment.

In an emergency situation, there was an attempt to guide a UAV based on a laser without relying
on GPS. The system proposed by Jang et al. used a laser to hold the current position of UAVs in case of
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deteriorated GPS signal [20]. This paper assumes that the UAVs are flying in an electric wave-shaded
region, preventing the drift of the UAVs and holding the position through a number of photo-resistors.
The system presented in this paper does not guide over long-distance, but shows that flight stability
can be improved by using laser even in the environment without GPS.

Most of the proposed laser guidance systems were GPS dependent or had a short guidance range.
However, our proposed flight guidance system was designed to take advantage of the long-range of
lasers, assuming flight in a GPS-denied environment. The proposed system can reliably recognize
the laser and determine the flight direction through the particle filter, which has been modified to be
suitable for the real UAV flight. Particle filter had proven to be useful in state estimation problems
such as simultaneous localization and mapping (SLAM) of robot research area [21]. In addition,
Hightower et al. implemented a multi-sensor localization system based on particle filter and presented
performance comparison showing that it is practical to run a particle filter on handheld devices [22].
Research on particle filters has continued over the last few decades and has been applied to address
non-Gaussian distributions in various fields.

2.1.2. Obstacle Avoidance Studies

In order for a UAV to fly or land in an urban area, the UAVs must be able to avoid obstacles.
There have been studies to implement obstacle avoidance based on optical flow. Lorenzo et al.
proposed an optical flow-based landing system [23]. However, the system proved its performance
only by simulation. Souhila et al. applied obstacle avoidance based on optical flow to robots [24].
The algorithm proposed in this study determines that there is an obstacle if an optical flow value
imbalance is detected while the robot is moving. Similarly, Yoo et al. applied an algorithm to the UAV
navigation system to avoid obstacles based on the imbalance of optical flow values [25]. However,
these studies had limited movement because they could only maneuver the robot or UAV in the left
and right directions. Our proposed safe landing system can avoid the obstacles in all directions based
on optical flow, and can effectively cope with the complex environment and various obstacles in the
urban area. Miller et al. estimated reliable altitude using the difference between the optical flow
velocity and calculated via exact formulas [26]. Estimation of altitude is tested from video sequences
obtained in flights, but altitude is not calculated during the actual flight. Herisse et al. presented a
nonlinear controller for the vertical landing of a VTOL UAV using the measurement of average optical
flow with the IMU data [27]. Since VTOL is assumed to be equipped with a camera and IMU, there is
a difference between our research in the case of using only cameras.

In addition, there have been studies to avoid obstacles with various techniques. Mori et al.
showed a technique for determining obstacles, using the SURF [28]. In the paper, the authors proposed
a system that determines obstacles when a large image difference is detected by comparing each
image frame by frame. The author-proposed system used the phenomenon in which objects nearer
to the camera become larger as the camera moves towards the objects. Hrabar et al. used stereo
vision to identify obstacles [29]. The authors created a 3D map of the surrounding terrain using the
images shown around them. This assisted UAVs to avoid obstacles. Ferrick et al. used LIDAR [30].
LIDAR utilizes laser to estimate the distance to nearby objects in real-time and detect the approaching
object. In addition, as shown in Kendoul’s survey paper [31], there are various techniques that allow
UAVs to avoid obstacles through autopilot in the event of GPS or communication failures.

2.1.3. Autonomous UAV Landing Systems

There have also been studies that use image processing for autonomous landing. In order for
the UAV to recognize the landing point, several studies have proposed to use landing markers at
landing points.

Bi et al. proposed a system for calculating the relative position of a UAV with a marker and landing
a UAV toward the marker’s position [32]. Lange et al. proposed a system that controls the speed of the
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UAVs by estimating the relative altitude and position of the marker [33]. Venugopalan et al. placed a
landing marker on the autonomous marine vehicle to land the UAVs on it [34].

Using the marker makes it easy for the UAVs to identify the landing point and allows more precise
landing. In order to land the UAV in an area where the markers are not ready, some of the studies have
used optical flow to identify the landing area. Cesetti et al. proposed a system for identifying safe
landing sites using optical flow [35]. In this paper, the depth map of the ground is drawn using optical
flow and feature matching. Then, Cesetti et al. analyzed the flatness of the depth map to determine
the safe landing area. Similar to [35], Edenbak et al. proposed a system for identifying safe landing
points [36]. This system identifies the structure of the ground via optical flow.

Our proposed UAV detour system does not require any special markers to land, and automatically
determine the flat ground that can be landed. In addition, the proposed system includes the flight
guidance system that can guide UAVs to landing points even over long distances. The proposed system
was modified to be suitable for real UAV and proved its performance through actual experiments.

2.2. Background

This section briefly introduces the particle filter, the core theory of our proposed flight guidance
system, and the optical flow method used in the safe landing systems.

2.2.1. Particle Filter Theory

The sequential Monte Carlo method, also known as particle filtering or bootstrap filtering, is a
technique for implementing a recursive Bayesian filter by Monte Carlo simulations. The key idea
is to represent the required posterior density function by a set of random samples with associated
weights and to compute estimates based on these samples and weights. As the number of samples
becomes very large, this Monte Carlo characterization becomes an equivalent representation to the
usual functional description of the posterior pdf [37].

2.2.2. Optical Flow Method

Optical flow is defined as the pattern of apparent motion of objects in a visual scene caused by
the relative motion between an observer and a scene. In addition, Lucas–Kanade algorithm is one
of the simple optical flow techniques which can provide an estimate of the movement of interesting
features in successive images of a scene. Lucas–Kanade algorithm bases on two assumptions that
two images between frames are separated by a small time increment and movement of objects is not
significant. Moreover that the spatially adjacent pixels tend to belong in same object and have identical
movements, constant brightness [38].

3. Methods

3.1. System Overview

As shown in Figure 1, the UAV detour system has two major subsystems. One of the subsystems is
the flight guidance system, that uses the laser to maneuver the UAV in the desired direction. The flight
guidance system detects the laser with a light sensor mounted on the UAV. However, the laser that is
detected by the light sensor is not linear. To reliably detect the laser and determine the direction the
UAV will fly, the flight guidance system uses particle filter theory to estimate the direction based on
the direction the light is coming from.
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Figure 1. Overview of the unmanned aerial vehicle (UAV) detour system.

The other subsystem is the safe landing system that can identify obstacles on the landing area
with an optical flow magnitude map. The safe landing system obtains images through a camera
mounted on the UAV. By analyzing the image, optical flow information can be obtained. The safe
landing system analyzes the magnitude of the obtained optical flow to determine the obstacles below
the UAV. When the UAV determines that there are obstacles at the landing area, the UAV lands with
avoiding obstacles. After operations of subsystems, the maneuver commands of the UAV generated
from the two subsystems are transferred to the UAV controller so that the UAV detour system can be
applied to the movement of the actual UAV.

3.2. Flight Guidance System for UAV

In order to increase the accuracy of flight direction through laser detection, a modified particle
filter was used in the flight guidance system. A variety of adjustments have been applied to the
modified particle filter, considering that it operates on a UAV.

3.2.1. Particle Filter Based Flight Guidance

In the flight guidance system, when the measured brightness value exceeds the threshold at
multiple sensors, the sensor with the brightest light (laser) is identified and finally controls the next
flight direction of the UAV. If the UAV detects the incoming laser, UAV computes the bearing angle of
the laser and moves at a given constant speed to the detected direction. However, moving the UAV and
detecting the direction of the laser during moving cannot be linearly described, we used particle filter
to improve the accuracy of laser identification. The particle filter recursively estimates the sequence
of system states (approximated direction to the source of the light) from the sensor measurements.
Filtering via sequential importance sampling (SIS) consists of recursive propagation of importance
weights wi

k and support points li
k as each measurement is received sequentially [37].

Figure 2 shows a brief overview of the particle-applied flight guidance system. The blue circles
represent the weight of each particle. As shown in Figure 2a, the particles are uniformly distributed
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in all directions. Then, as shown in Figure 2b, the weight of the particle in the direction in which
the laser is detected is getting larger. As can be seen in Figure 2c, more particles are placed where
there is a larger weight value. At this time, the flight guidance system prepare for situations in which
the direction of the light changes by placing a small number of particles on the sensors in different
directions. Finally, the UAV can fly to the direction of the most particles.

(a) Initial phase. (b) Detecting phase. (c) Resampling and moving phase.

Figure 2. Examples of particle-applied flight guidance algorithm.

To guide the UAV exactly in the intended direction, they must maintain information about the
direction along which the laser will guide. So, the target direction can be described by the state vector
lk as follows:

lk = [xk, yk, θk]
T,

where k is the discrete-time, T denote transpose, xk and yk denote Cartesian coordinates at time = k
which can be calculated from the bearing angle θk pointing to the laser light source.

In order to successfully guide the UAV using laser light, the operator must continually irradiate
the laser in one direction unless an exceptional situation occurs. It can be expected that the previous
state values will be changed slightly. Thus, the state transition equation for the flight guidance system
can be written as

l(k+1) = Fklk+vk,

where vk is the white Gaussian process noise and Fk is the state transition matrix can be written as

Fk =


cos(π/2−(θk+vk))

xk
0 0

0 sin(π/2−(θk+vk))
yk

0

0 0 θk+vk
θk

 .

Based on this matrix, we update the current state’s bearing angle θk by adding the process noise
vk to the current value and then calculate the next state’s coordinates x(k+1) and y(k+1). On the one
hand, the measurement equation can also be defined as

zk = h(lk)+ek,

where zk is the measurement and ek is the white Gaussian measurement noise. The nonlinear
measurement function h(lk) can be denoted as

h(lk) = θk = tan−1 yk
xk

,
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when sensors detect the light incidence, they convert the direction of the light into polar coordinates in
two dimension. Therefore, we define h(lk) as a part of measurement equations with formulas changing
Cartesian coordinates into polar coordinates and assume that the radius is always 1 when transforming
the coordinate system. Note that the flight guidance system was developed to maneuver UAV in two
dimensions but it can be extended to maneuver UAV in three dimensions for UAV flight on building
rooftops or in complex terrain.

3.2.2. Resampling Method of Particle Filter

There are numerous versions of the resampling method in the field of a particle filter. Thus, it is
important to choose an efficient method because each resampling method has different complexity
depending on the operational algorithm. Considering the simplicity of implementation and the
efficiency of the algorithm, systematic resampling was applied to the flight guidance system [37].
The most serious problem is that some particles with large weights are inevitably selected during the
resampling and sample impoverishment occurs as the diversity of the sample decreases. As mentioned
earlier, the flight guidance system must accurately estimate the direction that the UAV should travel.
Therefore, under the assumption that the incoming direction of light is constant, it may be helpful to
have less sample diversity. However, if the direction of the light guiding the UAV is suddenly changed,
the exact direction cannot be estimated due to the effect of the sample impoverishment which becomes
too severe. To solve sample impoverishment, the flight guidance system maintains a minimum level of
sample diversity and combines the sample dispersion process with the resampling method. The sample
dispersion allows a given portion of the total number of samples to be redistributed evenly over the
entire state space. In the resampling algorithm, to determine how severe the weight degeneracy is
before conducting the resampling process, it estimates an effective sample size N̂eff as follows

N̂eff =
1

∑Ns
i=1(w

i
k)

2
,

where wi
k is the normalized weight, Ns is the number of particles. After a certain number of recursion

steps, all but one particle have negligible normalized weights, which is called weight degeneracy.
As the degeneracy phenomenon becomes more severe, the N̂eff value approaches zero. Therefore, if N̂eff
is smaller than the predefined threshold NT (e.g., NT = Ns/2), the resampling process is executed to
mitigate the degeneracy phenomenon. Here, lowering the NT value solves the weight degeneracy
problem, but the resampling process is frequently performed, resulting in system performance
problems. On the contrary, if the value of NT is higher than Ns/2, the opposite situation occurs
and it can be regarded as a trade-off relationship. In addition, after setting all weight values to 1/Ns

during the resampling process, the sample dispersion is executed to avoid the problem of sample
impoverishment. In the flight guidance system, only 10% of the total number of samples are uniformly
dispersed across the state space by selecting the bearing angle θk of each state vector within the range
of direction values in which light can be irradiated.

3.2.3. Delay Reduction Analysis through Sample Dispersion Modeling

The sample dispersion method was applied to the particle filter of the flight guidance system so
that the UAV can respond to incoming laser in various directions. Figure 3a shows simulation result
of particle filter with sample dispersion. Assuming that the incident angle of the laser light varies
suddenly about 180 degrees, the particle filter using the sample dispersion accurately estimated the
value close to the measurement almost twice as fast as the particle filter without the sample dispersion.
Figure 3b shows root mean square error (RMSE) performance of our simulation result. A large error
values are shown due to a sudden change of the incident angle, but a particle filter with sample
dispersion minimizes error about twice as fast as the general particle filter.
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(a) Simulation result. (b) Comparison of RMSE performance.

Figure 3. Performance of particle filter with sample dispersion.

3.2.4. Optimal Number of Particles through Modeling

Determining the statistically efficient number of samples is very important in the particle filter,
as it is possible to estimate the expected value more accurately as the number of particles increases,
but at the same time the computational complexity also increases. So we simulated the number
of particles suitable for calculating the direction of the UAV flight and the results are shown in
Table 1. Through this simulation, we can obtain the error between the constant measurements and the
estimations from the particle filters with a different number of particles. When the number of particles
is 500 or greater, the error with the measurements is less than 1 degree.

Table 1. Comparison of root mean square error (RMSE) performance depending on the number
of particles.

Number of Particles 100 500 2000 10,000

RMSE (rad) 0.047 0.011 0.004 0.002
RMSE (degree) 2.712 0.609 0.204 0.129

In the flight guidance system, the direction of flight can be accurately calculated even with a
small number of particles. In addition, considering that UAVs run the proposed system based on
single-board computer with a low processing capacity using Lithium-ion batteries, the number of
particles suitable for the flight guidance system is 500.

3.3. Safe Landing System for UAV

In order to allow the UAV to make a safe landing, the safe landing system was able to identify
obstacles based on the optical flow and avoid the obstacles.

3.3.1. Optical Flow Based Obstacle Avoidance

When a UAV with a downward facing camera descends, the image sequences captured from the
camera produce optical flow that spreads out from a point called focus of expansion (FOE). By locating
FOE and analyzing the patterns of the optical flow, optical flow magnitude module calculates optical
flow magnitude to estimate the heading of the UAV and the structure of the environment beneath the
UAV. Figure 4 illustrates an optical flow map processed from a descending UAV with downward facing
camera on a flat surface. Figure 5 illustrates the operation of calculating optical flow. The magnitude
of the optical flow can be formulated with the following equation:

|−→OFx,y| ≈ α|−→v | tan θ. (1)
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(a) Example of an optical flow observed in
descending UAV.

(b) Example of an optical flow magnitude in field
with obstacles.

Figure 4. Examples of optical flow magnitude map.

Figure 5. Optical flow of a descending UAV.

In Equation (1),
−→
OFx,y is the optical flow value at (x, y), −→v is the descending speed of the UAV,

θ is the angle that between the camera to FOE and camera to point (x, y), and α is the scale factor of
the camera. Since θ is greater for the points farther away from FOE, the magnitude of the optical flow
for points farther away from FOE is greater than for the points closer to FOE. Furthermore, points with
the same distance from FOE will have the same optical flow magnitude.

By analyzing the optical flow magnitude map, the optical flow magnitude module estimates the
structure of the ground. If the surface beneath is flat, the optical flow magnitude observed around the
FOE is balanced. For surfaces where obstacle exists, the magnitude of optical flow shows deformation
at the location where obstacle exist as shown in Figure 4b. Locations where the altitude is higher
than the rest, the angular acceleration of θ becomes greater than other locations that lie on the same
distance from FOE in the image. The increased angular acceleration of θ results in greater optical flow
magnitude and the optical flow magnitude map shows the unbalanced magnitude of optical flows
around FOE.
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3.3.2. Optical Flow Modeling

The safe landing system system identifies obstacles through the optical flow. However, if the
magnitude of optical flow is small, it is difficult for the UAV to detect the obstacle. Because the UAV
fly at high altitudes, the variation in optical flow is very small. Therefore, we have confirmed through
modeling that the magnitude of optical flow measured in the UAV is large enough to detect obstacles
prior to experiments using real UAVs.

To model the optical flow, we assume that the UAV is equipped with a camera with a 2 × θmax

viewing angle, as shown in Figure 5. When we look at the point at the camera to calculate the optical
flow at the angle of θ1, the coordinates OF(x,y) shown can be expressed by the following equation:

OF(x,y) = h× tan(θ1). (2)

The magnitude of optical flow(
−→
OFx,y) can be obtained by calculating the point at which the OF(x,y)

point is observed at the image pointing to the camera after the UAV descend to the d altitude, and the
equation is as follows:

−→
OFx,y =

h× tan(θ1)

(h− d)× tan(θmax)
− h× tan(θ1)

h× tan(θmax)

=
d× tan(θ1)

(h− d)× tan(θmax)
.

(3)

If an obstacle with a height of g exists, the magnitude of the optical flow measured at the UAV
increases by the height of the obstacle. For example, if there is an obstacle to the right of the camera
image, the magnitude of optical flow difference is calculated as follows:

Σ‖−→WL‖ − Σ‖−→WR‖ =
d× tan(θ1)

(h− d)× tan(θmax)
− d× tan(θ1)

(h− g− d)× tan(θmax)
. (4)

Σ‖−→W‖ indicates the magnitude of optical flow in either the left or right region of the camera
image. In order to verify the magnitude of optical flow, we set up a simulated flight environment
similar to the real UAV experiment. When the UAV equipped with a camera with an angle of view of
90◦ (θmax = 45◦) is flying, the angle for determining the optical flow(θ1) is set to 30◦. When there is an
obstacle with a height of 1 m (g = 1), the UAV measures the optical flow while lowering the altitude by
1 m (d = 1). Figure 6 shows how the magnitude of the optical flow(

−→
OFx,y) is measured when the UAV

is at an altitude of 10 m to 20 m.
As a result of the modeling, when the UAV is flying at a height of 10 m, the magnitude of optical

flow is 1.50 times higher than that of the flat surface when the obstacle is present. Also, when the height
of the UAV was 20 m, the magnitude of optical flow showed a difference of 1.18 times. These results
show that the obstacle can be identified through the magnitude of optical flow at the height at which
the UAV is normally flying.
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Figure 6. Magnitude of optical flow modeling.

4. System Implementation

This section details the algorithms of subsystems and implementation techniques applied to the
actual UAV. As shown in Figure 7, UAV detour system consists of two major subsystems.

Figure 7. Overall systems and modules.

4.1. Flight Guidance System

4.1.1. Laser Detector

The laser detector identifies the incoming direction of the laser through light sensors. The laser
detector consists of 12 light sensors arranged in a circular shape, which identifies the incoming direction
of the laser. By assigning 30 degrees to each sensor, 12 sensors can cover 360 degrees in all directions.
If the higher brightness is measured above a certain threshold than the initial brightness, the light
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sensor determines that the laser light has been received. In addition, when laser light is detected,
the middle value of the range assigned to each sensor is returned.

Furthermore, as the distance increases, the area where light enters becomes larger, so that adjacent
sensors can detect light at the same time. Also, the sensors can be affected by the momentary reflection
or scattering of other light. In this case, the angular range of each sensor is added up and then the
middle value is returned. Then, the laser detector transmits the bearing angle of incoming laser to the
guiding direction estimator that returns the direction where the UAV is guided.

4.1.2. Guiding Direction Estimator

The guiding direction estimator operates the particle filtering based on the measurement value
received from the laser detector to approximate the direction in which the UAV will be guided. The full
algorithm of guiding direction estimator is presented in Algorithm 1.

Algorithm 1 Guiding direction estimator.

Initialization
1: discrete-time k = 0
2: for i = 1, i++, i == Ns (Ns = number of particles) do
3: Initialize_state_vector li

0
4: end for
5: while measurment zk = true do

Weight update
6: for i = 1, i++, i == Ns do
7: li

k ∼ p(lk|li
k-1)

8: w̃i
k ∼ w̃i

k-1 p(zk|li
k)

9: end for
Normalize

10: for i = 1, i++, i == Ns do
11: wi

k = w̃i
k�∑Ns

i=1 w̃i
k

12: end for
Resampling based on effective sample size

13: N̂eff = 1�∑Ns
i=1(w

i
k)

2

14: if then N̂eff < NT
15: Resampling (li

k)
16: Sample dispersion θi

k = θi
k + u[−π

2 , π
2 ]

17: end if
Flight direction estimation

18: Sk = ∑Ns
i=1 wi

kli
k

19: Operate_flight_controller← Get_direction(Sn)
20: k = k + 1
21: end while

The Algorithm 1, guiding direction estimator, works in the following steps. First, in the
initialization phase, the system initializes the bearing angle θk to have different values throughout the
entire state space to evenly distribute each particle in all directions. Then, the system checks to see if it
has received the measurement from the laser detector because it will start the estimation process with
a particle filter after the laser light is detected. Second, the flight guidance system draws the samples
from the transitional prior p(lk|li

k-1), because we have chosen the proposal distribution q(lk|li
k-1, zk)

as the transitional prior. Third, the selection of the proposal distribution can simplify the weight
update equation and update the weight using the likelihood p(zk|lk). Fourth, in the normalization
step, the weight of each sample (w̃i

k) is divided by the total sum to make the sum of the normalized
weights ∑ wi

k to be 1. Fifth, the system calculates the effective sample size N̂eff and determines that
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the weight degeneracy problem becomes severe when N̂eff is less than the threshold NT. In this case,
the system performs the resampling process and applies the sample dispersion method described in
Section 3.2.2 to quickly respond to drastic changes in measurements. Finally, the guiding direction
estimator obtains an estimated bearing angle (Sk) and transmits the direction calculated from the
estimated bearing angle to the flight controller. Then, the flight controller maneuvers the UAV based
on the direction.

4.2. Safe Landing System

This subsection describes the optical flow that is the basis of our obstacle avoidance and describes
the two modules installed in the safe landing system, the optical flow magnitude map generator and
obstacle analyzer.

4.2.1. Optical Flow Magnitude Map Generator

Optical flow magnitude map generator calculates optical flows between frames from the images
obtained by the camera. In this process, we considered the situation that the optical flows should
be computed on low-power computing boards mounted on UAV. As computing the optical flow for
all pixels and drawing a magnitude map [39] has a large load to run on the low-power computing
board, it is inappropriate for real-time operation. Therefore, the Lucas–Kanade algorithm [38] could be
considered, which sets up a pixel window for each pixel in one frame and finds a match to this window
in the next frame for specific pixels extracted with some standards. However, the Lucas–Kanade
algorithm has the challenge that it cannot calculate large movement.

Therefore, the optical flow magnitude map generator used the iterative Lucas–Kanade method
with pyramids [40], which can supplement this disadvantage. The specific pixels used for the iterative
Lucas–Kanade determined by goodFeaturesToTrack function on openCV [41], which detects the strong
corner on the image which is easy to trace its movement. Thus, using the benefit of calculating only
for certain pixels, not for the entire pixels, the load for computing board can be reduced and does not
cause performance degradation on operating.

4.2.2. Obstacle Analyzer

An obstacle analyzer determines the existence of obstacles, and two criteria can be considered.
One is the magnitude of optical flow and the second is the feature point, both are from optical flow
magnitude map generator. In Section 3.3.2, we modeled magnitude of optical flow. It shows that if an
obstacle exists, it has a larger magnitude than the normal, and the closer it is, the larger it becomes.
Also, the feature points extracted form goodFeaturesToTrack function are extracted mainly on the
obstacles, because obstacles not only have a visual difference in color or pattern against landing point,
but also the difference in height against the landing point. In addition, the image in which the obstacle
exists creates more feature points than the flat image. Therefore, the greater the number of feature
points and the larger the optical flow magnitude, the higher the probability that the obstacle actually
exists. In our system, we used the metric to multiply the optical flow by the feature point and use it to
identify obstacles. Using this metric, the location of the obstacle can be determined depends on where
it is located in the image obtained through the camera. The image is divided into m × m arrays of
segments, creating a total of m2 segments per image. The value of m can be freely selected according
to the experimental situation, such as 3, 5, and 7. In evaluation, m is set to 3 and the image is divided
into 3 × 3, nine segments. As the obstacles that UAVs face in urban canyons would be large in size
(e.g., trees and buildings), setting m to 3 is considered to be sufficient to identify the location of the
obstacle and avoid it. The value of the metric is derived significantly from the segmented screen
where the obstacle is located, and the UAV recognizes that the location obstacle exists, and then flies to
the opposite direction.

Algorithm 2 presents the algorithm of obstacle analyzer. When the frames come in through the
camera, the obstacle analyzer uses the extracted feature points and calculated magnitude of optical
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flows from the optical flow magnitude map generator. First, the obstacle analyzer divides the location
of feature points in several directions according to the coordinates of the feature points. The directions
can be multiple directions, and in Algorithm 2, the directions are set to eight directions. Second, the
obstacle analyzer adds the magnitude of optical flow at the feature point to the direction, and repeats
this process on every point. By this method, the optical flow for a particular direction becomes
proportional to the magnitude and the number of feature points, and if the value is greater than the
empirical static threshold value OT, it is determined that an obstacle exists in a particular direction.

Algorithm 2 Obstacle analyzer.

1: while optical_ f low_exists == true do
2: for i = 0, i++, i < number_o f _directions do
3: if location_o f _ f eature_point(x, y) == DIRECTION(i) then
4: optical_ f low_DIRECTION(i) += magnitude_optical_ f low(x, y)
5: end if
6: if optical_ f low_DIRECTION(i) > OT & Variance > VT then
7: exist_o f _obstacle_DIRECTION(i) = true
8: end if
9: end for

10: end while

During the process, the magnitude of optical flow in the segmented screen can be measured
evenly large when the camera is facing the ground without obstacle after avoiding it. The first reason
for this case is because the strong corners that affect the goodFeaturesToTrack function are even on
every obstacle-free ground, and the second is because of the tendency that the magnitude of optical
flow measured at each segment screen can be similar on the flat ground. For these reasons, if only the
magnitude of optical flow is used, unintentional situations where the obstacle analyzer misunderstands
a flat ground as an obstacle can occur. In order to prevent this case, the obstacle analyzer additionally
utilized another metric, the variance of optical flow magnitude values measured at each segment
screen. When analyzing the optical flow map in an obstacle environment, the difference between
the optical flow magnitude values measured on the segment screen with obstacles and the segment
screen without obstacles is huge. Therefore, in the obstacle environment, the variance of optical
flow magnitude values increases. Thus, the obstacle analyzer only performs detection of obstacle
in situations that variance of optical flow magnitude is greater than the empirical threshold value
VT. Both OT and VT should be adapted to the actual environments, and automatically calibrating the
threshold value is left for future work, as mentioned in Section 6.

5. Experiments and Demonstrations

5.1. Experimental Setup

The implementation of the proposed system is based on our previous work [42,43]. For flight
guidance system, twelve Cadmium Sulfide (CDS) light sensors were attached to the UAV in different
directions. Also, a camera for the safe landing system was mounted on the UAV. Figure 8 shows
a prototype of the UAV for proposed system. We adopted DJI’s F550 ARF KIT for the frame and
HardKernel’s ODROID XU4 for the processing unit. The processing unit is connected to the light
sensors, a camera, and a communication interface. In experiments, the camera was ODROID USB-CAM
720P, which has 720 p resolution, 30 fps with color scale, and θmax was measured experimentally at
about 21◦.
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Figure 8. Prototype implementation of the system.

5.2. Flight Guidance System Demonstration

Prior to the guidance experiment, we confirmed that the light sensor can detect the laser in various
environments. We measured the brightness of the light under a sunny, cloudy, night, and indoor
with fluorescent light while the light sensor and the lasers were 15 m and 30 m away. For this
experiment, we used a commercial laser. Table 2 shows the average of the measured brightness
values. This experiment shows that laser can be distinguished under any environments. Even in the
sunny, the brightest environment of all environments, the laser detector was able to identify the laser.
Through this experiment, we were able to determine the threshold value to discriminate the laser.
We also set the number of particles to 500, as mentioned in Section 3.2.4, and set the threshold (NT) for
the sample dispersion to 250, which is half the number of particles.

Table 2. Measurement of light intensity in various environments.

Distance (15 m) Distance (30 m)

Without Laser (lx) Laser Projected (lx) Without Laser (lx) Laser Projected (lx)

Sunny 10,820.45 30,306.2 11781.6 20,264.17
Cloudy 7031.69 31,509.4 7250.12 15,792
Night 2.31 32,870.2 2.82 14,827.4

Indoor (flourescent light) 202.59 41,238.2 133.4 24,834

We used the UAV shown in Figure 8 to confirm that the flight guidance system is working properly.
As shown in Figure 9a, the laser was aimed at the UAV in the autonomous flight. In addition, as shown
in Figure 9b, we confirmed that the UAV was flying in the guided direction. The demonstration video
can be seen on the following link [15].
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(a) Detect laser from light sensor attached to UAV. (b) The UAV fly in the direction guided by the laser.

Figure 9. Laser guidance demonstration.

In an additional experiment, we measured the time lag from the moment the laser was emitted
toward the UAV to estimate the coordinates to move along that direction. In particular, the time lag
includes resampling and direction estimation as well as updating the state and weight of each particle.
We also calculated the RMSE of the difference between the first estimated flight direction and the
constant measurements right after the initialization phase, and Table 3 shows the results depending on
the number of particles. In Table 3, the average time lag of the currently implemented system with
500 particles was 91.7 milliseconds. The impact of this result is expected to be negligible when the
UAV with a loss of GPS signal is hovering in place. Furthermore, as the number of particles decreased,
the time lag was reduced, while the accuracy of the flight direction was significantly compromised.
On the contrary, as the number of particles increased, the accuracy was improved, but the time was
delayed too much. As mentioned in Section 3.2.4, it is very important to select and implement the
optimal number of particles for each system.

Table 3. Comparison of performance depending on the number of particles in real experiment.

Number of Particles 100 500 2000 10,000

Average time lag (ms) 27.2 91.7 397.1 1642.4
RMSE (rad) 0.0568 0.0239 0.0118 0.0047

5.3. Safe Landing System Demonstration

The safe landing system proved its performance through UAV landing experiments. In this
experiment, when the UAV was lowering its altitude for landing, an optical flow magnitude map was
generated from the image taken by the downward-facing camera. At this time, we confirmed whether
the safe landing system can detect obstacles based on the optical flow magnitude map and whether
the UAV can move in the direction of avoiding obstacles.

Figure 10 represents the optical flow magnitude map of the image viewed by the camera facing
downward of the UAV. In Figure 10a, the green dot represents the feature point, and the green line
represents the optical flow calculated at the feature point. As the goodFeaturesToTrack function detects
the strong corner and tends to detect from obstacles that are visually different from the floor and
higher in height, Figure 10 shows the feature points mainly presented on the obstacle. As shown in
Figure 10a, the left side of the tree is the highest obstacle, and the UAV obtains the highest optical
flow magnitude values from the tree on the left side. As shown in Figure 10b, the OpenCV on the
UAV recognized that the nearest obstacle was on the left. In this experiment, the safe landing system
successfully maneuvered the UAV to avoid obstacles. Also, the frame rate was 31.1 FPS which is about
five times faster than the previous work [14], 5.9 FPS which calculates the optical flow for all pixels.
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(a) Optical flow of a surface with an obstacle. (b) Operation of obstacle avoidance.

Figure 10. Optical flow magnitude map of obstacle avoidance.

The variance measured during the experiment also shows that the UAV was able to recognize
obstacles successfully. Figure 11 shows the variance of the optical flow magnitude in each segmented
screen during the experiment. During obstacle avoidance, obstacles are detected in the left segmented
screen, resulting in high optical flow magnitude in the left segmented screen. Therefore, the variance
value of segmented screens was high until 10 s when the UAV was avoiding the obstacles. After the
UAV completely avoided the obstacle, the sharp increase in variance at 10 s is shown in Figure 11.
This is a temporary phenomenon that occurs while creating a new feature point on the ground because
there are no more obstacles. After creating the feature points of the ground, the variance of the optical
flow magnitude was measured low because the optical flow magnitude is evenly measured on each
segmented screen. The full demonstration can be seen in the following link [16].

Figure 11. Variance of optical flow magnitude.

5.4. UAV Detour System Demonstration

Finally, we demonstrated the UAV detour system that consists of the flight guidance system and
safe landing system. In this demonstration, the operator used a laser to guide the UAV to the landing
point where the operator stood. The UAV’s flight guidance system identified the laser, guided the UAV
to the landing point, and then proceeded to land. Since the operator was standing at the landing point
of the UAV, the safe landing system recognized the operator as an obstacle, then automatically avoided
the operator and landed safely at that point. The demonstration video of the UAV detour system can
be seen on the following link [17].
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6. Future Work

The flight guidance system can detect laser, but cannot identify malicious lasers that are intended
to interfere with UAV movement. To solve this problem, as future work, we will develop a paring
system so that only certified lasers can take control of the UAV. We plan to improve the system through
a bandpass filter so that the sensor can identify lasers with a specific wavelength. If the data bit is
transmitted through a laser, an encryption technique can be applied to the laser. This improvement
will allow the UAV to identify the laser containing the certified data bit and move in that direction.
Also, in an environment where a line of sight (LoS) is not secured, it is difficult to guide UAV with a
laser. To cope with this environment, we are developing a system that guides UAV with extra media
that can be used even if LoS is not secured (e.g., ultrasound). In addition, The flight guidance system
requires the operator to operate the laser. To solve this inconvenience, we will develop an improved
landing point system that identifies UAVs through image processing and automatically aims the laser.
Overall, we will improve the flight guidance system to suit the delivery system in an urban area.

The safe landing system will be extended to automatically avoid obstacles that UAVs can
encounter during the entire process of takeoff, flying, and landing to perform their mission in an
urban area. In addition, the values we set as the threshold (e.g., OT, VT) should be set in response
to various circumstances. We are setting it as a future goal to make automatic calibration through
machine learning.

7. Conclusions

UAVs can perform various missions. Some of UAVs performing missions are capturing video
or collecting information over an extensive area, and some UAVs perform missions in urban areas
such as delivery UAVs. However, in urban areas, buildings weaken the GPS signal, and there are
many obstacles that disturb the UAVs’ flight. Therefore, UAV flying in urban area requires additional
systems to fly in the absence of GPS or to avoid obstacles. This paper proposes the UAV detour system
considering UAVs performing missions in urban areas. The UAV detour system allows the UAV
to fly and land in situations where GPS or networks are disconnected. The flight guidance system,
which is one of the subsystems of the UAV detour system, maneuvers the UAV by using a laser that
is not disturbed by various radio waves or signal interference. Another subsystem, the safe landing
system, identifies obstacles based on optical flow, allowing the UAV to avoid obstacles when landing.
Finally, the proposed subsystems were tested on a prototype UAV. The performance of subsystems
were verified by successfully performing flight guidance and obstacle avoidance landing.
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