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Abstract: Observing animal movements enables us to understand animal behavior changes, such as
migration, interaction, foraging, and nesting. Based on spatiotemporal changes in weather and
season, animals instinctively change their position for foraging, nesting, or breeding. It is known
that moving patterns are closely related to their traits. Analyzing and predicting animals’ movement
patterns according to spatiotemporal change offers an opportunity to understand their unique traits
and acquire ecological insights into animals. Hence, in this paper, we propose an animal movement
prediction scheme using a predictive recurrent neural network architecture. To do that, we first
collect and investigate geo records of animals and conduct pattern refinement by using random forest
interpolation. Then, we generate animal movement patterns using the kernel density estimation and
build a predictive recurrent neural network model to consider the spatiotemporal changes. In the
experiment, we perform various predictions using 14 K long-billed curlew locations that contain
their five-year movements of the breeding, non-breeding, pre-breeding, and post-breeding seasons.
The experimental results confirm that our predictive model based on recurrent neural networks can
be effectively used to predict animal movement.

Keywords: animal movement; movement prediction; pattern prediction; predictive recurrent neural
networks; kernel density image

1. Introduction

Analyzing animal movements is the first step toward understanding the ecosystem. Animal
movements provide potential information for obtaining ecological insights on topics such as habitat
selection, population dynamics, and group behavior. Over the decades, many studies have been carried
out based on the awareness of this importance [1–4]. Since the 1990s, the development of telemetry
technologies such as the global positioning system (GPS) and advanced research and global observation
satellite (ARGOS) has accelerated various studies to model animal movements. Furthermore, with the
availability of remote sensing technology, diverse meteorological and geographical sensing data can be
continuously acquired, and the amount is sufficient to carry out reasonable modeling. Many scientists
have emphasized the need to use modeling processes to understand animal movements and the factors
correlated with such movements [5–8].

Recently, as the versatility of machine learning methodologies has been observed in various
domains, many efforts have been made to model animal movements using machine learning [9–12].
For instance, Patterson et al. proposed a two-phase prediction scheme to classify two animal behavior
states: transient and resident. They used the maximum likelihood and monte carlo (MC) methods,
and a hidden markov model (HMM) was used to predict the potential state of behavior change [13].
MoveHMM [14], which is a representative modeling tool based on hidden markov processes, showed
that probability-based prediction of state switching is possible by using features such as animal step
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length and turning angle. More recently, the deep neural network (DNN) has become a major tool
in animal movement modeling. For example, Hirakawa et al. focused on filling in the observation
gap that frequently occurred while tracking wild animals periodically [15]. They found that previous
interpolation methods (e.g., linear, curvilinear, random walk) are not sufficient to recover large spatial
gaps. For this reason, they used inverse reinforcement learning (IRL) to recover the trajectory by
estimating the gap as a reward function. Zhiping et al. utilized a six-layer convolution neural network
(CNN) to distinguish fish shapes and track the zebrafish trajectory [16]. Browning et al. proposed
a deep architecture to predict the diving behavior of seabirds associated with foraging. They combined
the GPS and time depth record (TDR) from 108 individuals and trained deep learning models for
predicting the behavior of European shags, common guillemots, and razorbills. An optimized model
achieved 94% and 80% prediction accuracy of non-diving and diving behavior, respectively [17].

Despite the great effort to build animal movement models using geo records (e.g., GPS, ARGOS),
the results have been limited to the identification of animal movement state or the analysis of correlations
with environmental conditions. The key function that should be implemented in such a model is the
prediction of animal movements according to changes in various spatiotemporal factors, which is
possible by considering historical movement patterns. Such a model could be used for a variety of
purposes, such as understanding animal behavior or protecting animal habitats, but to the best of our
knowledge, there are very few reports on this topic.

Therefore, in this paper, we propose an animal movement prediction scheme based on predictive
recurrent neural networks (RNNs). To improve the prediction accuracy, we focus on three issues,
which are our main contributions. (1) To fill the observation gap, we propose an optimized
random forest-based interpolation scheme that considers weather information and movement-related
vectors. In fact, interpolating the animal pathway is a very important task for predicting animal
movement when considering realistic conditions. (2) We propose a method to construct an image
sequence of representative animal movements by using the kernel density estimation (KDE) algorithm.
The generated image sequence indicates a reasonable movement range of the animal. (3) We construct
a predictive RNN model for movement prediction and evaluate its performance.

2. Related Works

To date, many researchers have attempted to figure out the pattern of animal movement using
various machine learning technologies. For instance, Jonsen et al. [18] proposed a meta-analysis method,
which combines state-space models (SSM) and Bayesian approach for individual movement inference.
They analyzed the relationship between leatherback turtle movement and environmental changes such
as sea surface temperature. De Groeve et al. [19] developed an extracting method of spatiotemporal
patterns in animal trajectories. They conducted a tree-based approach to identify the pattern of
habitat selection and visualize the exploring temporal pattern of habitat use through hierarchical
trees. Spigel et al. [20] proposed a conceptual simulation model of animal personality which includes
foraging search performance, habitat preference, home ranging utilization pattern, social network
and animal population progress. They argued that considering personality-dependent movement
can generate far-reaching predictions about the spatial pattern in ecology. Wang [21] inferred animal
behavior using machine learning methods such as state-space models, hidden Markov models, random
forests, and support vector machines. Through various experiments, they confirmed that machine
learning methods can be applied for quantifying the spatial and temporal distributions of specific
behavior patterns.

Predictions of long-short term animal movement and population shift have ecological importance
because they are directly related to significant factors such as spatiotemporal changes of weather
and habitat. Very few studies have predicted movement using long-short term tracking animal data.
Li et al. [22] proposed a periodic movement analysis algorithm named ‘Periodica’. They focused on
finding periods in complex animal movement and developed an optimal method of periodic animal
behaviors analysis. The algorithm contains Fourier transform, autocorrelation, and hierarchical clustering
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for retrieving periods and formulating the periodic behaviors. Bar-David et al. [23] presented a simple
recursion analysis model that simulates the movements of large-herbivore groups. They defined the
movement pattern, which includes clockwise and counter-clockwise pattern and simply formulated the
African buffalo trajectories using furrier transform. In 2010, Fink et al. [24] developed spatiotemporal
exploratory models (STEM) using broad-scale survey data. They focused on the population change of
animal distribution and proposed a flexible framework for analyzing the dynamic pattern of species
occurrence and abundance from broad-scale data. To construct STEM, they utilized an ensemble model of
decision trees. Through various experiments, they emphasized that STEM is a useful analytical tool of
animal exploratory. Three years later, Fink et al. [25] presented an adaptive spatiotemporal exploratory
model (AdaSTEM), which can exploit variation in the density of observations while adapting to multiple
scales in space and time. The AdaSTEM utilized the crowdsourcing data of animal observation for
building estimation model and provided an ecological insight that indicates population movement of
long-range migration animals. Through AdaSTEM, they estimated the spatiotemporal distribution of Barn
Swallow across the western hemisphere during the breeding season, fall migration and winter migration.

To summarize, previous studies on movement prediction models have mainly focused on the
behavior state changes such as ‘breeding’ to ‘migrating’ or ‘roaming’ to ‘resting’. As far as we
know, few works have been done to predict long-short term animal movement or population shift
especially by using continuous tracking data to construct a reasonable prediction model. In this paper,
we propose an animal movement prediction model to predict the aggregate movements of animals
over short-long term periods by considering continuous tracking data of individuals which are effected
by spatiotemporal changes such as weather and movement characteristics.

3. Methods

Figure 1 presents the overall flow of our animal movement prediction scheme. First, we collect
and investigate the spatiotemporal data closely related to animal movements, such as geo records
of animals, weather, and terrain data. In order to refine the movement pattern, we perform random
forest interpolation by considering collected data as independent feature values. Then, we uniformly
split the geo records and generate the movement density sequence that represents the valid range of
animal movement. To build a prediction model, we train a predictive RNN using movement density
sequences. Lastly, we evaluate the prediction performance of the model based on various accuracy
metrics and visualize the prediction results.
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3.1. Dataset

For the collection of animal movement data, we used geo records of animals from the Movebank
website [26]. Movebank is an online database of animal tracking data. In particular, we used the
“Long-billed curlew migration from Idaho” dataset, which contains 64 trajectories of long-billed
curlews. The dataset was collected over six years, from 2013 to 2019, and it consists of ARGOS latitude,
ARGOS longitude, timestamp, and tag local identifier. According to the dataset description, the number
of deployed locations is 148,983, and there are no outliers. The coordinate system follows the WGS84
reference format.

To represent the movement range of long-billed curlews, we use the abundance map [27].
Figure 2 shows the abundance distribution map of long-billed curlews. In the map, the four seasons
are represented by different colors, and the distribution density is expressed by the contrast of color.
The distribution itself is calculated based on geo records from individuals that have moved more
than one kilometer over one hour. For instance, the dark red indicates high-density areas during the
breeding season (e.g., Montana, Idaho). During the non-breeding season, San Francisco and California
show high density.
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Animal migration routes are closely related to weather and terrain. Hence, for prediction,
we collected weather and terrain data from the European Centre for Medium-Range Weather Forecasts
(ECMWF) and the US National Oceanic and Atmospheric Administration (NOAA) and selected eight
features for our feature set: Humidity, vertical wind speed, horizontal wind speed, temperature,
relative humidity, cloud coverage, land classification label (GlobCover), and land–sea mask.

In this paper, we use four typical features to represent animal movements: Heading, speed,
acceleration, and moving distance. Such movement-related features can be easily calculated from the
collected time-location records by using the “move” package of R statistics [28].
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3.2. Movement Interpolation

Despite the high quality of tracking data, GPS location accuracy and positioning success (ratio
between the observed and expected number of locations) are negatively influenced by a number of
factors, including the terrestrial atmosphere, satellite constellation, environment of the transmitters
(habitat, topography, and weather), and behavior pattern and movement intensity of the tagged
animal [29]. When analyzing animal trajectories, lack of observation or erroneous geo records lead
to inaccurate results. Hence, it is essential to estimate missing or erroneous animal locations based
on correct geo records, which is called movement interpolation. Various interpolation methods,
such as linear, cubic spline, and polynomial interpolation, have been widely used in studies on animal
movement. Table 1 shows the major interpolation methods.

Table 1. Comparison of major interpolation methods.

Interpolation Method Advantages Disadvantages Reference(s)

Linear
Quick calculation No

overshooting No
undulation

Inaccurate interpolation
(Non-linear movement) Wentz et al. [30] (2003)

Cubic spline Stable Less computation Overshooting problem Yu et al. [31] (2003)

Polynomial Simple calculation Expensive computing
Undulation problem Tremblay [32] (2005)

Bezier
Simple calculation

Effective interpolation
(Non-linear movement)

Sampling points
decision problem Tremblay [32] (2005)

Kinematic
Effective interpolation

(Fast-moving or
linear movement)

Inaccurate interpolation
(Large spatial movement) Long [33] (2016)

All these methods perform interpolation using a few observation points. Since they do not
consider the environmental features such as weather and terrain, the interpolation accuracy could
be lowered. To alleviate this problem, we use the random forest method, which can consider both
observation points and environmental factors. The random forest method works by constructing
several weak decision trees, which are trained by a random subset of features, and producing the
result by averaging or voting all individual trees. The basic principle of random forest is bootstrap
aggregating (Bagging) to reduce the variance of predicted values. Bagging selects the specific number
of training set randomly and fits for optimizing tree construction. For this reason, the random forest
has excellent performance in classification and regression problems.

Figure 3 shows an example of movement interpolation process. Two normally observed points
are connected by a solid line. If there are any missing points, then they are connected by a red
dotted line. For instance, in the figure, we can see that observation records are missing from
6:00 am to 8:00 am. To interpolate these missing records, we first split the geo records into training
sets and test sets. Then, we generate a feature tuple for each observation record by augmenting
environmental data and movement data as we described in Section 3.1. Each feature tuple is in the form
of pi = {lati, longi, timei, headingi, speedi, acci, mdi, humi, relhumi, vwindi, hwindi, tempi, cloudi, landi,
landseamaski}. For a time sequence of length i, we can make a feature set P of

{
p1, p2, . . . , pi

}
.

Basically, we select missing time points at random in the interpolation. Also, we assume that the points
of test set are equal to missing time points. Our random forest model interpolates missing bivariate
location (latitude and longitude) using a feature tuple of previous missing time points. For example, if
a missing location exists a certain time t (pt ∈ P), we predict the missing bivariate location at time t
using the feature tuple at time t-1 as independent variables. The random forest training process follows
bagging algorithm, which randomly selects a sample of size k from the feature set P and fits the decision
trees. During the tree evolution, each node of the tree chooses the best split size given a randomly
selected sample. Each tree is grown to the maximum size until it has no longer split. After tree
evolution, prediction for missing coordinate can be calculated by averaging the predictions from all
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trees. Once the training is over, we are given an optimized random forest model, which can be used
for interpolating missing observation points. After training, we perform inbuilt cross-validation and
calculate the prediction accuracy using mean absolute percentage error (MAPE) and root mean square
error (RMSE) to obtain an optimal random forest. In particular, we used the grid search method to find
optimal parameters for the random forest. To construct and train the model, we used scikit-learn [34],
a python machine learning package.
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3.3. Movement Density Sequence Generation

After movement interpolation, we generate the movement density sequence that eventually
indicates the movement range of animals. The movement density gives information which represents
the spatial distribution of the moving animals. First, we construct a grid map of I × J considering
the region of interest. I and J indicate the image width and height, respectively. Figure 4a shows
an example of I × J grid map.
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To describe animal movements effectively, we use the KDE method. This method has been widely
used in movement ecology and detection of animal habitat [35–37]. It is one of non-parametric density
estimation methods and improves the non-zero probability problem of the histogram method by using
the kernel function. A kernel function K is controlled by the bandwidth parameter h. According to the
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kernel definition, we calculate the probability density function f for the input geo records using the
following equation.

f̂h(y) =
1

nh

n∑
i=1

K
( y− xi

h

)
(1)

here, n and xi indicate the number of geo records and geo record at time i, respectively, and y indicates
estimated density value. In particular, to reduce the complexity of computation, we use the Gaussian
kernel for generating density map. In addition, we use the bandwidth parameter of 5 and normalize
the kernel values to a range of 0 to 1. Figure 4b shows an example of animal movement density map
using KDE.

3.4. Movement Prediction

In this section, we describe how to construct a movement prediction model using predictive RNNs.
The predictive RNN structure is known to give better accuracy for sequence-based prediction than
single or shallow structures. Predictive RNN structure such as convolutional long short-term memory
(LSTM) has a stack of learning and memory units, which is effective in solving sequence prediction
problems [38,39]. For instance, Xingjian et al. introduced a convolutional LSTM network approach for
precipitation nowcasting. Using the Radar Echo dataset, which has a sequence of weather satellite
images, they constructed a prediction model using the continuous stack of convolution LSTMs [40].

Likewise, we consider the movement prediction problem as a sequence-to-sequence prediction.
For the animal movement observation period k, we can define a sequence of movement densities of size
T defined by the input size and k by Xk =

{
Xk

1, Xk
2 . . . , Xk

T

}
. Usually, each Xk

i has a centroid of movement
ranges, and the centroid shows the maximum density value of KDE. Generally, for a given input sequence{
Xk

T−τ, Xk
T−τ+1 . . . , Xk

T

}
, our model predicts its movement density sequence

{
Xk

T+1, Xk
T+2 . . . , Xk

T+τ

}
.

Figure 5 illustrates an example of Xk
T where the observation period k is one month.
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To predict animal movements, we use the PredRNN++ model [41]. RNN architecture has been 
widely used in the sequence data prediction. However, standard RNN can’t handle long-term 
temporal dependency because its loss gradient deteriorates exponentially over time. Despite 
convolutional LSTM being suggested as an alternative to standard RNN, it showed the vanishing 
gradient problem. PredRNN++ differs from the convolutional LSTM in terms of internal structure 
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Figure 5. Examples of movement density sequence–(a) 12 Dec. 2013 to 12 Jan. 2014; (b) 12 Jan. 2013
to 12 Feb. 2014; (c) 12 Feb. 2014 to 12 Mar. 2014; (d) 12 Apr. 2014 to 12 May 2014; (e) 12 May 2014 to
12 Jun. 2014.

To predict animal movements, we use the PredRNN++ model [41]. RNN architecture has been
widely used in the sequence data prediction. However, standard RNN can’t handle long-term temporal
dependency because its loss gradient deteriorates exponentially over time. Despite convolutional
LSTM being suggested as an alternative to standard RNN, it showed the vanishing gradient problem.
PredRNN++ differs from the convolutional LSTM in terms of internal structure and mechanism of
gradient transition to solve the back propagation problem. Figure 6 compares the structural differences
of convolutional stacking LSTM, PredRNN [42], and PredRNN++.
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Figure 6. Structural differences of (a) convolutional stacking LSTM; (b) PredRNN; (c) PredRNN++.

PredRNN and PredRNN++ have in common that they use a spatiotemporal memory transient
concept, but PredRNN++ differs from PredRNN in that it has unique structures of increasing recurrent
depth. PredRNN++ has a cascade spatiotemporal memory that is effective in analyzing spatial correlation.
Its cascade LSTM unit has a dual memory form of temporal memory and spatial memory. The spatial
memory, Mk

t , depends on Mk
t−1 from the transient path, which is represented by dotted lines in Figure 6c.

The temporal memory Ck
t depends on previous state Ck

t−1 and is adjusted by current forget, input and input
modulation gate. Here, k indicates the vertical depth of the layer. Another difference is the existence of the
gradient highway unit (GHU), which prevents quick vanishing and can send the gradient information to
the deeper layer. The advantages of GHU were confirmed through various experiments [41].

Figure 7 shows the structural comparison of convolutional LSTM, stacked LSTM, and cascade
LSTM. The green, blue, and red boxes indicate standard convolutional LSTM, stacked LSTM, and cascade
LSTM, respectively. The element notations of structures are as follows: The sequence input at time
t (which denotes X1, . . . Xt), output state Ck

1, . . . Ck
t , hidden state Hk

1 . . . Hk
t , spatiotemporal memory

Mk
t input gates it, forget gates ft, input modulation gate gt, and output gate ot. As shown in Figure 7,

to obtain effectiveness of sequence modeling, the cascade LSTM adds non-linear hyperbolic tangent
layers to recurrent transitions more than convolutional LSTM and stacked LSTM. This has the effect of
increasing the network depth, so it can efficiently predict images or video where sudden changes occur.
The green-marked Hk

t , blue marked Hk
t and red Hk

t are desired output of convolutional LSTM, stacked
LSTM, and cascade LSTM respectively. The final output of cascade LSTM, Hk

t , is more suitable for
non-linearity data processing and prediction than convolutional LSTM and stacked LSTM outputs.
Since most animal movements have non-linearity, the structure of the cascade LSTM is useful for
predicting animal movements.
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Figure 7. Structural differences of convolutional LSTM, stacked LSTM, and cascade LSTM.
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tanh
σ
σ

W1 ∗
[
Xt, Hk

t−1, Ck
t−1

]
(2)

Ck
t = ft � Ck

t−1 + it � gt (3)


g′t
i′t
f ′t

 =


tanh
σ
σ

W2 ∗
[
Xt, Ck

t , Mk−1
t

]
(4)

Mk
t = f ′t � tan h

(
W3 ∗Mk−1

t

)
+ i′t � g′t (5)

ot =
(
W4 ∗

[
Xt, Ck

t , Mk
t

])
(6)

Hk
t = ot � tan h

(
W5 ∗

[
Ck

t , Mk
t

])
(7)

Equations (2)–(7) present the operating of cascade LSTM, where ∗ and � indicates the operator of
the convolution and the Hadamard product, σ is the Sigmoid function. The square brackets present
concatenation of each tensor. The PredRNN++ used convolutional filters W1∼5, where W3 and W5

has one by on convolution filer. The basic equations derived from standard LSTM [43] and the
difference of standard LSTM and PredRNN++ is number of hyperbolic tangent layers and existing
spatiotemporal memory cells. Equations (2) and (3) present standard LSTM gates operating equations,
and Equation (4) is spatiotemporal gates update equation regulated by previous spatiotemporal
memory, Mk

t−1, and current state, Ck
t . Equations (5) and (6) shows current spatiotemporal memory, Mk

t ,
update operation. Final output, Hk

t , is computed based on dual memory states Ck
t and Mk

t .

3.5. Model Construction

In this section, we describe how to construct our prediction model using PredRNN++. To train
PredRNN++, we first set the resolution of the input sequence to 224 × 224 based on prediction accuracy
and computation time. In addition, we use a 5-layer cascade LSTM with 128, 128, 64, 64, and 64
channels, which is known to give the best result. Here, the second layer corresponds to GHU in
Figure 6. In addition, we use ADAM optimizer with 10−3 learning rate and convolution filter size
of 5. Following the training strategy of the predictive neural network [41,42], we use the scheduled
sampling strategy. The sampling strategy conditionally selects true sequence and predicted values of
the model as training input. It prevents initial learning problem and cover the inconsistency between
prediction and training. For training, we used 80% of the complete dataset which were recorded from
10 April 2013 to 15 November 2017 as training and validation set, and the remaining 20% which were
recorded from 16 November 2017 to 14 May 2019 as test set.

4. Experiments

4.1. Experiment Designs

To predict animal movement over time, we first need to generate a sequence of kernel density
images from collected geo records. In the experiment, we considered 10 different cases depending on
how to group geo records, how many days to consider as input, and how many days to predict as
output. For instance, in Figure 8, Pi represents one collected geo record and i indicates an individual of
a particular animal species, E. For each group of geo records, the KDE generates one density image.
For instance, Figure 8a,b shows a sequence of density images generated for a sequence of daily and
two-day geo records, respectively. To see the effect of grouping size, we consider five different grouping
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sizes, which are 1, 2, 3, 7, and 15. After generating movement density images, we use them as an input
for our predictive RNN. Table 2 shows an outline of the experiments.

Table 2. Experiment outline.

Prediction Cases No. of Days to
Group Geo Records No. of Input Images No. of Predicted Images

Case 1 1 7 7
Case 2 2 7 7
Case 3 3 7 7
Case 4 7 7 7
Case 5 15 7 7
Case 6 1 12 12
Case 7 2 12 12
Case 8 3 12 12
Case 9 7 12 12
Case 10 15 12 12
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The density image has 224 × 224 resolution and corresponds to the rectangle area on the map
according to WGS84 system with coordinates (–82,56), (–138,56), (–82,0), and (–138,0). For the generation
of movement density sequence, we used the “SpatialEco” package [44], which is implemented in the R
Studio software. Using the generated density images, we trained the PredRNN++.

4.2. Random Forest Interpolation

To compare the performances of interpolation methods, we measure the MAPE and RMSE.
In statistics, MAPE is a popular metric for estimating prediction accuracy. MAPE and RMSE are
defined by Equations (8) and (9), respectively. Here, n is the number of geo records, and Yi, and Ŷi are
the actual and predicted values, respectively.

MAPE =
100
n

n∑
i=1

∣∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣∣ (8)

RMSE =

√∑n
i=1

(
Yi − Ŷi

)2

n
(9)

We consider four interpolation methods as baseline, which are linear, Bezier, cubic spline,
and kinematic, and compare them with our random forest method. In the test for comparing them,
we first selected 15 representative individuals that include typical movement patterns such as resting,
foraging and migration. Then, we built 15 random forest interpolation models for each individual.
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To construct such random forests, we selected 80% of individual geo records as training set and 20% of
individual geo records as test set. When measuring the MAPE and RMSE, we considered actual geo
records in the test set as missing and evaluated how multivariate random forest model recover well
the missing values. Response variables are longitude and latitude at time i which are estimated from
i-1 feature tuples. Tables 3 and 4 show the MAPE of longitudes and latitudes. Tables 5 and 6 show
the RMSE of longitudes and latitudes. In the tables, the best MAPE and RMSE values are marked in
bold for each individual. In most cases, our random forest method performed well and the average
accuracy was the best.

Table 3. Comparison of MAPEs for missing longitude records interpolation.

Interpolation Case #
MAPE (longitude)

Linear Bezier Cubic
Spline Kinematic Random Forest

Individual #1 0.025 0.052 0.030 0.715 0.030
Individual #2 0.044 0.038 0.063 0.684 0.040
Individual #3 0.010 0.011 0.012 0.689 0.002
Individual #4 0.038 0.095 0.048 0.744 0.159
Individual #5 0.058 0.101 0.067 0.713 0.01
Individual #6 0.035 0.085 0.061 0.752 0.032
Individual #7 0.017 0.036 0.019 0.699 0.001
Individual #8 0.030 0.177 0.049 0.699 0.008
Individual #9 0.010 0.038 0.012 0.732 0.006
Individual #10 0.042 0.039 0.052 0.714 0.013
Individual #11 0.031 0.067 0.049 0.736 0.005
Individual #12 0.035 0.034 0.042 0.746 0.012
Individual #13 0.066 0.086 0.103 0.768 0.076
Individual #14 0.044 0.040 0.057 0.776 0.034
Individual #15 0.010 0.027 0.019 0.835 0.016

Avg. 0.033 0.062 0.046 0.733 0.030

Table 4. Comparison of MAPEs for missing latitude records interpolation.

Interpolation Case #
MAPE (latitude)

Linear Bezier Cubic
Spline Kinematic Random Forest

Individual #1 0.132 0.462 0.177 2.449 0.180
Individual #2 0.082 0.132 0.118 2.088 0.181
Individual #3 0.049 0.038 0.059 2.519 0.026
Individual #4 0.256 0.302 0.263 2.946 0.179
Individual #5 0.246 0.453 0.303 2.315 0.231
Individual #6 0.145 0.686 0.377 2.592 0.301
Individual #7 0.051 0.130 0.068 2.517 0.065
Individual #8 0.068 1.275 0.228 2.439 0.124
Individual #9 0.019 0.263 0.044 2.762 0.046
Individual #10 0.235 0.150 0.253 2.368 0.159
Individual #11 0.070 0.148 0.136 2.974 0.047
Individual #12 0.084 0.125 0.136 2.714 0.102
Individual #13 0.393 0.487 0.701 3.209 0.254
Individual #14 0.153 0.076 0.164 2.537 0.048
Individual #15 0.043 0.070 0.086 2.889 0.052

Avg. 0.135 0.320 0.207 2.621 0.133
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Table 5. Comparison of RMSEs for missing longitude records interpolation.

Interpolation Case #
RMSE (longitude)

Linear Bezier Cubic
Spline Kinematic Random Forest

Individual #1 0.067 0.230 0.087 0.880 0.106
Individual #2 0.115 0.081 0.156 0.854 0.094
Individual #3 0.024 0.016 0.024 0.815 0.003
Individual #4 0.188 0.455 0.144 0.828 0.465
Individual #5 0.270 0.511 0.271 0.916 0.022
Individual #6 0.158 0.280 0.192 0.818 0.352
Individual #7 0.028 0.054 0.033 0.826 0.003
Individual #8 0.063 0.725 0.140 0.832 0.030
Individual #9 0.025 0.243 0.029 0.865 0.021
Individual #10 0.188 0.070 0.191 0.896 0.024
Individual #11 0.048 0.110 0.074 0.824 0.007
Individual #12 0.130 0.062 0.123 0.966 0.035
Individual #13 0.287 0.293 0.328 0.843 0.256
Individual #14 0.105 0.091 0.158 0.971 0.104
Individual #15 0.018 0.048 0.038 1.008 0.048

Avg. 0.114 0.218 0.133 0.876 0.105

Table 6. Comparison of RMSEs for missing latitude records interpolation.

Interpolation Case #
RMSE (latitude)

Linear Bezier Cubic
Spline Kinematic Random Forest

Individual #1 0.233 0.821 0.273 0.932 0.385
Individual #2 0.078 0.178 0.104 0.866 0.199
Individual #3 0.078 0.017 0.068 0.811 0.012
Individual #4 0.462 0.503 0.33 0.914 0.283
Individual #5 0.430 0.745 0.464 1.054 0.224
Individual #6 0.243 0.872 0.392 0.859 0.566
Individual #7 0.023 0.053 0.033 0.825 0.040
Individual #8 0.047 1.799 0.308 0.859 0.205
Individual #9 0.012 0.729 0.078 0.863 0.127
Individual #10 0.548 0.074 0.549 0.978 0.136
Individual #11 0.027 0.072 0.107 0.926 0.018
Individual #12 0.054 0.073 0.105 1.407 0.085
Individual #13 0.493 0.437 0.574 0.913 0.278
Individual #14 0.317 0.046 0.244 0.923 0.036
Individual #15 0.022 0.038 0.052 0.923 0.064

Avg. 0.204 0.430 0.245 0.937 0.177

4.3. Movement Prediction

To evaluate the prediction performance of animal movements, we used three different metrics:
mean square error (MSE), structural similarity index (SSIM), and Gaussian mixture centroid distance.
MSE is a standard method for evaluating the prediction quality in statistics; it measures the average
square difference between pixel values of ground truth image G and pixel values of predicted image P
by using Equation (10). In the equation, N ×M is the total number of pixels and (i,j) represents a pixel
of image.

MSE(G, P) =
1

NM

N∑
i=1

M∑
j=1

[P(i, j) −G(i, j)]2 (10)
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On the other hand, SSIM is a method for measuring the similarity between two images and is
designed to improve on traditional methods such as peak signal-to-noise ratio (PSNR) and MSE. SSIM
is calculated using Equation (11), where µ, σ, and σGP are the average of pixels, variance, and covariance
of G and P, respectively. By setting the range of SSIM from −1 and 1, we consider that, for the two
images, there exists higher structural similarity, as their SSIM values are close to 1.

SSIM(G, P) =
(2µGµP)(2σGP + c2)(

2µ 2
G + µ 2

P + c1
)(
σ 2

G + σ 2
P + c2

) (11)

In the ecology research field, centroid analysis is widely used for evaluating animal dynamics [45–47].
Since our movement prediction model produce a movement sequence as prediction, we can calculate the
density of movements and their centroids. We measure the centroid distance between the input image, G,
and predicted image P, which indicates how accurate our model is in the prediction of animal movements.
For measuring centroid distance, we first apply Gaussian mixture fitting [48] to extract centroids from each
image and calculate their real coordinates. Then, we calculate their distance using the real coordinates.
As mentioned above, we consider ten different cases in the experiment by grouping unit, input days,
and output days and calculated the average for each metric. Table 7 shows the results, in which our
prediction model showed the best performance from case 1.

Table 7. MSE, RMSE, SSIM, and centroid distance measure results.

Evaluation Metrics

Avg.
MSE

Avg.
RMSE

Avg.
SSIM

Avg. Centroid
Distance (in pixels)

Avg. Centroid
Distance (in km)

Case 1 44.236 6.651 0.970 4.583 110.179
Case 2 44.571 6.676 0.965 5.299 127.413
Case 3 51.090 7.148 0.963 5.586 134.299
Case 4 58.142 7.625 0.958 7.028 168.983
Case 5 72.445 8.511 0.937 8.492 204.182
Case 6 43.445 6.591 0.968 4.698 112.944
Case 7 43.182 6.571 0.962 5.037 121.099
Case 8 53.219 7.295 0.953 5.487 131.933
Case 9 62.847 7.928 0.943 7.602 182.779

Case 10 142.449 11.935 0.932 10.265 246.795

To evaluate the performance of our model, we compare it with vector auto regressive model
(VAR), which is known to be useful for time-series prediction. In the comparison, we calculate the
movement centroids using the Gaussian mixture fitting and use them as input values of the VAR.
To construct VAR, we used the R package ‘VARS’ and utilized the ‘VARselect’ function to find out the
most appropriate setting for VAR fitting. The comparison results are as follows.

From these Tables 8–10, we can see that our model outperforms VAR in most cases. In particular,
our model, when trained using movement patterns of short observation period, showed better
performance. In summary, our model can cover long range and short range predictions and hence can
be used to predict not only seasonal movements such as strong migration but also typical movements
such as foraging and roaming.
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Table 8. Comparison results of Case 1, Case 6 and VAR.

Evaluation Metrics

RMSE
(in Centroid Pixel)

Avg. Centroid Distance
(in pixels)

Avg. Centroid Distance
(in km)

Case 1 6.872 4.583 110.179
Case 6 6.914 4.698 112.944
VAR 10.573 12.840 308.695

Table 9. Comparison results of Case 4, Case 9 and VAR.

Evaluation Metrics

RMSE
(in Centroid Pixel)

Avg. Centroid Distance
(in pixels)

Avg. Centroid Distance
(in km)

Case 4 7.885 7.328 176.191
Case 9 8.021 7.602 182.779
VAR 9.075 11.0211 264.957

Table 10. Comparison results of Case 5, Case 10 and VAR.

Evaluation Metrics

RMSE
(in Centroid Pixel)

Avg. Centroid Distance
(in pixels)

Avg. Centroid Distance
(in km)

Case 5 8.846 8.492 204.182
Case 10 12.513 10.265 246.795

VAR 8.857 10.757 228.606

Figure 9 shows an example of movement prediction. In the figure, for an input sequence in (a), (b)
and (c) show the ground truth sequence and predicted sequence, respectively. The input and ground
truth sequences represent the short-distance migration movement of long-billed curlews from 10 May
2018 to 23 May 2018. The short-distance migration occurs between pre-breeding season and breeding
season. This figure demonstrates that our model predicts the density location of animal movements
after one-day (T = 1) with an error range of approximately 23 km. That is, based on the density
images of the last seven days, our prediction model generated the density images of next seven days.
To analyze the prediction accuracy in more detail, we conducted daily comparison of RMSE, SSIM,
and centroid distance results are shown in Table 11. In the table, we can see that overall prediction
results are quite reasonable and that prediction for the first day is the best.

Table 11. Daily comparison of RMSE, SSIM, and centroid distance of case 1.

Metric
Prediction day

8 9 10 11 12 13 14

RMSE 6.913 7.816 7.491 6.622 7.337 7.719 6.532
SSIM 0.966 0.963 0.959 0.961 0.960 0.965 0.939

Cent-Dist in pixels 0.970 3.240 2.509 1.360 2.126 1.761 2.809
Cent-Dist in km 23.331 77.901 60.333 32.700 51.121 42.334 67.526
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Figure 10 shows another prediction example for case 2, where we analyze geo records over two days.
The input and ground truth sequences represent non-breeding season movements of long-billed curlews
from 13 October 2018 to 8 November 2018. Generally, long-billed curlews have a habit of not deviating
greatly from the habitat at the non-breeding season. Density images in Figure 10 shows such movements
at the non-breeding season. Table 12 shows their prediction result. Compared with Table 11, most metrics
gave worse results since case 2 considered geo-records using a longer period (of two days).

Table 12. Daily comparison of RMSE, SSIM, and centroid distance of case 2.

Metric
Prediction day

8 9 10 11 12 13 14

RMSE 4.803 6.484 6.166 5.390 7.190 6.112 6.942
SSIM 0.967 0.960 0.962 0.971 0.959 0.973 0.962

Cent-Dist in pixels 1.833 4.342 4.047 3.647 5.603 3.085 1.833
Cent-Dist in km 44.067 104.385 97.315 87.694 134.723 74.167 44.067
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Figure 12a–c shows the input sequence, ground truth and predicted sequence of case 6, 
respectively. The data we used for case 6 are migration movements of long-billed curlews from 7 
March 2018 to 30 March 2018. As we showed in the Figure 12, long-billed curlews undertook pre-
breeding and breeding migration. We can see that the image at T = 1 shows the density at the pre-

Figure 10. Movement prediction result–(a) input sequence; (b) ground truth; (c) predicted sequence.

Likewise, Figure 11a–c shows the input sequence, ground truth sequence and predicted sequence of
case 4, respectively. The input and ground truth sequences indicate the migration movement of long-billed
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curlews from 7 February 2018 to 9 May 2018. In the case 4, we generated one movement density image
for geo records of seven days. In the figure, we can see three states of migration: non-breeding season
movement shown at T = 1 to 6, migration beginning shown at T = 7 to 10 and migration ending shown at T
= 11 to 14. Table 13 shows the daily comparison of RMSE, SSIM, and centroid distance.

Table 13. Daily comparison of RMSE, SSIM, and centroid distance of case 4.

Prediction day T

8 9 10 11 12 13 14

RMSE 7.243 6.949 7.042 7.735 8.240 6.286 7.904
SSIM 0.955 0.964 0.976 0.971 0.965 0.967 0.947

Cent-Dist in pixels 2.777 3.135 2.749 3.799 3.475 1.642 4.182
Cent-Dist in km 66.777 75.379 66.104 91.344 83.544 39.483 100.552
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Figure 11. Movement prediction result–(a) input sequence; (b) ground truth; (c) predicted sequence.

Figure 12a–c shows the input sequence, ground truth and predicted sequence of case 6, respectively.
The data we used for case 6 are migration movements of long-billed curlews from 7 March 2018 to
30 March 2018. As we showed in the Figure 12, long-billed curlews undertook pre-breeding and breeding
migration. We can see that the image at T = 1 shows the density at the pre-breeding season, the next seven
images show the migration beginning movements, and the remaining images show migration ending
movements. Table 14 shows daily comparison of RMSE, SSIM, and centroid distance in case 6. Notably,
when the animals showed static movements, our model showed a stable prediction performance of less
than 90 km error.

Table 14. Daily comparison of RMSE, SSIM, and centroid distance of case 6.

Prediction day T

13 14 15 16 17 18 19 20 21 22 23 24

RMSE 4.16 4.18 4.77 7.90 5.08 4.35 4.49 5.82 6.18 5.62 4.83 7.16
SSIM 0.97 0.96 0.96 0.95 0.96 0.97 0.97 0.96 0.95 0.96 0.96 0.96

Cent-Dist in pixels 1.5 1.8 1.5 3.6 2.2 2.3 2.4 3.4 2.1 2.2 2.5 2.4
Cent-Dist in km 36.7 45.5 36.9 88.8 53.2 56.1 57.7 82.9 50.8 53.1 61.6 59.3
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Figure 12. Movement prediction result–(a) input sequence; (b) ground truth; (c) predicted sequence.

Figure 13a–c shows the input sequence, ground truth, and predicted sequence of case 9, respectively.
The input and ground truth sequences show the migration movement of long-billed curlew from
16 November 2017 to 3 May 2018. In Figure 13a,b, we can see the starting migration movement at
T = 14, pre-breeding migratory and migration for breeding at T = 15 to 18, and migration ending at
T = 19 to 24. Table 15 shows daily comparison of RMSE, SSIM, and centroid distance in case 9. In this
experiment, the input sequence showed a static movement and the ground truth sequence showed
a dynamic movement pattern from T = 15 to 18. However, our model did not predict such dynamic
movement precisely.

Table 15. Daily comparison of RMSE, SSIM, and centroid distance of case 9.

Prediction day T

13 14 15 16 17 18 19 20 21 22 23 24

RMSE 4.54 7.98 15.64 15.11 16.36 16.27 15.36 15.49 14.37 8.39 7.67 7.06
SSIM 0.97 0.96 0.93 0.94 0.92 0.93 0.93 0.93 0.94 0.95 0.95 0.96

Cent-Dist in pixels 3.6 7.0 13.7 16.4 16.1 15.9 15.7 14.1 10.4 5.7 6.2 5.4
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Figure 13. Movement prediction result–(a) input sequence; (b) ground truth; (c) predicted sequence.

Figure 14a–c shows the input, ground truth, and predicted sequences of case 10, respectively.
The input and ground truth sequences are the migration movements of long-billed curlews from
19 May 2018 to 14 May 2019. We used the 15-day geo records to make a one-movement density image
and as a sequence to predict the migration pattern for one year. As shown in Figure 14a,b, we observe
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that non-breeding season migration was shown at T = 1 to 3 and T = 21 to 24, and breeding season
movement was shown at T = 4 to 20. Table 16 shows the daily comparison of RMSE, SSIM, and centroid
distance of case 10. The result shows that there are relatively low distance errors at T = 13 to 20, but as
migration starts at T = 21 to 33, we can see relatively high distance errors.

Table 16. Daily comparison of RMSE, SSIM, and centroid distance of case 10.

Prediction day T

13 14 15 16 17 18 19 20 21 22 23 24

RMSE 9.80 10.55 9.41 10.10 11.57 9.39 10.51 10.45 15.43 19.18 12.82 9.91
SSIM 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.93 0.90 0.90 0.93 0.95

Cent-Dist in pixels 1.4 1.6 1.9 3.6 2.9 2.7 3.4 3.8 8.3 15.5 12.2 3.2
Cent-Dist in km 34.1 40.5 46.7 88.2 70.3 65.0 82.7 93.4 201.7 373.8 294.7 78.21
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5. Conclusions

In this paper, we proposed a novel approach for predicting animal movements using a predictive
RNN. For accurate movement prediction, we first showed how to compensate for any missing geo
records using random forest regression. To interpolate the missing geo records, we used random forest
based on animal movement features and environmental features such as terrain and weather. Compared
with other popular interpolation methods, our proposed model achieved higher interpolation accuracy.
After augmenting geo records, we grouped geo records by various units and created a sequence of
movement density images, which represent movement trends of animals. Then, we built a movement
prediction model by training PredRNN++ using these sequence data. We evaluated the model’s
performance through various experiments. The results showed that our model is quite effective for
animal movement prediction.
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