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Abstract: In this paper, we introduce a tracking algorithm based on labeled Random Finite Sets
(RFS) and Rauch–Tung–Striebel (RTS) smoother via a Generalized Labeled Multi-Bernoulli (GLMB)
multi-scan estimator to track multiple objects in a wide range of tracking scenarios. In the forward
filtering stage, we use the GLMB filter to generate a set of labels and the association history between
labels and the measurements. In the trajectory-estimating stage, we apply a track management
strategy to eliminate tracks with short lifespan compared to a threshold value. Subsequently, we apply
the information of trajectories captured from the forward GLMB filtering stage to carry out standard
forward filtering and RTS backward smoothing on each estimated trajectory. For the experiment,
we implement the tracker with standard GLMB filter, the hybrid track-before-detect (TBD) GLMB
filter, and the GLMB filter with objects spawning. The results show improvements in tracking
performance for all implemented trackers given negligible extra computational effort compared to
standard GLMB filters.

Keywords: labeled RFS; RTS smoother; GLMB filter

1. Introduction

While single-object tracking algorithms have been studied extensively for more than half a century,
multi-object tracking is currently a trending topic in signal processing society due to its extensive
applications. The challenges of the multi-object tracking problem arise in the context of miss-detection,
false alarms, object thinning, and appearing processes. To tackle these problems, several frameworks
have been put forward in the literature such as the Joint Probabilistic Data Association (JPDA) [1],
multiple hypotheses tracking [2], and recently, Random Finite Sets (RFS) [2]. In particular, RFS forms
the mathematical basis of many modern multi-object filters such as Probability Hypothesis Density
(PHD) filter [3–7], cardinalized PHD (CPHD) filter [8–10], multi-Bernoulli filter [11,12], the Generalized
Labeled Multi-Bernoulli (GLMB) filter [13–19], and its approximation the Labeled Multi-Bernoulli
(LMB) filter [20,21]. In many applications, tracking algorithms rely on the standard point measurements
to update the object states; in contrast, TBD [22–25] is an alternative approach that bypasses the
detection module to directly exploit the observed spatial data. This technique is introduced under the
RFS framework in Reference [26] with the development of the so-called separable likelihood model
and, recently, in a hybrid (combination of standard observation and separable observation models)
approach in Reference [27]. In terms of system modelling, in many multi-object tracking scenarios, it is
sufficient to consider object thinning and appearing processes via survivals, deaths, and instantaneous
birth models. However, in many practical applications, new objects are also generated from a set or
a subset of existing objects. In the context of RFS-based filtering techniques, such spawning models
have been proposed for CPHD filter in References [28,29] and for GLMB filter in Reference [30].
Because these spawning models correctly reflect the physical state of the systems with spawning
objects, the accuracy of the estimate is improved.
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The early works on practical smoothing algorithms for single-object tracking were introduced
by Bryson and Frazier [31]; by Rauch, Tung, and Striebel [32]; and subsequently by Fraser and
Potter [33]. Later on, many alternative smoothing algorithms for a nonlinear dynamic model were
proposed in References [34–39]. Recently, the closed-form solution for the Gaussian Mixture (GM)
forward-backward smoother was derived in Reference [3]. Furthermore, the smoother for the
multi-sensor tracking problem is addressed in Reference [40], while the smoothing solution for
maneuvering-object tracking is presented in Reference [41]. In Reference [42], a method for joint
tracking smoothing of object trajectory based on function fitting is also proposed. In a multi-object
tracking context, several smoothing techniques have been put forward in the literature despite the
challenge of the large smoothing state space. In particular, smoothing for PHD filter is introduced in
References [43–45], while smoothing for CPHD filter and Multi-Bernoulli filter are given respectively
in References [46,47]. Multiple objects can also be tracked with a fixed-lag smoother via Interacting
Multiple Model (IMM) in Reference [48]. Closed-form solution for forward-backward smoothing
based on GLMB RFS is introduced in Reference [49], and recently, multi-scan smoothing technique
was proposed in Reference [50] with an efficient implementation based on Gibbs sampling, which can
easily handle 100 scans. This is an unprecedented advance over traditional multi-scan solutions, which
can only handle about 10 scans.

The labeled RFS approach has several theoretical and practical advantages over unlabeled
approaches. The first is that labeled RFS filters can provide trajectory estimates naturally without
heuristics, whereas this is not possible with unlabeled RFS filters; see Reference [51]. The second is that
labeled RFS can provide ancestry information in a principled manner, whereas unlabeled RFS does
not have the mechanism to do this (even with smoothing) [30]. The third is that labeled RFS admits
analytical solutions such as the GLMB densities that are still valid RFS densities after any truncation,
whereas unlabeled RFS cannot; see [51]. The fourth is that the truncation error (or error bound) for
labeled RFS, such as GLMB, is available analytically, whereas this is not available for unlabeled RFS [13].
Consequently, truncation-based unlabeled RFS algorithms are heuristics [51]. Numerically, labeled
RFS filters such as the GLMB have been demonstrated to be scalable in the number of objects [52],
number of scans [50], and number of sensors [53]. Hence, the GLMB is a versatile class of models for
multi-sensor multi-object problems.

In this paper, we introduce a tracker based on the GLMB filters and a modification of the
multi-scan estimator proposed in Reference [50]. After the forward GLMB filtering stage, a pre-smooth
stage is implemented to eliminate short-term tracks, which are usually initiated by false births or
spawns. The threshold to prune these tracks varies depending on the tracking scenario. Subsequently,
a multi-scan estimator which consists of a standard single-object filter and an Rauch–Tung–Striebel
(RTS) smoother is applied on each estimated trajectory to produce smoothed estimates. As the proposed
multi-scan estimator operates only on the estimated trajectories, the complexity is much lower than the
full smoothing solution proposed in Reference [50]. Especially, this proposed tracker can completely
eliminate track fragmentation as the multi-scan estimator estimates the entire trajectories but not
single-scan multi-object states as in standard GLMB filters [13,15,16]. We demonstrate the application
of the proposed tracker on both a standard measurement model and a TBD measurement model as
well as tracking scenario with object spawning.

The structure of this paper is as follows. In Section 2, we provide background information
on labeled RFSs, the multi-object transition kernel, the observation models, and the single-object
RTS smoother for linear and nonlinear dynamic models. In Section 3, we propose the tracker based
on the GLMB filters and the multi-scan estimator. In Section 4, we first show the experimental
results for tracking with the standard observation model in linear and nonlinear tracking scenarios.
We then show the tracking results of the proposed algorithm with a hybrid observation model. Finally,
we demonstrate the performance of the algorithm on tracking biological cells in an image sequence
where spawning process occurs.
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2. Background

2.1. The Labeled RFS

Throughout this article, we adhere to the following notations. The set exponential is denoted
as [h(·)]X = ∏x∈X h(x) while the inner product notation is denoted as 〈 f , g〉 =

∫
f (x)g(x)dx.

The generalization of the Kronecker delta is denoted as follows:

δY(X) =

{
1 X = Y

0 X 6= Y

The set inclusion function is written as follows:

1Y(X) =

{
1 X ⊆ Y

0 otherwise

X denotes the labeled set of objects, while x = (x, l) denotes a single labeled object, specifically,
x ∈ X and l ∈ L, where X and L are respectively the kinematic state space and the discrete labels space
at the current time step. L is a label extraction function, i.e., L(x) = l and F (X) denote sets of finite
subsets of X. The “+” sign is used to indicate the next time step when applicable.

The Finite-Set Statistics (FISST) integration is defined as follows [54]:

f (X)δX =
∞

∑
i=0

1
i!

∫
Xi

f ({x1, ..., xi})d(x1, ..., xi)

In multi-object tracking problem, the cardinality of object sets varies when objects enter or leave
the surveillance region. As RFS is a random set of points in the sense that the number of points in
the set is random and the points themselves are also random and unordered [54], a set of random
objects can be naturally characterized as a RFS. Being introduced systematically for the first time in
Reference [13], the labeled RFS incorporates the identities of elements into the unlabeled counterpart.
Precisely, with the state space X and marks space L, the labeled RFS is a marked simple point process
whereas each realization has a distinct label [13,15]. The distinct label property is satisfied when X has the
same cardinality as its labels L(X). Given this, the distinct label indicator can be written as follows [16]:

∆(X) = δ|X|(|L(X)|) (1)

The introduction of labeled RFS to the multi-object tracking problem allows direct estimation
of trajectories which cannot be done previously with conventional RFS without a separate
labeling scheme.

2.2. The Multi-Object Transition Kernel

In standard tracking scenario, an existing object can either survive or die in the next time
step. The surviving objects are modeled as an LMB RFS with a survival probability of pS(x, l),
a disappearance probability of qS(x, l) = 1 − pS(x, l), and a spatial distribution of fS+(x+|x, l).
The model for such surviving objects is given as follows [13,15,16]:

fS+(XS+|X) = ∆(X)∆(XS+)1L(X)(L(XS+))[ΦS+(XS+|·)]X (2)

where

ΦS+(XS+|x, l) = ∑
(x+ ,l+)∈XS+

δl(l+)pS(x, l) fS+(x+|x, l) + [1− 1L(XS+)
(l)]qS(x, l)
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In addition, the new birth objects can instantaneously appear at each time steps and they are
modeled with LMB RFS as follows [13,15,16]:

fB+(XB+) = ∆(XB+)wB(L(XB+))[pB+]
XB+ (3)

wB(L(XB+)) = 1B+(L(XB+))[1− rB+]
B+−L(XB+)[rB+]

L(XB+)

Furthermore, in certain scenarios, new objects can also be generated from existing objects, which
leads to the need of a spawning model in order to correctly predict the state of the system at the
next time step. Recently, a spawning model for GLMB filter has been proposed in Reference [30]; we
introduce this model again here as follows for the sake of completeness.

For spawned objects, the naming convention is given as follows: if at time step k the label of
an object is l, then the spawned labels from l at the next time step is lspawn = (l, k + 1, i), where i is
the index to distinguish between different spawned objects from the same parent. Following this
convention, the set of all spawned labels in the next time step is S+ = L× {k + 1} ×N, where N is the
set of positive natural numbers [30].

For each spawned object with the label lspawn ∈ S+(L(x)), it will either exist with the probability
pT(x; lspawn) and a spatial distribution fT+(x+|x; lspawn) or not with the probability qT(x; lspawn) =

1− pT(x; lspawn).
The density of the set P of new spawned objects from x is formulated as follows [30]:

fT+(P|x, lspawn) = ∆(P)1S+(L(x))(L(P))[ΦT+(P|x; ·)]S+(L(x)) (4)

where

ΦT+(P|x; lspawn) = ∑
(x+ ,l+)

δlspawn(l+)pT(x, lspawn) fT+(x+|x, lspawn) + [1− 1L(P)(lspawn)]qT(x, lspawn)

Let Q be a labeled set of objects spawned from X with L(Q) ⊆ S+(L(X)). As all labels sets are
disjoint, the FISST convolution theorem [54] can be applied.

fT+(Q|X) = ∆(Q)1S+(L(X))(L(Q))[ΦT+(Q|·)]X (5)

where

ΦT+(Q|x) = [ΦT+(Q ∩ (X× S+(L(x))|x; ·)]S+(L(x))

As new birth objects (given in Equation (3)) are independent of the previous time step objects,
the overall transition model is given as follows:

f(X+|X) = fS+(XS+|X)fT+(Q|X)fB+(XB+) (6)

As the spawned objects depend upon the objects from previous time steps, the prediction step of
the filtering stage needs to be done in a joint manner to capture the objects’ dependency. As a result,
approximation is needed to convert the joint object distribution to a standard GLMB density for each
time step in order to keep the algorithm tractable.

In the scenario where the spawning process is not present, the multi-object transition kernel is
reduced to the following:

f(X+|X) = fS+(XS+|X)fB+(XB+) (7)
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2.3. The Multi-Object Observation Models

In the RFS multi-object tracking framework, given a set of measurements Z = {z1:|Z|}, we have
a standard observation model of the following form: [54]

g(Z|X) ∝ ∑
θ∈Θ(L(X))

∏
(x,l)∈X

ψ
(θ(l))
Z (x, l) (8)

where

ψ
(θ(l))
Z (x, l) = δ0(θ(l))qD(x, l) + (1− δ0(θ(l)))

pD(x, l)g(zθ(l)|x, l)
κ(zθ(l))

κ(·) is the clutter intensity, pD(·) and qD(·) are respectively the detection and miss-detection
probabilities, g(z|x, l) is the likelihood that (x, l) generates measurement z, θ : L → {0 : |Z|} is
a positive 1-1 map, and Θ is the entire set of such mappings.

For image observation, with the assumption that object template T(·) is not overlapped,
i.e., T(x1) 6= T(x2) given x1 6= x2, the separable likelihood is given by the following [26]:

g(y|X) = fB(y) ∏
x∈X

gy(x) (9)

where y denotes the observed image, fB denotes the likelihood of the entire set of X, and gy(x) denotes
the likelihood of a single object in the observed image. The designs of fB and gy vary according to the
applications, characteristics of observed image, and object appearances.

First introduced in Reference [27], the concept of a hybrid TBD observation model takes advantage
of both standard and separable likelihood models. Intuitively, while detected objects can be updated
by the associated point measurements, the miss-detected objects can be updated directly from the
image observation. This intuition can be described mathematically by defining the following:

σT(T(y)|x, l) ,
gT(T(y)|x, l)
gT(T(y)|∅)

(10)

The hybrid likelihood can then be written as follows [27]:

g(y|X) ∝ ∑
θ∈Θ(L(X))

∏
(x,l)∈X

ϕ
(θ(l))
y (x, l) (11)

where

ϕ
(θ(l))
y (x, l) = ψ(θ(l))(x, l|Z)[σT(T(y)|x, l)]δ0θ(l)

2.4. The Single Object RTS Smoother

Given a set single object observation {z1:N}, where N ≤ K with K is the total number of tracking
time steps, the smoothed density of an object state at time k ≤ N, p(xk|z1:N), is obtained as follows [36].

Initially, let the joint distribution of xk and xk+1 be rewritten as follows:

p(xk, xk+1|z1:k) = p(xk+1|xk)p(xk|z1:k) (12)

Then, the distribution of xk given xk+1 and z1:k is given as follows:

p(xk|xk+1, z1:k) =
p(xk, xk+1|z1:k)

p(xk+1|z1:k)
(13)

where p(xk+1|z1:k) =
∫

p(xk+1|xk)p(xk|z1:k)dxk
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From the Markov state-space model, we have the following property: p(xk|xk+1, z1:N) =

p(xk|xk+1, z1:k). Hence, we have the following:

p(xk|xk+1, z1:N) =
p(xk, xk+1|z1:k)

p(xk+1|z1:k)
(14)

Then, the joint distribution of xk and xk+1 given the measurements set z1:N is given as follows:

p(xk, xk+1|z1:N) = p(xk|xk+1, z1:N)p(xk+1|z1:N) (15)

Finally, the smoothed density of state xk can then be obtained via the marginalization step
as follows:

p(xk|z1:N) =
∫

p(xk|xk+1, z1:N)p(xk+1|z1:N)dxk+1 (16)

3. The Proposed Tracker

3.1. The Filtering Stage

For this tracker, we assume Gaussian distribution for the dynamic state of each object. At this first
stage, the tracker carries out a standard multi-object filtering process to obtain the forward estimated
labels and the measurements to label association history. In this subsection, we provide the forward
filtering steps for both the GLMB filter (with standard measurements and hybrid measurements
observations) and GLMB filter with object spawning.

3.1.1. GLMB Filter without Objects Spawning

The procedure to estimate the state of a set of objects with the standard GLMB filter without
including the spawning model in the transition kernel is given as follows.

Given a GLMB prior [16]

π(X) = ∆(X) ∑
(I,ξ)∈F (L)×Ξ

ω(I,ξ)δI(L(X))[p(ξ)]X (17)

and the standard observation model as in Equation (8), the filtering density in the next time step is
given by the following [16]:

πZ+(X) ∝ ∆(X) ∑
I,ξ,I+ ,θ+

ω(I,ξ)ω
(I,ξ,I+ ,θ+)
Z+

δI+(L(X))[p
(ξ,θ+)
Z+

]X (18)

where I ∈ F (L), ξ ∈ Ξ, I+ ∈ F (L+), θ+ ∈ Θ+ where ξ is the tracks to measurement association
history and Ξ is the entire space of ξ.

ω
(I,ξ,I+ ,θ+)
Z+

= 1Θ+(I+)(θ+)[1− P̄(ξ)
S ]I−I+ [P̄(ξ)

S ]I
⋂

I+ [1− rB+]
B+−I+ [rB+]

B+∩I+ [ψ̄
(ξ,θ+)
Z+

]I+

P̄(ξ)
S (l) = 〈p(ξ)(·, l), pS(·, l)〉

ψ̄
(ξ,θ+)
Z+

(l+) = 〈 p̄(ξ)+ (·, l+), ψ
(θ+(l+))
Z+

(·, l+)〉

p(ξ,θ+)
Z+

(x+, l+) =
p̄(ξ)+ (x+, l+)ψ

(θ+(l+))
Z+

(x+, l+)

ψ̄
(ξ,θ+)
Z+

(l+)
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p̄(ξ)+ (x+, l+) = 1L({l+})
〈pS(·, l+) fS+(x+|·, l+), p(ξ)(·, l+)〉

P̄(ξ)
S (l+)

+ 1B+
({l+})pB+(x+, l+)

In tracking scenarios where raw spatial detection are also available, the hybrid model in
Equation (11) can be used to replace the standard observation model with the probability of
miss-detection being scaled by the spatial observation likelihood, i.e., given the GLMB prior as
in Equation (17). The filtering density is then given as follows [27]:

πy+(X) ∝ ∆(X) ∑
I,ξ,I+ ,θ+

ω(I,ξ)ω
(I,ξ,I+ ,θ+)
y+ δI+(L(X))[p

(ξ,θ+)
y+ ]X (19)

where

ω
(I,ξ,I+ ,θ+)
y+ = 1Θ+(I+)(θ+)[1− P̄(ξ)

S ]I−I+ [P̄(ξ)
S ]I

⋂
I+ [1− rB+]

B+−I+ [rB+]
B+∩I+ [ϕ̄

(ξ,θ+)
y+ ]I+

ϕ̄
(ξ,θ+)
y+ (l+) = 〈 p̄(ξ)+ (·, l+), ϕ

(θ+(l+))
y+ (·, l+)〉

p(ξ,θ+)
y+ (x+, l+) =

p̄(ξ)+ (x+, l+)ϕ
(θ+(l+))
y+ (x+, l+)

ϕ̄
(ξ,θ+)
y+ (l+)

3.1.2. GLMB Filter with Objects Spawning

For the prior density which is a GLMB density as in Equation (17) and the transition kernel
defined in Equation (6), by applying the joint predict–update approach, a proposal density can be
written as follows [30]:

π̃+(X+|Z+) ∝ ∆(X+) ∑
I,ξ,I+ ,θ+

ω(I,ξ)ω̃
(I,ξ,I+ ,θ+)
Z+

δI+(L(X+))[ p̃
(ξ,θ+)
Z+

]X+ (20)

ω̃
(I,ξ,I+ ,θ+)
Z+

= [rB+]
B+∩I+ [1− rB+]

B+−I+ [ p̄S]
I∩I+ [1− p̄S]

I−I+ [ p̄T ]
S+∩I+ [1− p̄T ]

S+−I+ ,

p̃(ξ,θ+)
Z+

(x+, l+) =
p̃(ξ)+ (x+, l+)ψ

(θ+(l+))
Z+

(x+, l+)

ψ̃
(ξ,θ+)
Z+

(l+)
,

p̃(ξ)+ (x+, l+) = 1B+
({l+})pB+(x+, l+) + 1L({l+}) p̃(ξ)S (x+, l+) + 1S({l+}) p̃(ξ)T (x+, l+),

p̃(ξ)S =
〈pS(·, l+) fS+(x+|·, l), p(ξ)(·, l+)〉

p̄(ξ)S (l+)
,

p̃(ξ)T =
〈pT(l+) fT+(x+|·, l), p(ξ)(·, l)〉

p̄(ξ)T (l+)

p̄(ξ)S = 〈p(ξ)(·, l), pS(l+)〉,



Sensors 2019, 19, 4419 8 of 25

p̄(ξ)T = 〈p(ξ)(·, l), pT(l+)〉,

ψ̃
(ξ,θ+)
Z+

(l+) = 〈 p̃(ξ)+ (·, l+), ψ
(θ+(l+))
Z+

(·, l+)〉.

From this proposal density, Gibbs’ sampler is applied to select high weight hypotheses.
These hypotheses are subsequently used to form a standard GLMB density [30]:

π̂(X+|Z+) = ∆(X+)∑I,ξ,I+ ,θ+ δI+(L(X+))ω̂
(I,ξ,I+ ,θ+)
+ (Z+)[pB+ψ

(θ+)
+ (·|Z+)]XB+

[ p̂(I,ξ,I+ ,θ+)
+ (·|Z+)]

XS+∪XT+

[ p̄(I,ξ,I+ ,θ+)
+ (·|Z+)]

I+
(21)

ω̂
(I,ξ,I+ ,θ+)
+ (Z+) =

ω
(I,ξ)
+ (I+)[ p̄

(I,ξ,I+ ,θ+)
+ (·|Z+)]I+

∑I,ξ,I+ ,θ+ ω
(I,ξ)
+ (I+)[ p̄

(I,ξ,I+ ,θ+)
+ (·|Z+)]I+

p̂(I,ξ,I+ ,θ+)(x+, l+|Z+) , 1I+({l+})
∫

p(I,ξ,θ+)
+ ({(x+, l+), (x1,+, l1,+), ..., (xn,+, ln,+)}|Z+)d(x1,+, ..., xn,+)

p̄(I,ξ,I+ ,θ+)(x+, l+|Z+) , 1B+
({l+})〈pB+(·, l+), ψ

(θ+)
+ (·|Z+)〉+ (1− 1B+

({l+}))〈 p̂(I,ξ,I+ ,θ+)
Z+

(x+, l+), 1〉

3.2. GLMB Multi-Scan Estimator

The concept of a multi-scan estimator is introduced in Reference [50]. Given a multi-scan GLMB
from time step j to k, the cardinality distribution of the number of trajectories is given as follows:

Pr(|L(Xj:k)| = n) = ∑
ξ,Ij:k

δn[|Ij:k|]w
(ξ)
j:k (Ij:k) (22)

One possible form of a multi-scan estimator is to determine the component with the highest weight
w(ξ)

j:k (Ij:k) given that it has the most probable cardinality by maximizing Equation (22). The expected

trajectory estimate can then be computed from p(ξ)j:k (·, l) for each l ∈ Ij:k.
In this work, we proposed modifications to the multi-scan estimator in Reference [50], which

can eliminate track fragmentation and improve localization performance. The set of all estimated
trajectories is updated at each time step via the most significant hypothesis with the most probable
cardinality in the GLMB density. At the time step when state estimation is required, the information
of estimated trajectories is passed into the estimator. At this stage, trajectories pruning is applied
to eliminate short-term tracks. Subsequently, standard filtering and RTS smoothing techniques are
applied on each trajectory to produce smoothed state estimates. The significance of this estimator
is that it allows the application of smoothing techniques to improve the tracking accuracy while
completely eliminates track fragmentation as the entire trajectory is estimated as a whole. In addition,
as the complexity of the estimator depends only on the number of estimated tracks, the additional
computational effort of the estimator is negligible compared to GLMB filtering. The detailed
implementation of the estimator is given as in following subsections.

3.2.1. Estimating the Trajectories

Given the GLMB density at the end of each filtering cycle, the GLMB filter estimate is the
result of the maximum posteriori estimate of the cardinality with the means of the object states being
conditioned on the estimated cardinality [15]. Given that the possible highest number of tracked objects
is Nmax, the cardinality distribution of the the objects set over a finite set of hypotheses {(I, ξ)h}h=1:H
is written as follows:
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ρ(n)|n=0:Nmax = ∑
H∈{(I,ξ)h}h=1:H

ω(H)δn(|I(H)|) (23)

The estimated cardinality is given as follows:

N̂ = argmax(ρ) (24)

The estimated hypothesis is as follows:

Ĥ = argmax(H)ω
(H)δN̂(|I

(H)|) (25)

The information from the filtering stage needs to be captured to facilitate the multi-scan estimator.
At this stage, we represent a set of estimated trajectories at time k with a set of tuples defined as
T̂k , {(l̂k

1, b̂l̂k
1
, ξ̂ l̂k

1
), ..., (l̂k

N̂
, b̂l̂k

N̂
, ξ̂ l̂k

N̂
)}, where l̂k

n̂ is the label of estimated trajectory n at time k, b̂l̂k
n̂

is its

corresponding initial birth state (including the time of birth and initial kinematic state), and ξ̂ l̂k
n̂

is the
corresponding association history. In addition, we also have set of tuples for all estimated trajectories
T̂ from time step 1 to current time step k. This set of tuples is updated at the end of each filtering
time step via updating the association history and initial birth state of existing trajectories and adding
new tuples to the set if the trajectories are new. The procedure to update the tuples set is given in
Algorithm 1.

Algorithm 1 Updating trajectories tuples

Input: T̂k = {(l̂k
1, b̂l̂k

1
, ξ̂ l̂k

1
), ..., (l̂k

N̂
, b̂l̂k

N̂
, ξ̂ l̂k

N̂
)}, T̂ = {(l̂1, b̂l̂1

, ξ̂ l̂1
), ..., (l̂N , b̂l̂N

, ξ̂ l̂N
)}

Output: The updated trajectories tuples set T̂

for n = 1 to N̂
if l̂k

n ∈ {l̂1, ..., l̂N}
Replace the tuple of label l̂k

n in T̂ with (l̂k
n, b̂l̂k

n
, ξ̂ l̂k

n
)

else
T̂ = T̂∪ (l̂k

n, b̂l̂k
n
, ξ̂ l̂k

n
)

end
end

3.2.2. Trajectories Pruning

For a set of estimated trajectories tuples from filtering stage T̂ = {(l̂1, b̂l̂1
, ξ̂ l̂1

), ..., (l̂N , b̂l̂N
, ξ̂ l̂N

)} the

lifetime of a trajectory with label l̂n is the length of the corresponding association history, which is
given as follows:

τ(ln) = flength(ξ̂ l̂n
) (26)

where flength(·) is the function that determines the length of the vector in its argument. If the length of
a track is shorter than the threshold value τt, i.e., τ(ln) < τt, this trajectory will be removed from the
set of estimated trajectories.

3.2.3. Numerical Implementation of Single-Object Smoother

For completeness, we outline here the detailed numerical implementation of the single-object RTS
smoother for both linear and nonlinear dynamic models with Gaussian assumption on the distribution
of the states.
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Given a linear dynamic model of the form

x+ = Fx + q, z = Hx + r

where x is the system state, F is the linear transformation matrix, H is the linear observation matrix,
q and r are respectively the process and observation Gaussian noise, and z is the current time step
measurement, the backward smoothing step over an interval N ≤ K (where K is the total number of
tracking time steps) can be implemented with the standard RTS Smoother [32]. The details of the RTS
smoother is given in Algorithm 2, where the superscript s denotes the smoothed results.

Algorithm 2 Single-object Rauch–Tung–Striebel (RTS) smoother

Input: The filtered mean and covariance {xk, Pk}k=1:N , F, Q
Output: The smoothed mean and covariance {xs

k, Ps
k}k=1:N

Initialization: xs
N = xN and Ps

N = PN
for k = N − 1 down to 1

x̄k+1 = Fxk
P̄k+1 = FPkFT + Q
D = Pk+1F(P̄k+1)

−1

xs
k = xk + D(xs

k+1 − x̄k+1)

Ps
k = Pk + D(Ps

k+1 − P̄k+1)DT

end

For a nonlinear dynamic model, the RTS smoother can also be applied via the unscented
transformation [39]. Given the dynamic model

x+ = f (x, q), y = h(x, r)

where f is the nonlinear state transition function and h is the nonlinear observation function, other
variables are interpreted the same as in the linear model; the smoothed results can be inferred via the
Unscented RTS (URTS) smoother [36]. The smoothing procedure is presented in Algorithm 3, and the
readers are referred to Reference [39] for the detailed implementation of the unscented transform.
Compared to the Sequential Monte Carlo method, unscented transform is less computationally
expensive as the number of sigma points to approximate a Gaussian distribution is much lower
than the number of particles to represent the entire density.

3.2.4. Forward Filtering-Backward Smoothing of Trajectories

In this step, by using the measurement association history, the initial birth information (the state
and the time at birth) in the estimated trajectories tuples set, and the measurements set, we apply
standard single-object filtering and backward RTS smoothing techniques to produce a set of smoothed
distributions of the trajectories. In this work, spatial distributions of tracks are assumed to be Gaussian
distributed; hence, the estimated spatial distribution of track labeled l at time k is represented by
the mean ml

k and the covariance Pl
k. The details of the procedure to produce the tracks distributions

are given in Algorithm 4. The SingleObjectPrediction and SingleObjectUpdate functions are chosen
according to the dynamic model, which can be Kalman prediction and Kalman update or their
nonlinear variances. The linearity of the system also determines the SingleObjectSmoothing function,
which takes the form of either Algorithm 2 or Algorithm 3 to smooth each individual trajectory.
The output of the algorithm is the smoothed spatial distributions of all estimated trajectories, which

is {ml̂n
k , Pl̂n

k }kl̂n
i :kl̂n

e
. From this set of distributions, the mean values can be extracted to be used as the

estimated states of the trajectories.



Sensors 2019, 19, 4419 11 of 25

Algorithm 3 Single-object Unscented RTS (URTS) smoother

Input: The filtered mean and covariance {xk, Pk}k=1:N , f (x+|x) , Q
Output: The smoothed mean and covariance {xs

k, Ps
k}k=1:N

Initialization: xs
N = xN and Ps

N = PN
for k = N − 1 down to 1
{W(m)

i−1 , W(c)
i−1, [X̃x

i ; X̃q
i ]} = UnscentedTransform (xk, Pk, Q)

X̃i+ = f (X̃x
i , X̃q

i )

x̄k+1 = ∑i W(m)
i−1 X̃i+

P̄k+1 = ∑i W(c)
i−1(X̃i+ − x̄k+1)(X̃i+ − x̄k+1)

T

C̄k+1 = ∑i W(c)
i−1(X̃x

i − xk)(X̃i+ − x̄k+1)
T

D = C̄k+1 (P̄k+1)
−1

xs
k = xk + D

(
xs

k+1 − x̄k+1

)
Ps

k = Pk + D
(

Ps
k+1 − P̄k+1

)
DT

end

While the advantages are mentioned previously, this estimator is also subjected to certain
drawbacks in challenging tracking scenarios. First, depending on the nature of the problem, the user
needs to set an appropriate pruning threshold τl to prevent the estimator from deleting correct
trajectories, especially when track identity switching is severe. Second, as the estimator relies on the
latest hypothesis to produce estimates, the more this hypothesis deviates from the truth, the more
inaccurate the entire estimation. In addition, in the case that wrong new tracks keep appearing in
the set of trajectory estimates, overestimating of the number of tracks is also possible. However,
the benefit from track fragmentation reduction and improvement of tracking accuracy given negligible
computational effort is much more than the risk of incorrectly estimating the number of tracks, and the
following simulation results are a strong demonstration of the benefits of our proposed tracker.

Algorithm 4 Trajectory forward filtering-backward smoothing

Input: T̂ = {(l̂1, b̂l̂1
, ξ̂ l̂1

), ..., (l̂N , b̂l̂N
, ξ̂ l̂N

)}, {Z1, ..., ZK}

Output: The estimated trajectories {{ml̂1
k , Pl̂1

k }k
l̂1
i :k

l̂1
e

, ..., {ml̂N
k , Pl̂N

k }k
l̂N
i :k

l̂N
e
}

for n = 1 to N
Initialize {m̄ln

kl̂n
i

, P̄ln
kl̂n

i

} from the initial birth b̂l̂n

{m̃ln
kl̂n

i

, P̃ln
kl̂n

i

} = SingleObjectUpdate (m̄ln
kl̂n

i

, P̄ln
kl̂n

i

, z
kl̂n

i

ξ̂
kl̂n
i

l̂n

)

for k from kl̂n
i + 1 to kl̂n

e

{m̄ln
k , P̄ln

k } = SingleObjectPrediction (m̃ln
k−1, P̃ln

k−1)

if ξ̂k
l̂n
= 0

{m̃ln
k , P̃ln

k } = {m̄
ln
k , P̄ln

k }
else
{m̃ln

k , P̃ln
k } = SingleObjectUpdate (m̄ln

k , P̄ln
k , zk

ξ̂k
l̂n

)

end
end
{ml̂n

k , Pl̂n
k }kl̂n

i :kl̂n
e
= SingleObjectSmoothing ({m̃l̂n

k , P̃l̂n
k }kl̂n

i :kl̂n
e
)

end
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4. Experimental Results

4.1. Simulation Results

4.1.1. Linear Dynamic Model

In this experiment, we use a constant velocity model for the dynamic of the system. The state
vector consists of information regarding the planar position and the velocity of the objects, which
is xk =

[
px, py, ṗx, ṗy

]T ; while the measurement vector contains the position of the object, which is
zk = [zx, zy]T . The transition and observation models are given respectively as follows:

f+(x+|x) = N (x+; Fx, Q)

h(z|x) = N (z; Hx, R)

where F =

[
I2 ∆I2

02 I2

]
, Q = σ2

v

[
∆4

4 I2
∆3

2 I2
∆3

2 I2 ∆2 I2

]
, H =

[
I2 02

]
, R = σ2

ε I2. Particularly, in this

experiment, we set σv = 5 m/s and σε = 15 m.
The surveillance region is the [−1000, 1000]m× [−1000, 1000]m area, the total time step is K = 100,

and ∆ = 1. The ground truth plot for this experiment is given in Figure 1. The surviving probability is
set to pS = 0.99, and the detection probability is pD = 0.95. Clutter rate is set to 66 false alarms per
scan. The birth probability is set to rB = 0.03. The states of expected births are m(1)

B = [0.1, 0, 0.1, 0]T ,

m(2)
B = [400, 0,−600, 0]T , m(3)

B = [−800, 0,−200, 0]T , and m(4)
B = [−200, 0, 800, 0]T . The covariance

matrix at birth is PB = diag([10, 10, 10, 10]). The number of hypotheses for GLMB filter is capped at
20, 000 components. In this experiment, we smooth the entire tracking interval from k = 1 to k = K.
The threshold for the smoother to prune the track is set to τt = 3 time steps.

We conduct the experiment over 100 Monte Carlo runs. The means of the estimated Optimal
Subpattern Assignment (OSPA) error [55] and OSPA2 error [52,56] are given respectively in Figures 2
and 3. Figure 4 shows the GLMB filter and proposed tracker-estimated cardinality of objects set for
each time step along with the true values.

Figure 1. Ground truth for linear dynamic scenario (circle: track start position, triangle: track end position).
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Figure 2. OSPA error for linear dynamic scenario.

Figure 3. OSPA2 error for linear dynamic scenario.
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Figure 4. Estimated cardinality for linear dynamic scenario.

4.1.2. Nonlinear Dynamic Model

For the demonstration of the nonlinear tracking scenario, we use a constant turn model with 5-D
state vector xk =

[
px, py, ṗx, ṗy, ω

]T , where ω is the object’s turn rate. The transition density is given
as follows:

f+(x+|x) = N (x+; F(ω)x, Q)

where F




px

ṗx

py

ṗy

ω



 =


1 sin(ω∆)

ω 0 −1−cos(ω∆)
ω 0

0 cos(ω∆) 0 − sin(ω∆) 0
0 1−cos(ω∆)

ω 1 sin(ω∆)
ω 0

0 sin(ω∆) 0 cos(ω∆) 0
0 0 0 0 1

, Qζ=

[
σ2

ωGGT 0
0 σ2

v

]
and G =


∆2/2 0

∆ 0
0 ∆2/2
0 ∆

.

In this experiment, we set σω = π/180 rad/s and σv = 5 m/s. The observation model is given as
the bearing and range detection of the 2D vector zk = [θ, r]T with σθ = π/90 rad and σr = 5 m.

The surveillance region is the half disc of the radius 2000 m with K = 100 time steps and
∆ = 1. The ground truth for this experiment is given in Figure 5. The surviving probability is set to
pS = 0.99 and the detection probability is pD = 0.95. Clutter rate is set to 66 false alarms per scan.
The expected birth states are m(1)

B = [−1500, 0, 250, 0, π/180]T , m(2)
B = [−250, 0, 1000, 0, π/180]T ,

m(3)
B = [250, 0, 750, 0, π/180]T , and m(4)

B = [1000, 0, 1500, 0, π/180]T with rB = 0.02, and the
birth covariance is PB = diag([50, 50, 50, 50, π/30]). The number of hypotheses is also capped at
20, 000 components. The smoothing interval is the entire tracking sequence from k = 1 to k = K.
We also set the track pruning threshold for the smoother to 3 time steps in this experiment.

For this scenario, we also test the performance of the tracker over 100 Monte Carlo runs. The means
of OSPA error and OSPA2 error of the estimates are plotted in Figures 6 and 7, respectively, while the
set cardinality is shown in Figure 8.



Sensors 2019, 19, 4419 15 of 25

Figure 5. Ground truth for nonlinear dynamic scenario (circle: track start position, triangle: track
end position).

Figure 6. OSPA error for nonlinear dynamic scenario.

4.1.3. Hybrid TBD Observation Model

In this simulation, we use the hybrid measurement model to track objects following a linear
dynamic motion model. The surveillance region is 100× 100 pixels with image cell size of 1, total
time step of K = 100, and ∆ = 1. The observation are the raw images, which are arrays of pixels.
In particular, for a pixel i at the image coordinate (a(i), b(i)), the array value is given as follows [26,27]:

y(i) =

[
∑
x∈X

Ik
2πσh

exp

(
−
(a(i) − px)2 + (b(i) − py)2

2σ2
h

)]
+ w(i) (27)

where w(i) v N (0, σy) is Gaussian noise. In this experiment, we set σh = 4 and σy = 1. We choose the
value of Ik such that the signal to noise ratio (SNR) varies over the range 7 to 10 dB. For the observation
model from the perspective of the filter, we fix its SNR value to 10 dB. From the raw images, we then
use hard-shareholding to extract the points measurements at each frame.
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Figure 7. OSPA2 error for nonlinear dynamic scenario.

Figure 8. Estimated cardinality for nonlinear dynamic scenario.

The dynamic model and standard observation model are similar to the ones in Section 4.1.1
with σv = 1 pixel/s, pS = 0.98, and σε = 4 pixels with a clutter rate of 10. The expected new
births states are m(1)

B = [5, 0, 25, 0]T , m(2)
B = [5, 0, 90, 0]T , m(3)

B = [80, 0, 90, 0]T , m(4)
B = [5, 0, 5, 0]T ,

and m(5)
B = [90, 0, 30, 0]T with the covariance of PB = diag([3, 2, 3, 2]) and the probability rB of 0.03.

The ground truth location of objects is shown in Figure 9 while Figure 10 shows samples of raw image
observation along with points detection. The implementation of the filtering phase is as the same
as in Reference [27]. The smoothing interval is set to the entire tracking time with the track pruning
threshold of the smoother set to 3 time steps.

This experiment is run over 100 Monte Carlo trials. The means of OSPA error and OSPA2 error
are shown respectively in Figures 11 and 12. The estimated cardinality is plotted in Figure 13.
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Figure 9. Ground truth for a hybrid track-before-detect (TBD) scenario (circle: track start position,
triangle: track end position).

Figure 10. Samples of raw images and point observations for a hybrid TBD scenario (red asterisk:
ground truth position, green circle: point detection).
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Figure 11. OSPA error for a hybrid TBD scenario.

Figure 12. OSPA2 error for a hybrid TBD scenario.



Sensors 2019, 19, 4419 19 of 25

Figure 13. Estimated cardinality for a hybrid TBD scenario.

4.1.4. Discussion on the Simulation Results

For all simulated experiments, we observe lower OSPA and OSPA2 errors for the proposed tracker
compared to the GLMB filter results. In the first two experiments with the standard observation
model, as the clutter rate is high, the filtered-only trajectories jiggle around the true paths due to
false measurements. In Figures 2 and 6 as well as in Figures 3 and 7, the overall errors of the GLMB
filter estimates are higher than of the proposed tracker estimates. The reduction of localization error
contribute mainly to the improvement of the tracking performance. From the cardinality plots in
Figures 4 and 8, on average, the proposed tracker slightly improves estimate cardinality performance
as it is able to eliminate track fragmentation while eliminating incorrect tracks at some time steps.

In the hybrid TBD tracking experiment, as tracks are miss-detected due to low SNR, the proposed
tracker improves tracking performance by eliminating track fragmentation. Not much localization
error is reduced by the smoother step as the GLMB filter produces relatively good tracking results.
The OSPA and OSPA2 results presented in Figures 11 and 12 show slight improvement of the proposed
tracker results compared to GLMB filter tracking results. However, the cardinality plot in Figure 13
clearly indicates that the proposed tracker is able to improve the estimated cardinality between time
step 30 and 40.

The run time for all simulated scenario is given in Figure 14 in terms of the percentage of extra
computational time of the proposed tracker over the computational time of the filtering step only.
It is shown that the extra computational time is negligible in all three tracking scenarios with the
extra computational time of the proposed tracker less than 0.5% of the filtering computational time.
However, the main disadvantage is that the tracker needs to wait until the end of the smoothing
interval to be able to produce tracking results.

4.2. Application to Cell Microscopy

In this experiment, we attempt to track biological cells from a sequence of images containing
90 frames by using the proposed tracker. A snapshot of the sequence is shown in Figure 15. In this
application, we use the constant turn rate for the dynamic model as in Section 4.1.2 and the standard
observation model as in Section 4.1.1. We also implement the measurement driven model as described
in Reference [20]. For the first time step, the birth rate is set to a very high value (≈1) to initialize
objects. Subsequently, the birth rate is capped at 10−7. The standard deviation of the turn rate noise
is π/90 rad/s, and the standard deviation of the velocity noise is 5 pixels/frame. The number of
hypotheses is capped at 10,000. The detection rate is set to 0.88, and the surviving rate and the
spawning rate are 0.999 and 0.035, respectively. The clutter rate is set to 0.05. The cell spawning
model is the same as described in Reference [57] with the covariance of the spawning model given
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as QT =


40 0 0 0 0
0 5 0 0 0
0 0 40 0 0
0 0 0 5 0
0 0 0 0 π/90

 and the smoothing interval set to the entire image sequence. In this

application, we set the track pruning threshold of the estimator to 3 time steps.

Figure 14. Percentage of smoothing time over filtering time.

Figure 15. Snapshot of biological cell sequence.

From the tracking results, significant improvement is observed as the proposed tracker is able to
eliminate incorrect spawned tracks. While the OSPA error in Figure 16 shows similar performance for
the GLMB filter and the proposed tracker, the improvement is clearly reflected in the OSPA2 cardinality
error plots in Figure 17. From the cardinality plot in Figure 18, the estimated cardinality from our
tracker is much closer to the true values as fewer incorrect spawned tracks are estimated. In this
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experiment, there is not much difference between the GLMB filter and the proposed tracker estimates
localization error due to the mismatch between the dynamic model and actual motion of the cells.
Finally, in Figure 19, we illustrate the improved tracking results in terms of tracking sequence for
several time steps at a selected region where the cell splitting process occurs.

Figure 16. OSPA error for tracking biological cells.

Figure 17. OSPA2 error for tracking biological cells.
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Figure 18. Estimated cardinality for tracking biological cells.

Figure 19. The tracked image sequences of biological cells with blue asterisks denoting points detection.
Top row: Generalized Labeled Multi-Bernoulli (GLMB) filter tracking results. Bottom: Proposed tracker
tracking results.

5. Conclusions

In this paper, we detailed the implementation of a new tracker based on GLMB filter and
a modified multi-scan estimator. In addition to lowering the localization error by performing RTS
smoother on each individual estimated trajectory, the proposed tracker can also reduce cardinality
errors by deleting the short-term tracks via track management and by completely eliminating track
fragmentation. The computation time is shown to contribute to less than 0.5% of the total tracking
time, although a fixed delay time is needed before the tracker can produce the estimate. Therefore,
in applications when real-time updates are not required, the proposed tracker can be used to improve
the tracking results given negligible extra computation time. However, as the smoothing results
strongly depend on the quality of the estimates obtained from the forward filtering step, if the filtered
estimate experiences strong distortion, the performance of the proposed tracker degrades significantly.
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T.T.D.N.; writing—review and editing, T.T.D.N. and D.Y.K.
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