
sensors

Article

ITC: Infused Tangential Curves for Smooth 2D and
3D Navigation of Mobile Robots †

Abhijeet Ravankar 1,∗,‡ , Ankit A. Ravankar 2,‡ , Arpit Rawankar 3, Yohei Hoshino 1 and
Yukinori Kobayashi 2

1 School of Regional Innovation and Social Design Engineering, Faculty of Engineering,
Kitami Institute of Technology, Kitami, Hokkaido 090-8507, Japan; hoshinoy@mail.kitami-it.ac.jp

2 Division of Human Mechanical Systems and Design, Faculty of Engg., Hokkaido University, Sapporo,
Hokkaido 060-8628, Japan; ankit@eng.hokudai.ac.jp (A.A.R.); kobay@eng.hokudai.ac.jp (Y.K.)

3 Department of Electronics and Telecommunication, Vidyalankar Institute of Technology, Mumbai 400037,
India; arpit.rawankar@vit.edu.in

* Correspondence: aravankar@mail.kitami-it.ac.jp
† This paper is an expanded version of Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Real-Time Path

Smoothing for Mobile Robots in 2D and 3D Environments. In Proceedings of the 2018 JSME Annual
Conference on Robotics and Mechatronics (Robomec), Kitakyushu, Japan, 2–5 June 2018.

‡ These authors contributed equally to this work.

Received: 27 August 2019; Accepted: 7 October 2019; Published: 10 October 2019
����������
�������

Abstract: Navigation is an indispensable component of ground and aerial mobile robots. Although
there is a plethora of path planning algorithms, most of them generate paths that are not smooth and
have angular turns. In many cases, it is not feasible for the robots to execute these sharp turns, and a
smooth trajectory is desired. We present ‘ITC: Infused Tangential Curves’ which can generate smooth
trajectories for mobile robots. The main characteristics of the proposed ITC algorithm are: (1) The
curves are tangential to the path, thus maintaining G1 continuity, (2) The curves are infused in the
original global path to smooth out the turns, (3) The straight segments of the global path are kept
straight and only the sharp turns are smoothed, (4) Safety is embedded in the ITC trajectories and
robots are guaranteed to maintain a safe distance from the obstacles, (5) The curvature of ITC curves
can easily be controlled and smooth trajectories can be generated in real-time, (6) The ITC algorithm
smooths the global path on a part-by-part basis thus local smoothing at one point does not affect the
global path. We compare the proposed ITC algorithm with traditional interpolation based trajectory
smoothing algorithms. Results show that, in case of mobile navigation in narrow corridors, ITC paths
maintain a safe distance from both walls, and are easy to generate in real-time. We test the algorithm
in complex scenarios to generate curves of different curvatures, while maintaining different safety
thresholds from obstacles in vicinity. We mathematically discuss smooth trajectory generation for
both 2D navigation of ground robots, and 3D navigation of aerial robots. We also test the algorithm
in real environments with actual robots in a complex scenario of multi-robot collision avoidance.
Results show that the ITC algorithm can be generated quickly and is suitable for real-world scenarios
of collision avoidance in narrow corridors.

Keywords: robot path smoothing; robot navigation; safe navigation; multi-robot navigation;
collision avoidance

1. Introduction

It is well understood that, in the near future, mobile robots will replace many works currently
done manually by people. These is mostly dull (moving stuff in warehouse), dangerous (handling
hazardous materials), and demanding (lifting heavy items) work. In order ro set the scene for the

Sensors 2019, 19, 4384; doi:10.3390/s19204384 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4057-5568
https://orcid.org/0000-0002-5104-9782
https://orcid.org/0000-0003-1052-7079
http://dx.doi.org/10.3390/s19204384
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/20/4384?type=check_update&version=2

Sensors 2019, 19, 4384 2 of 37

paper, we take an example of a mobile item dispatch robot whose task is to carry items from one
location to another location in an indoor environment. The environment has a lot of obstacles like
furniture, walls, moving people, and other robots. The robot has a map of the environment in which
the static obstacles and free navigational space are indicated. The robot must avoid collision with these
static and dynamic obstacles. For this purpose, mobile robots have a path planning module to generate
collision free trajectories from the start to the goal location.

Path planning is a two-step process [1]. The item dispatch robot would first plan a global path
from the start to the goal location. At this stage, total path length is a dominating factor, and only the
static obstacles are considered while making the path. Once the global path is generated, the item
dispatch robot starts navigating on it. When the robot finds a dynamic obstacle, it should change its
trajectory to avoid collision. This is done by the second stage of local planning. The local planner alters
the trajectory to avoid collision with obstacles.

However, many path planners have a drawback that the path generated has sharp turns. This is
undesired as it might be kinematically infeasible for the robot to execute these sharp turns without
stopping or considerably reducing the speed. In addition, the robot’s maneuver on the paths with
sharp turns is not natural for people in the vicinity, and they may fail to anticipate the robot’s path,
which could lead to collision. A person walking behind the robot may dash into it if the robot suddenly
stops to execute a sharp turn. Therefore, smooth paths are desired for robot motion. A robot can
navigate the smooth paths at a constant velocity without completely stopping. The smooth paths are
natural, and they are safe for the carried payload. Hence, path smoothing is important for safe robot
navigation. Path smoothing is even more useful for applications like autonomous robotic wheelchairs
to carry patients and disabled people.

We present an algorithm that can smooth the sharp turns of any traditional path planners while
ensuring navigational safety. Our approach induces smooth curves thay are tangential to the original
path. This tangentiality is important to enable robot navigation at a constant speed. It avoids any
jerks or kinks in the path. We optimize the algorithm to generate these smooth induced curves for
real-time applications. We mathematically formulate the problem and provide solutions for both
2D and 3D cases. The 2D case applies to UGVs (Unmanned Ground Vehicles), and the 3D case
applies to UAVs (Unmanned Aerial Vehicles). We consider a complex distribution of obstacles and
complicated maneuvers while discussing the proposed smoothing algorithm. In addition, we verify
the accuracy and applicability of the proposed algorithm by providing results in both simulation and
actual multi-robots in real environments, and comparing our results with the traditional algorithms.

Researchers have timely tested the existing path planning algorithms in various scenarios.
Moreover, researchers have optimized these algorithms to meet the time constraints of real world
applications. Therefore, the proposed work is not meant to replace already existing path planning
algorithms. Instead, we propose the algorithm as a ‘smoothing extension‘ for already existing
algorithms to smooth out the sharp turns.

This is an extension of our previous work [2]. We thoroughly improve the previous work through
mathematical formations, proofs, safe navigation, generating trajectories of specific curvatures, more
experiments in both simulation and real world scenarios, and a detailed analysis. We summarize the
main characteristics and novel contributions of this work as follows:

1. The proposed ITC algorithm generates smooth curves that are tangential to the original path.
Thus, G1 continuity is always guaranteed.

2. The smooth curves are infused in the original global path to smooth out the turns. Thus, the
original global path is kept intact.

3. The straight segments of the global path are kept straight and only the sharp turns are smoothed.
This is advantageous to keep a safe distance from the walls while navigating a narrow corridor.

4. Safety is embedded in the ITC trajectories, and robots are guaranteed to maintain a safe distance
from the obstacles.

Sensors 2019, 19, 4384 3 of 37

5. The curvature of ITC curves can easily be controlled and smooth trajectories can be generated
fast in real-time.

6. The ITC algorithm smooths the global path on a part-by-part basis thus local smoothing at one
point does not affect the global path.

7. The path smoothing is possible for both 2D navigation of ground vehicles, and 3D navigation of
aerial robots.

8. We present ITC as a smoothing extension that can work in conjunction with any of the traditional
path planners.

Related Works

The literature is full of global and local planning of mobile robots. The most widely used
algorithms for global planning are: A* [3], D* [4,5], potential fields [6], Probabilistic Roadmap
Planner (PRM) [7], rapidly exploring random tree (RRT) [8–10], and Dijkstra‘s algorithm [11–13],
among many others. For local planning, the TEB (Timed-Elastic Band) planner [14] is worth mentioning.
Many algorithms for cooperative multi-robot path planning have also been proposed [15,16].
Obstacle avoidance is an integral part of path planning and various approaches using visibility
binary trees [17], inter-robot communication [18,19], path sharing [20], caching [21], and bio-inspired
algorithms [22,23] have been proposed.

In recent years, with the proliferation of mobile robots and middle-ware robotics software like
ROS (Robot Operating System), path smoothing has gained attention. Over the years, researchers
have proposed to use geometric curves for smoothing paths. This includes approaches using
clothoids [24,25], circle [26–29], splines (B-spline [30], intrinsic splines [31], quintic G2 splines [32],
non-uniform rational B-spline [33–35]), Bezier curve [36–38], hypocycloid [39,40], and other geometric
curves. Path smoothing using interpolation [41] is also popular. Other researchers have used
optimization techniques [42–47] to smooth robots’ paths. Among optimization based planners,
‘Time Elastic Band’ planner (TEB Planner) [14,48–51] is widely used. For an extensive review of
various path smoothing algorithms, we direct the readers to a review of previous works related to
path smoothing [1] that extensively compares the merits, demerits, and challenges of the various path
smoothing approaches.

A map is a prerequisite for path planning. A map is generated by using any of the SLAM
(Simultaneous Localization and Mapping) algorithms available in the literature (see [52–54]). A SLAM
module basically builds a map of the environment, and simultaneously localizes the robot in it.
However, if the map has already been generated, it can be reused and the robot just needs to localize
itself in it by matching sensor data using different algorithms [52,55]. Most commonly used sensors are
Lidar, camera, and inertial sensors like IMU (Inertial Measurement Units). In this paper, it is assumed
that there are sensors attached to the robot to avoid obstacles, and localize the robot in the map that
has been generated already.

2. Induced Tangential Curves: 2D Path Smoothing Case

This section discusses the path smoothing for the 2D case. The 3D path smoothing case is
discussed in Section 5.

Most of the traditional path planning algorithms generate a path which has many sharp and
angular turns. Let us assume that the path ABCD (shown in black in Figure 1) is a section of the
robot’s path with a sharp turn at point B, and point C. The coordinates of the point A (x1, y1), B (x2, y2),
C (x3, y3), and D (x4, y4) are also shown in Figure 1a. The obstacle is shown in gray color. The sharp
turns at points B and C needs to be smoothed out.

First, we find two points P1 and P2 such that the line joining the two points P1P2 is at a safe
threshold distance (δthresh) from the obstacle. To find these points, we find intermediate points P1 on
the line BA at a fixed small distance from the point B. We fix another intermediate point P2 on the
line BC at the same fixed distance from the point B, i.e., BP1 = BP2. We define this process of finding

Sensors 2019, 19, 4384 4 of 37

intermediate points from the turn-point as ’diffusion’. The turn point B is diffused into points P1 and
P2 along the directions BA and BC, respectively.

(px1,py1)

(x2,y2)

(x3,y3)

(x4,y4)

P1

B

C

(cx,cy)

diffuse

d
if
fu
se

r
O

obstacle
(x1,y1)
A

P2
(px2,py2)

D

90o

9
0
o

(a)

(px1,py1)

(x2,y2)

(x3,y3)

P1

B

C

diffuse

d
iff
u
se

obstacle

(x1,y1)
A

P2(px2,py2)

1

2

i-1

i

(b)

(px1,py1)

(x2,y2)

(x3,y3)

P1

B

C

diffuse

d
iff
u
se

obstacle

(x1,y1)
A

P2
(px2,py2)

(c)

(px1,py1)

(x2,y2)

(x3,y3)

P1

B

C

diffuse

d
iff
u
se

obstacle

(x1,y1)
A

P2
(px2,py2)

1
2

3
4

5

i-1

i

(d)

Figure 1. Diffusion in ITC (Infused Tangential Curves) based smoothing. (a) ITC curve P̄1P2 is induced
in the original path and tangential at points P1 and P2; (b) under diffusion of point B; (c) over diffusion
of point B; (d) appropriate diffusion of point B.

The turn point B is diffused into points P1 and P2 along the directions BA and BC, such
that the line joining the two points P1P2 is at a safe threshold distance (δthresh) from the obstacle.
If χ = {δ1, δ2, · · · , δn} is a set of perpendicular distances from line P1P2 to the obstacle at different
points on the line, then there are three cases for such diffusion.

1. Under Diffusion: This case is shown in Figure 1b. The line P1P2 is too far from the obstacles and
the minimum perpendicular distance from the line is greater than the minimum safety threshold
distance, or minδi∈χ > δthresh.

2. Over Diffusion: This case is shown in Figure 1c. The line P1P2 cuts through the obstacle.
3. Appropriate Diffusion: This case is shown in Figure 1d. The line P1P2 is at an appropriate

distance δthresh from the obstacle. To facilitate programming, we define an ε

min
δi∈χ

= δthresh ± ε. (1)

Sensors 2019, 19, 4384 5 of 37

The parameter ε enables adjusting the threshold distance considering the width of the robot.

To find the minimum distance of the line P1P2 from the obstacle (minδi∈χ), we discretize the line
P1P2 into several intermediate points (xt, yt) separated by a small distance ∆, as shown in Figure 2.
We then estimate the distance of the obstacle from each intermediate point (xi

t, yi
t). The total points are

ntotal_pts =

»
(px2 − px1)2 + (py2 − py1)2

∆
. (2)

(px1,py1)
P1

P2
(px2,py2)∆

(xt,yt)
T

∆

∆

Figure 2. Discretizing the line P1P2 into points xi
t, yi

t separated by ∆ distance.

To find the intermediate point ’T’ (xi
t, yi

t) at the distance ∆ from P1, we first find the unit vector (û)
from the point P1 to P2. The unit vector is

û =
px2 − px1»

(px2 − px1)2 + (py2 − py1)2
x̂ +

py2 − py1»
(px2 − px1)2 + (py2 − py1)2

ŷ, (3)

where x̂ and ŷ are the unit vectors in the x and y directions. Point T(xi
t, yi

t) at a distance ∆ from the
point P1 along the line P1P2 is

−→
T =

−→
P1 + dû. (4)

Splitting up the respective x and y components gives

xt = px1 +
∆»

(px2 − px1)2 + (py2 − py1)2
(px2 − px1),

tt = py1 +
∆»

(px2 − px1)2 + (py2 − py1)2
(py2 − py1).

(5)

Thus, the intermediate points are calculated as

xi
t = px1 +

∆ · i»
(px2 − px1)2 + (py2 − py1)2

(px2 − px1), i ∈ {1, 2, · · · , n} and xi
t ≤ px2,

yi
t = py1 +

∆ · i»
(px2 − px1)2 + (py2 − py1)2

(py2 − py1), i ∈ {1, 2, · · · , n} and yi
t ≤ py2.

(6)

We briefly explain the calculation of the minimum distance minδi∈χ from each intermediate point
(xi

t, yi
t). The slope of the line P1P2 is

mp1 p2 =
py2 − py1

px2 − px1
. (7)

Sensors 2019, 19, 4384 6 of 37

The slope of line perpendicular to the line P1P2 is

m⊥ =
−1

mp1 p2

. (8)

Using Equation (6), we generate points on the line from each point (xi
t, yi

t) with slope m⊥ in small
units until the point touches the obstacle. Since the process is the same as explained above, we omit
the explanation as it is straightforward.

Notice that Equation (6) is also used to diffuse the turn point B into intermediate points P1 and P2

along the directions BA and BC by the same distance ∆. Diffusion is stopped when appropriate points
are found within the safe distance from the obstacle.

The two diffused points acts are points of contact of an induced smooth curve that is tangential at
these points. In order to find the curve, we first find the circle and its radius whose arc will replace the
angular path. The center of this circle is the point of intersection of the two perpendicular segments
from these diffused points P1 and P2. The steps are explained below.

The slope of line AB in Figure 1a is

mAB =
y2 − y1

x2 − x1
, (9)

and the slope of line BC in Figure 1a is

mBC =
y2 − y3

x2 − x3
. (10)

In Figure 1a, the line P1O is perpendicular to the line AB from point P1(px1, py1). Hence, the slope
of line P1O is

mP1O =
−1

mAB
. (11)

Similarly, line P2O is perpendicular to the line BC from point P2(px2, py2), and the slope of line
P2O is

mP2O =
−1

mBC
. (12)

The point of intersection of lines P1O and P2O (point O(cx, cy) in Figure 1a) is the center of the
circle whose arc will define the smoothed path.

The general equation of a line of slope m passing through a point (x1, y1) is

y− y1 = m(x− x1)

=⇒ y = mx−mx1 + y1.
(13)

Since the lines P1O and P2O intersect at O(cx, cy),

cy = mP1O(cx − px1) + py1 = mP2O(cx − px2) + py2,

=⇒ mP1O · cx −mP1O · px1 + py1 = mP2O · cx −mP2O · px2 + py2

=⇒ mP1O · cx −mP2O · cx = mP1O · px1 −mP2O · px2 + py2 − py1

=⇒ cx · (mP1O −mP2O) = mP1O · px1 −mP2O · px2 + py2 − py1.

Thus, the x-coordinate of the center of the circle is

cx =
mP1O · px1 −mP2O · px2 + py2 − py1

(mP1O −mP2O)
. (14)

Sensors 2019, 19, 4384 7 of 37

The y-coordinate of the center of the circle can be obtained by plugging the value of cx in the
equation of line P1O or P2O ,

cy = mP1O · cx −mP1O · px1 + py1. (15)

The radius of the circle r is

r =
»
(cx − px1)2 + (cy − py1)2, or r =

»
(cx − px2)2 + (cy − py2)2. (16)

The circle with center (cx, cy) and radius r is shown in Figure 1a. We take the arc P̄1P2 of the
circle between points P1 and P2 shown in magenta in Figure 1a. This curve P̄1P2 has the following
properties:

• Curve P̄1P2 is tangential to the robot’s original path. Hence, G1 geometric continuity is
guaranteed.

• Curve P̄1P2 is smoother to traverse compared to the original path of the robot. In Figure 1a,

the original path of the robot is ABC with sharp turn at the point B. The smooth path is ¸�AP1P2C.
• Curve P̄1P2 is ‘infused’ inside the original path of the robot.

Due to the three properties above, P̄1P2 is called an ‘Infused Tangential Curve’.

3. Accelerating ITC Path Smoothing Algorithm

The smoothing algorithm is accelerated on two fronts. First, we accelerate the diffusion of the
point of sharp turn. Second, we also accelerate the algorithm to estimate the minimum distance from
the obstacles. These are explained below.

3.1. Accelerating the Diffusion Algorithm

Figure 3a shows the normal approach of diffusing the node B (x2, y2) into points P1 and P2.
The normal algorithm diffuses the point into small increments of ∆diff. As shown in Figure 3a,
if P1 (px1, py1) and P2 (px2, py2) are the appropriate diffused positions which maintain a safe threshold
distance (δthresh) from the obstacles, the total steps ndiff are

ndiff =

»
(px2 − x2)2 + (py2 − y2)2

∆diff
. (17)

Hence, normal diffusion algorithm would have a complexity of O(ndiff).
We accelerate the algorithm using binary search. The idea is shown in Figure 3b, and it is used for

explanation. In the binary search, the first diffusion of point B (x2, y2) occurs at the maximum distance
at point C (x3, y3). This is shown by a magenta-colored arrow in Figure 3b. A check is performed if the
line joining the diffused points i.e., AC maintains a safe threshold from the obstacles. As shown in
Figure 3b, the line AC crosses over the obstacle, and it is a case of ‘over-diffusion’. Therefore, in step 2,

the diffusion distance is half the distance of the previous diffusion (i.e.,
√

(x3−x2)2+(y3−y2)2

2). This is
shown by a blue arrow in Figure 3b, and the safety threshold is checked again. This is again a case of
over-diffusion, so, in step 3, the new diffusion distance is half the distance of the previous diffusion

(i.e.,
√

(x3−x2)2+(y3−y2)2

4) and shown with a green arrow. A check for safety clearance is performed,
and it is determined to be a case of ‘under-diffusion’. Due to this, in the next step 4, the diffusion is

increased by half of the previous distance (i.e., 3·
√

(x3−x2)2+(y3−y2)2

8). This process is repeated until the
appropriate diffusion point (P2) has been found.

Sensors 2019, 19, 4384 8 of 37

(x2,y2)

(x3,y3)

P1

B

C

obstacle

(x1,y1)
A

P2
t1
t2

tn-1

'

'
thresh

' tn-1

1 2 3 n times

(a)

(x2,y2)

(x3,y3)

P1

B

C

obstacle

(x1,y1)
A

P2

1
2

3
4 5

t1
t2 t3

t1

t2

t3

'

'

'

thresh

(b)

Figure 3. Normal and accelerated diffusion of point B. (a) normal diffusion; (b) accelerated diffusion
based on binary search.

Compared to the normal process, the accelerated algorithm takes log (ndiff) steps, and the
complexity of the algorithm is O(log ndiff). The pseudo-code is given in Algorihtm 1.

Algorithm 1: Fast Algorithm to Find Diffusion Point
Data: Point1 (x1, y1), Point2 (x2, y2), Point3 (x3, y3), M : Map (Refer Figure 3b)
Result: Diffusion Point (xd, yd) which maintains appropriate clearance δthresh
(Refer Figure 3b)

1 Function get_diffused_point(Point1, Point2, Point3, M)

2 x2, y2 ← Point2
3 x3, y3 ← Point3
4 xL, yL ← x2, y2 // Left point
5 xR, yR ← x3, y3 // Right point
6 while left ≤ right do

7 midx ←
xL + xR

2
8 midy ←

yL + yR

2
9 cd ← estimate_obstacle_clearance (Point1, Point2, Point3, M, midx, midy)

10 if cd < δthresh then
// Adjust the right point

11 xR ← midx − 1
12 yR ← midy − 1
13 if cd > δthresh then

// Adjust the left point
14 xL ← midx + 1
15 yL ← midy + 1
16 if cd = δthresh ± ε then

// Return the point
17 xd ← midx

18 yd ← midy

19 return(xd, yd)

20 return False

3.2. Accelerating the Minimum Distance Calculation

Similarly, we also accelerate the perpendicular distance estimation using the binary search
algorithm.

Sensors 2019, 19, 4384 9 of 37

Figure 4a shows the normal incremental approach of finding the perpendicular distance from the
obstacle on the line with starting point (x, y) and slope m⊥. The normal algorithm diffuses the point
into small increments of ∆⊥. As shown in Figure 4a, the total steps nclearance are

nclearance =
Perpendicular distance to obstacle

∆⊥
. (18)

Hence, the algorithm has a complexity of O(nclearance).

(px1,py1)

(x2,y2)

(x3,y3)

P1

B
C

obstacle

(x1,y1)
A

P2 (px2,py2)

(x
,y
)

d M
m⊥

m
1
2
3

(a)

(px1,py1)

(x2,y2)

(x3,y3)

P1

B
C

obstacle

(x1,y1)
A

P2 (px2,py2)

(x
,y
)

d M

m⊥

m

(b)

Figure 4. Normal and accelerated calculate of minimum distance from the obstacle. (a) normal
approach; (b) accelerated approach.

The accelerated algorithm using binary search is explained in Figure 4. Since the idea is similar to
that explained in the previous section, we omit explanation, and the complexity of the algorithm is
O(log nclearance). The pseudo-code is given in Algorithm 2.

The values of ndiff, nclearance, and ntotal_pts are given in Equations (2), (17), and (18), respectively.
Compared to the incremental algorithm, the overall speedup is

speedup =
ndiff × nclearance × ntotal_pts

log (ndiff)× log(nclearance)× ntotal_pts
. (19)

Sensors 2019, 19, 4384 10 of 37

Algorithm 2: Estimate Obstacle Clearance
Data: Point1 (x1, y1), Point2 (x2, y2), M : Map
Result: Diffusion Point (xd, yd) which maintains appropriate clearance δthresh

1 Function estimate_obstacle_clearance (Point1, Point2, Point3, M, midx1, midy1)

2 x1, y1 ← Point1
3 x2, y2 ← Point2 // Turn point 1
4 x3, y3 ← Point3

5 distdiffuse ←
√

(x2 −midx1)2 + (y2 −midy1)2 // Distance between Point2 and (midx1, midy1) diffused pt.

6 distp2p1 ←
√

(x2 − x1)2 + (y2 − y1)2 // Distance between Point2 and Point1

7 midx2 ← x2 +
distdiffuse

distp2p1
(x2 − x1) // Turn point 2

8 midy2 ← y2 +
distdiffuse

distp2p1
(x2 − x1) // Turn point 2

9 dtotal ←
√

(midx2 −midx1)2 + (midy2 −midy1)2 // Distance between (midx2, midy2) and (midx1, midy1).

10 ml2 ←
midy2 −midy1

midx2 −midx1
// Slope of line joining mid-points

11 m⊥ ←
−1
ml2

// Slope of perpendicular line

12 i← 0
13 dmin ← (−1)

14 while i <
dtotal

∆
do

15 x← midx1 +
∆ · i
dtotal

(midx1 −midx2) // x-coordinate of Point i

16 y← midy1 +
∆ · i
dtotal

(midy1 −midy2) // y-coordinate of Point i

// If the point (x,y) touches obstacle, return (-1).
// In the Grid-Map, obstacle value is 1, free-space is 0, un-defined value is 0.5

17 if M[x][y] = 1 then
18 return (−1)
19 else

// Estimate length of line from point (x,y) with slope m⊥ to obstacles
20 while Obstacle surface point not found do
21 (xobs, yobs)← binary_search(x, y, m⊥, M) // Refer Figure 4b

22 d←
√

(x− xobs)2 + (y− yobs)2 if d < dmin then
23 dmin ← d
24 i← i + 1
25 return (dmin)

4. Robot’s Proximity from Obstacles on the Smooth Path

In Figure 5, the original path ABCD of the robot with sharp turns at points B and C has been
smoothed by the path ȦP1P2. Originally, the robot would make a turn at point B keeping a distance
BQ from the obstacle. On the smooth path, the robot comes closer to the obstacle while traversing
the smooth green curve, and the distance is B′Q. The proximity difference (shown as e in Figure 5) is
e = BB′. Since the robot itself has some width, the overall proximity to the obstacle will be increased
while traversing the smooth curve. Hence, it is important to calculate this difference in proximity.

In Figure 5, we calculate the ∠ABC = θ using the cosine law as

θ = cos−1
Å

a2 + c2 − b2

2ac

ã
,

where,

a =
»
(px2 − x2)2 + (py2 − y2)2,

b =
»
(px2 − px1)2 + (py2 − py1)2,

c =
»
(px1 − x2)2 + (py1 − y2)2.

(20)

Sensors 2019, 19, 4384 11 of 37

In4P1OB and4P2OB, we have

P2B = P1B (diffusion by same distance)

P2O = P1O (circle radius ‘r’)

BO = BO (common side)

∴4 P1OB ∼= 4P2OB (Congruent triangles by SSS Congruence Theorem)

∴∠P1BO = ∠P2BO (From property of congruent triangles)

∠P1BO +∠P2BO = θ (Figure 5)

∴∠P1BO = ∠P2BO =
θ

2
(Figure 5).

(21)

(px1,py1)

(x2,y2)

(x3,y3)

(x4,y4)

P1

B

C

(cx,cy)

r

obstacle

A

P2(px2,py2)

D
90
o

90
o

Oe

r

B' Q

Figure 5. Calculation of robot’s proximity from obstacles on the smooth path compared to the
original path.

In other words, BO bisects ∠P1BP2, and ∠P1BO =
θ

2
. In 4P1OB, point P1 is the tangent point,

therefore ∠BP1O = 90◦. Therefore,

sin
θ

2
=

P1O
BO

=
P1O

BB′ + B′O
=

r
e + r

. (22)

Sensors 2019, 19, 4384 12 of 37

Hence, the distance e = BB′ is calculated as

e =
r

sin
θ

2

− r,

or, e = r(cosec
θ

2
− 1).

(23)

Assuming that the robot has a width of Wr and it accurately traverses the curve, the proximity
to the obstacles is increased by a distance Wr

2 . If the proximity of the robot is less than the threshold
distance δthresh, the diffusion points P1 and P2 are moved closer to the point B by a distance of Wr

2 , and
the curve is recomputed to ensure safety.

5. Induced Tangential Curves: 3D Path Smoothing Case

We now explain the case of 3D path smoothing for UAVs (Unmanned Aerial Vehicles) and drones.
The overall idea for the 3D case is an extension of the 2D case. ‘Node’ or the point of turn is now a point
in 3D space. First, the overall path is generated by using traditional path planners. Commonly used
robot path planning algorithms like A* algorithm[3], D* algorithm[4,5], potential fields algorithm [6],
Probabilistic Roadmap Planner (PRM) [7], rapidly exploring random tree algorithm (RRT) [8–10], etc.
generally have 3D extensions. Hence, any of the traditional algorithms can be used to generate the
overall path.

Figure 6 shows three points A′ (x
′
1, y

′
1, z

′
1) , B (x2, y2, z2), and C′ (x

′
3, y

′
3, z

′
3) in 3D space. These

points mark the original path of the robot. Point B is the point with sharp turn on the robot’s path.
As explained in the previous sections, point B has been diffused to points A and C which are equidistant
from point B, i.e., |AB| = |BC|. The line joining the two 3D points AC is at a safe distance (d = δthresh)
from the obstacle in 3D space shown in green in Figure 6. The aim is to find the circle (shown in yellow
in Figure 6).

o
(cx,cy,cz)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

(x1,y1,z1)
A

' ' '
'

(x3,y3,z3)

c'
' ' '

X

z

Y
A

B

c
r

r

r

d
3D
Obs.

Plane in 3D
made from
points A,B,C3D sphere

Figure 6. 3D path smoothing with ITC. The points A, B, and C are in 3D space. The intersection of the
3D sphere and the plane generated from the three points marks the arc to smooth the path.

Sensors 2019, 19, 4384 13 of 37

The yellow circle in Figure 6 lies on the plane which is formed by the three points A (x1, y1, z1),
B (x2, y2, z2), and C (x3, y3, z3). The plane is shown in gray color.

The equation of the plane formed by three points is

Ax + By + Cz + D = 0, (24)

where

A =

1 y1 z1

1 y2 z2

1 y3 z3

 , B =

∣∣∣∣∣∣∣
x1 1 z1

x2 1 z2

x3 1 z3

∣∣∣∣∣∣∣ , C =

x1 y1 1
x2 y2 1
x3 y3 1


and

D =

x1 y1 z1

x2 y2 z2

x3 y3 z3

 .

The equation of line AB and BC is given as

(x1, y1, z1) + t(x2 − x1, y2 − y1, z2 − z1), (25)

and
(x2, y2, z2) + t(x3 − x2, y3 − y2, z3 − z2), (26)

respectively.
The normal of the plane is calculated by taking the cross product,

n = (A− B)× (C− B). (27)

n is the vector (A, B, C) formed by three of the coefficients from the equation of the plane in
Equation (24). The direction within the plane and perpendicular to AB is

v = n× (A− B). (28)

Similarly, the direction within the plane perpendicular to BC is

w = n× (C− B). (29)

A point on these lines can be represented as

A + λv and C + µw. (30)

The equation of a point which lies on both of them is

D = A + λv = C + µw. (31)

We solve for λ and µ. There are actually three equations, one for each coordinate, and two
variables, so the system is over-determined. We can use pseudo inverse to avoid special cases and
get the center of the sphere. Once we have the center, we can calculate the radius (r) of the circle with
center O (cx, cy, cz),

r =
»
(cx − x2)2 + (cy − y2)2 + (cz − z2)2. (32)

As shown in Figure 6, the plane defined from the points A, B, and C cuts through the blue sphere.
The boundary of the intersection of the sphere and the plane is a circle shown in yellow in Figure 6.

Sensors 2019, 19, 4384 14 of 37

The circle can be described with a parametric description, for which we require two orthonormal
vectors within the plane. One such vector is

e1 =
(A− B)
‖A− B‖ , (33)

and the other is

e2 =
(n× e1)

‖n× e1‖
. (34)

Once the circle has been calculated, we take the arc ÃC to generate the smooth trajectory.

The original path of the robot was A′BC′. The smooth path is ¸�A′ACC′.

6. Experiments and Results

We now discuss the results of path smoothing using the proposed ITC algorithm. Section 6.1 first
shows the 2D results. The 3D path smoothing results are shown in Section 6.2. Section 6.3 discusses
the comparison with interpolation based smoothing algorithms. Section 6.4 shows results of smooth
path generation with different curvatures. Section 6.5 shows smoothing results with actual robots in a
real environment while discussing a multi-robot collision avoidance scenario.

6.1. Results of 2D Path Smoothing

We first discuss path smoothing in indoor corridor environments which are frequently navigated
by mobile service robots. Such an environment is shown in Figure 7 in which the smooth paths are also
shown. In such environments, robots generally navigate the center of the corridor maintaining a safe
distance from the walls on both sides. On the other hand, some robots are programmed to navigate
the corridors on the left or right side. We discuss these cases below.

A B1 C1

B2 C2D
E

b1b3

b2
b4

b5

b6
e1

c3

c4

c5

Figure 7. The case of path smoothing in corridors using ITC.

• Case I: As shown in Figure 7, if the robot is programmed to navigate the center of the corridors,
the original path of the robot is AC1C2D with A as the starting point and D as the goal point.

Sensors 2019, 19, 4384 15 of 37

The path has two 90-degree turns at points C1 and C2. Two smooth curves b̄3c3 and c̄4c5 have

been induced in the original path. The smooth path is ˇ�Ab3c3c4c5D.
• Case II: For ‘left-traversal’ robots, the original path of the robot is AB1B2D with A as the starting

point and D as the goal point. This path also has two 90-degree turns at points B1 and B2.
Two smooth curves b̄1b2 and b̄5b6 have been induced in the original path. The smooth path isˇ�Ab1b2b5b6D.

Two other curves b̄3b4 and b̄5e1 have also been induced in the original path for different curvature
requirements. In any case, all of the induced curves are tangential and guarantee G1 continuity.

Figure 8a shows a complex scenario with many sharp turns of different angles. The original path
of the robot is shown in black with the start point as P1 and the goal point as P14. There are sharp
turns at points P2, P3, · · · , P13. A major advantage of the proposed ITC algorithm is that it is possible
to have a different safe threshold distance (δthresh) at different turn points based on several factors.
In the simulation, we fixed different thresholds for different turn points as shown in Figure 8a. This is
evident from the fact that the curvature of different induced curves (ā1a2, b̄1b2, c̄1c2, · · · , î1i2) shown
in red in Figure 8a is different. For example, the curvature of the induced curve ā1a2 is less than that
of curve ĵ1j2, as the safety threshold distance for the curve ā1a2 (δthresh = 3) was more than the safety
threshold distance for the curve ĵ1j2 (δthresh = 1).

The curvatures of different curves can also be checked visually from Figure 8b, which shows the
different circles whose segments are used for smoothing the turns. It is also visually evident that ĵ1j2
and b̄1b2 are generated from arcs of circles with different radii, and hence different curvatures.

Table 1 summarizes the coordinates of the points and distance thresholds set for the different
curves ā1a2, b̄1b2, c̄1c2, · · · , î1i2 shown in Figure 8a.

The threshold distances summarized in Table 1 should not be confused with the radius of the
circles used to generate the tangential curves. The radii of different circles used to generate tangential
curves at points P2, P3, · · · , P13 of Figure 8 are shown in Figure 9a. Similarly, the curvature of the
different ITC curves are shown in Figure 9b. The ITC curve at point P6 (ē1e2) had the minimum radius
of 0.7082 units and thereby the minimum curvature, whereas the ITC curve at point P8 (ḡ1g2) had the
maximum radius and thereby the minimum curvature.

Table 1. 2D coordinates of turn points in Figure 8a .

Coord P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 P-14

X -2 2 4 7 8 16 10 11 17 19 13 13 18 23

Y 2 2 12 6 15 16 12 5 2 9 9 12 15 10

Threshold (δ): δ1 = 3, δ2 = 3, δ3 = 3, δ4 = 3, δ5 = 3, δ6 = 3, δ7 = 3, δ8 = 3, δ9 = 3, δ10 = 1, δ11 = 1.5, δ12 = 3

Sensors 2019, 19, 4384 16 of 37

a1

a2

b1
b2
c1

c2

d1

d2 e1

e2f1

f2

g1

g2

h1

h2

i1

i2
j1

j2
k1

k2
l1

l2

(a)

0 5 10 15 20
X

2

4

6

8

10

12

14

16

Y

P1 P2

P3

P4

P5

P6

P7

P8

P9

P10P11

P12

P13

P14

Infused Tangential Curves (2D Path Smoothing)

(b)

Figure 8. 2D path smoothing using ITC in a complex scenario. (a) tangential curves
ā1a2, b̄1b2, c̃1c2, · · · , î1i2 have been induced to smooth sharp turns with different δthresh; (b) visual
representation of the different curves and their curvatures.

0 1 2 3 4 5 6
Radius

P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13

T
u
rn

 P
o
in

t

3.6594

1.0293

0.8859

3.8031

0.7082

4.7602

5.7257

2.4898

2.2629

1.0

2.6493

3.8423

Radius of ITC Curves

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Curvature

P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13

T
u
rn

 P
o
in

t

0.2733

0.9715

1.1287

0.2629

1.412

0.2101

0.1747

0.4016

0.4419

1.0

0.3775

0.2603

Curvature of ITC Curves

(b)

Figure 9. Radius and curvature of the different curves in Figure 8a. (a) radius of curves at different
points; (b) curvature of curves at different points.

Sensors 2019, 19, 4384 17 of 37

6.2. Results of 3D Path Smoothing

Figure 10 shows three complex scenarios of path smoothing for UAVs in 3D space. The original
path of the UAV is shown in red. The smoothed paths are shown in black. The 3D points have been
marked in green.

Figure 10a shows the first case of 3D path smoothing. The original path of the UAV is a closed-loop
path with the same start and goal points (x = y = z = 0). Different values of threshold distances have
been used to generate smooth curves of appropriate curvatures. The 3D coordinates of different points
and different clearance thresholds have been summarized in Table 2.

Table 2. 3D coordinate of turn points in Figure 10a.

Coord Point-1 Point-2 Point-3 Point-4 Point-5 Point-6 Point-7 Point-8 Point-9 Point-10

X 0 20 50 80 90 80 50 20 20 0

Y 0 10 20 20 50 80 80 60 40 0

Z 0 15 20 15 20 15 20 15 10 0

Threshold Distance (δ): δ1 = 14, δ2 = 13, δ3 = 14, δ4 = 15, δ5 = 12, δ6 = 12, δ7 = 10, δ8 = 9

Similarly, Figure 10b also shows a closed path closed-loop UAV path with the same start and goal
points (x = y = z = 0). Compared to the path in Figure 10a, the path is more complex with difficult
maneuvers and sharp turns. However, the proposed method is still able to smooth the sharp and
angular turns. Different values of threshold distances have been used to generate smooth curves of
appropriate curvatures. The 3D coordinates of different points and different clearance thresholds have
been summarized in Table 3.

Table 3. 3D coordinate of turn points in Figure 10b.

Coord Point-1 Point-2 Point-3 Point-4 Point-5 Point-6 Point-7 Point-8 Point-9 Point-10

X 0 60 80 90 70 60 50 30 20 0

Y 0 80 70 40 60 90 50 60 20 0

Z 0 85 25 55 20 35 60 15 10 0

Threshold Distance (δ): δ1 = 18, δ2 = 18, δ3 = 16, δ4 = 16, δ5 = 14, δ6 = 16, δ7 = 18, δ8 = 23

Sensors 2019, 19, 4384 18 of 37

5

(a)

1

5

(b)

5

1

(c)

Figure 10. 3D path smoothing. (a) closed loop 3D path smoothing; (b) a complex closed loop 3D path
smoothing case; (c) an open loop 3D path smoothing case.

Figure 10c shows an open-loop UAV path with different start (P1 : x = y = z = 0) and goal
points (P8 : x = 0, y = 45, x = 90). There are six sharp turns at points P2, P3, P4, · · · , P7. It is clear

Sensors 2019, 19, 4384 19 of 37

from Figure 10c that the proposed method keeps straight paths of the UAV straight. The turns can be
smoothed for different curvatures. In this case, we used the same clearance threshold distance for the
different turns. Hence, the curvature of all the smooth induced curves is the same. The 3D coordinates
of different points and different clearance thresholds have been summarized in Table 4.

Figure 11 shows the different 3D spheres for path smoothing in case of Figure 10c. The coordinates
of the points are the same as given in Table 4. In this case, the surface of the 3D sphere is used to
smooth out the sharp turns. It should be noted that the spheres in Figure 11 look like a circle as only a
particular projection of the 3D space is shown.

Table 4. 3D coordinate of turn points in Figure 10c.

Coord Point-1 Point-2 Point-3 Point-4 Point-5 Point-6 Point-7 Point-8

X 0 45 90 90 90 45 0 0

Y 0 0 0 45 90 90 90 45

Z 0 90 0 90 0 90 0 90

Threshold Distance (δ): δ1 = 35, δ2 = 35, δ3 = 35 δ4 = 35, δ5 = 35, δ6 = 35, δ7 = 35

X

50
0

50
100

150

Y

20

0
20

40
60

80
100

Z

0

20

40

60

80

Infused Tangential Curves (3D Path Smoothing)

Figure 11. Visual representation of 3D path smoothing in case of Figure 10c.

6.3. Comparison with Other Works

In order to compare the strengths of our work, we compare our work with the path smoothing
method proposed in the works of Huh and Chang in [56]. The method proposed in this paper uses
an interpolation technique to smooth the sharp turns of the robot’s path. Interpolation technique
was first proposed by Warning [57,58]. Precisely, given m + 1 pairs (xi, yi), the problem consists of
finding a function φ = φ(x) such that φ(xi) = yi for i = 0, · · · , m, yi being some given values, and
say that φ interpolates {yi} at the nodes {xi}. We speak about polynomial interpolation if φ is an
algebraic polynomial, trigonometric approximation if φ is a trigonometric polynomial, or piecewise
polynomial interpolation (or spline interpolation) if φ is only locally a polynomial [1]. As interpolation

Sensors 2019, 19, 4384 20 of 37

based methods are widely used in path smoothing algorithms [41,59,60] found in the state-of-the-art,
comparison with this method can highlight the merits as well as drawbacks of the proposed method.

In the comparison, we used the same dataset of points as used in work [56]. The dataset contains
total ten points in a grid of size 50 × 50 units. The 2D coordinates of the ten points have been
summarized in Table 5. As shown in Figure 12, the ten points (P1, P2, · · · , P10) are marked in green.
The starting point is P1 :x = 8, y = 5, and the goal point is P10 :x = 25, y = 25 with many sharp turns
at different points. In Figure 12, the original path is marked in black, whereas the smooth path is
shown in red.

To smooth the paths, we used four sets of thresholds. The results of smoothing with different
thresholds are shown in Figure 12a–d. The values of different thresholds along with the 2D coordinates
of the points are summarized in Table 5 for the different figures.

Table 5. Coordinates of different points in the comparative work of Figure 12 for different cases.

Coord Point-1 Point-2 Point-3 Point-4 Point-5 Point-6 Point-7 Point-8 Point-9 Point-10

X 8 7 2 11 11 45 45 25 12 25

Y 5 15 10 10 14 30 12 45 45 25

Figure 12a Threshold Distance (δ): δ1 = 3, δ2 = 3, δ3 = 1.5, δ4 = 1.5, δ5 = 3, δ6 = 3, δ7 = 3, δ8 = 3

Figure 12b Threshold Distance (δ): δ1 = 3, δ2 = 3, δ3 = 1.5, δ4 = 1.5, δ5 = 4, δ6 = 4, δ7 = 4, δ8 = 4

Figure 12c Threshold Distance (δ): δ1 = 3, δ2 = 3, δ3 = 1.5, δ4 = 1.5, δ5 = 5, δ6 = 5, δ7 = 5, δ8 = 5

Figure 12d Threshold Distance (δ): δ1 = 3, δ2 = 3, δ3 = 1.5, δ4 = 1.5, δ5 = 6, δ6 = 8, δ7 = 6, δ8 = 6

Figure 12a shows the path smoothing with a minimum threshold. The left section of the figure
has been enlarged to provide a better view. We successively increased the clearance thresholds in
different steps. The consequent smoothing results are shown in Figure 12b–d. Path smoothing at point
P7 can be seen in different figures to notice the curvature change of the induced curve.

Figure 12e is the same as Figure 12d, but the obstacles are also shown. Notice that the path
between the points P5 and P6 is a straight corridor between the walls shown in gray color. A robot
traversing this path is expected to maintain a safe distance from the walls and move as straight as
possible. The proposed method is able to achieve exactly that goal. The straight paths are kept straight,
while only the sharp turns are smoothed out. For comparison, we direct the readers to paper [56]
(page 7, Figure 11 of [56] to be exact). In work [56], since interpolation techniques are used, the path
between the points P5 and P6 is not straight but dangerously close to the walls at multiple points.
This also happens at other locations, and the robot’s proximity to the obstacles is compromising safety.
Moreover, since interpolation is used, it is difficult to control the curvature of paths, especially at the
turns. On the other hand, in the proposed method, it is easy to control the curvature.

However, our proposed method has a disadvantage that G2 continuity is not possible. G2

continuity is important for a robot that accelerates significantly on the paths. In fact, the reason why
the work in [56] brings the robot close to one of the walls is because it emphasizes achieving a G2

continuity. Adjusting a particular point on paths using interpolation is difficult as changing one point
changes the whole path. Hence, there is a possibility that adjusting one point to a safe distance brings
other portions of the continuous path close to the obstacles. The proposed method only guarantees a
G1 continuity that is tangential continuity. The G1 continuity is important so that the robot does not
experience a sudden kink or bump while traversing from a straight line to a curve. G2 continuity is
important for robots traveling at high speeds. However, most of the service robots have limited speed
(generally around 2 m/s) to ensure operational safety. Although ensuring a G2 continuity is beneficial,
G1 continuity is enough for operations at lower speeds. Since the proposed method only smooths the

Sensors 2019, 19, 4384 21 of 37

turns and keeps the straight paths straight, a robot can always navigate the straight segments of the
path at high speeds and slow down before approaching a turn.

5

5

(a)

5

6

8

(b)

5

6

8

(c)

5

6

8

(d)

5

6

8

(e)

Figure 12. Comparison with interpolation based smoothing proposed in [56] using the same set of
points. The various thresholds δthresh in (a–e) are given in Table 5.

Sensors 2019, 19, 4384 22 of 37

6.4. Generation of Smooth Paths with Variable Curvature

A strong merit of the proposed ITC path smoothing is that the curvature of the smooth
trajectories can be controlled easily. Figure 13 shows the results of path smoothing in which the
ITC curves have been generated with different curvatures. The original path is P1P2P3P4 shown
in black color with sharp turns at points P2 and P3. The coordinates of the four points are:
P1 : (50, 50), P2 : (250, 250), P3 : (500, 50), P4 : (750, 250).

As shown in Figure 13, at the same turn point P2, different ITC curves (ĀA′, B̃B′, · · · , H̄H′) have
been generated. The radius and curvature of the different ITC curves are shown in Figure 14a,b,
respectively. Thus, depending on the kinematics of the robot and the configuration of obstacles,
appropriate path smoothing can easily be achieved using the proposed method.

100 200 300 400 500 600 700
X

50

75

100

125

150

175

200

225

250

Y

Induced Tangential Curves of Different Curvatures

A A'
B B'

C C'
D D'

E
E'

F
F'

G
G'

H
H'

P1

P2

P3

P4

Figure 13. ITC path generation with different curvatures.

0 25 50 75 100 125 150 175
Radius

AA'

BB'

CC'

DD'

EE'

FF'

GG'

HH'

C
u
rv

e

22.3453

44.6906

67.0359

89.3812

111.7265

134.0718

156.4171

178.7624

Radius of ITC Curves

(a)

0.00 0.01 0.02 0.03 0.04
Curvature

AA'

BB'

CC'

DD'

EE'

FF'

GG'

HH'

C
u
rv

e

0.0448

0.0224

0.0149

0.0112

0.009

0.0075

0.0064

0.0056

Curvature of ITC Curves

(b)

Figure 14. Radius and curvature of the different curves in Figure 13. (a) radius of curves at different
points; (b) curvature of curves at different points.

6.5. Results of Smoothing in Real Environment with Actual Robots

This section discusses results in a real environment with actual robots. Figure 15 shows the robots
used and its motion model. We used a Pioneer-P3DX [61] robot and Turtlebot robot [62] shown in
Figure 15a,b, respectively. Both the robots were equipped with distance sensors (Microsoft Kinect [63]
and UHG-08LX laser range sensor [64]) and cameras. The distance sensor is accurate within ±30 mm
within 1 m, and within 3% of the detected distance between 1 and 8 m. The angular resolution is
approximately 0.36 degrees, and other specifications can be found in [64]. Specifications of Kinect
sensors can be found in [63]. The robots were programmed in ROS [65]. Both are differential drive

Sensors 2019, 19, 4384 23 of 37

robots. We adopt the motion model from our previous work [52] and briefly describe here. The
distance between the left and the right wheel is Wr, and the robot state at position P, is given as [x, y, θ].
From Figure 15c, turning angle β is calculated as

r = β · (R + Wr),

l = β · R,

∴ β =
r− l
Wr

,

(35)

and the radius of turn R as

R =
l
β

, β 6= 0. (36)

The coordinates of the center of rotation (C, in Figure 15c) are calculated asñ
Cx
Cy

ô
=

ñ
x
y

ô
−
Å

R +
Wr

2

ã
·
ñ

sinθ

−cosθ

ô
. (37)

The new heading θ′ is
θ′ = (θ + β) mod 2π, (38)

from which the coordinates of the new position P′ are calculated asñ
x′

y′

ô
=

ñ
Cx
Cy

ô
−
Å

R +
Wr

2

ã
·
ñ

sinθ′

−cosθ′

ô
, β 6= 0 =⇒ r 6= l. (39)

If r = l, i.e., if the robot motion is straight, the state parameters are given as

θ′ = θ, (40)

and ñ
x′

y′

ô
=

ñ
x
y

ô
+ l ·

ñ
cosθ

sinθ

ô
, (l = r). (41)

Figure 16 shows the experiment environment and its grid map. As shown in Figure 16a,
the environment was conducted in a narrow corridor of our university. The corresponding grid
map is shown in Figure 16b, in which the actual experiment section of the corridor is marked and
shown enlarged.

(a) (b) (c)

Figure 15. Robots used in the experiments. (a) Pioneer P3DX; (b) Kobuki Turtlebot; (c) Motion Model.

Sensors 2019, 19, 4384 24 of 37

(a)

P

T

width=
234 cm

(b)

Figure 16. Experiment setup. (a) corridor scenario used in experiments; (b) grid-map of the
environment. The zoomed out section shows the width of the corridor. Starting locations and directions
of movement of the two robots are also shown.

6.5.1. Non-Smoothed Collision Avoidance and Navigation (Real Environment with Actual Robots)

Path smoothing in open and static environments can easily be demonstrated. However, real-time
path smoothing for multiple robots in a dynamic and realistic scenarios is more challenging. We tested
the proposed path smoothing method in a dynamic multi-robot collision avoidance scenario. In the
experiment, the Pioneer P3DX robot and Turtlebot robot navigated towards each other in the narrow
corridor and tried to avoid collision. We compared the trajectories in both traditional (non-smoothed)
and the proposed (smoothed) method.

The direction of movement of both the robots is indicated in Figure 16b. Pioneer P3DX robot
robot navigated from North to South direction with the starting point marked as P. The Turtlebot
robot navigated in the opposite direction in the same corridor from South to North with the starting
point marked as T in Figure 16b. The width of the corridor was 234 cm, and both the robots were
programmed to navigate the center of the corridor (i.e.,≈ 127cm from either of the walls). The threshold
collision avoidance distance was set to 4 m. Once an obstacle at this distance is found, the robots were
programmed to avoid it using the traditional and proposed smooth algorithms.

Figure 17 shows the timely snapshots (Figure 17(ns-1), · · · , Figure 17(ns-30)) of the experiment
with traditional path planning and navigation. For the ease of readability, we have summarized the
various actions take by the two robots at different time-steps in Figure 17 in Table 6. The flowchart of
the non-smoothed collision avoidance and navigation is shown in Figure 18a.

In the traditional navigation without smoothing, the robots stopped when the frontal distance
was less than the threshold distance. Then, the robots took a sharp 90-degree turn towards the left,
moved towards the wall, stopped, and again took a 90-degree right turn. The robots crossed-over, and
then repeated the process to come to the center of the corridor from where they continued to navigate
towards their respective goals.

Readers are advised to see the attached video to see the traditional navigation and multi-robot
collision avoidance. It is clear that such a robot navigation with abrupt stops, and sharp turns, is not
natural, potentially hazardous for the items carried on the robot, and even dangerous for people
moving in the vicinity.

Sensors 2019, 19, 4384 25 of 37

(ns-1) (ns-2) (ns-3) (ns-4) (ns-5) (ns-6)

(ns-7) (ns-8) (ns-9) (ns-10) (ns-11) (ns-12)

(ns-13) (ns-14) (ns-15) (ns-16) (ns-17) (ns-18)

(ns-19) (ns-20) (ns-21) (ns-22) (ns-23) (ns-24)

(ns-25) (ns-26) (ns-27) (ns-28) (ns-29) (ns-30)

Figure 17. Timely snapshots of the non-smoothed navigation and collision avoidance. The robot
actions at different steps are summarized in Table 6. Please see the supplementary video.

Table 6. Description of robot actions at different steps (non-smooth case of Figure 17).

Figure Action Description
Figure 17(ns-1)∼(ns-4) Move Straight Robots navigate towards each other

Figure 17(ns-5) Stop Both the robots stop upon threshold distance

Figure 17(ns-6)∼(ns-9) Move Left Robots move left to ≈127 cm of the wall

Figure 17(ns-10)∼(ns-12) Stop and Turn Right Robots turn right

Figure 17(ns-13)∼(ns-20) Crossover Robots cross each other

Figure 17(ns-21) Stop Robots stop to make a turn again

Figure 17(ns-22)∼(ns-25) Approach Center and Turn Robots navigate to center of corridor and turn

Figure 17(ns-26)∼(ns-30) Move Straight Robots continue towards their goal

Sensors 2019, 19, 4384 26 of 37

Start

Navigate towards the goal
through the corridor’s center

Is
frontal obstacle
dist < Thresh?

Stop

Turn left with half the
current dist. from walls

Safety ensured?

Crossover

Return to corridor’s center

Goal reached?

FinishN

Y

N

Y

Y

N

(a)

Start

Navigate towards the goal
through the corridor’s center

Is
frontal obstacle
dist < Thresh?

P-Set1: {(w/2,y), (w/2,y+50), (w/4,y+100)}
P-Set2: { (w/4,y+200), (w/4,y+250),(w/2,y+300)}

Safety ensured? Move the left point
closer to the wall

Goal reached?

Finish

Make ITC curve with P-Set 1 and move left

Crossover

Make ITC curve with P-Set 2 and return to center

Y

N

Y

N

Y

N

(b)

Figure 18. Flowchart of non-smoothed and ITC based smooth navigation and collision avoidance.
(a) non-smoothed case; (b) ITC based smoothed case.

6.5.2. Smoothed Collision Avoidance and Navigation (Real Environment with Actual Robots)

Figure 19 shows the timely snapshots (Figure 19(sm-1), · · · , Figure 19(sm-30)) of the navigation
with the proposed smoothing algorithm. The experiment was conducted in the same environment
with the same direction, start, and goal locations of Turtlebot and Pioneer robots. The flowchart of the
smoothed collision avoidance and navigation is shown in Figure 18b.

The two robots approached each other while traversing the center of the corridor. When the
frontal threshold distance was less than the threshold distance, the robots essentially generated three
control points over which the tangential curve could be induced. As shown in Figure 18b, if W is
the width of the corridor, the robot is traversing the corridor on a line {W

2 , y}, y ∈ IRmap the robot
generates a set (P-Set1) of three points:

P-Set1 =

ß
A :

Å
W
2

, y
ã

, B :
Å

W
2

, y + ψ1

ã
, C :

Å
W
λ

, y + 2ψ2

ã™
. (42)

Essentially, the point A = (W
2 , y) and B = (W

2 , y+ψ1) lies on the straight line on the center of the
corridor. Point C =(W

λ , y + 2ψ2) lies on the left side of the corridor. The parameter λ controls the
distance of the trajectory from the left wall of the corridor. For collision avoidance, λ is generally set to
4, which generates a trajectory at a distance of W

4 from the left wall of the corridor. The parameter ψ1

controls the turning point in front of the robot. The parameter ψ2 controls the point on the frontal left
side of the robot. The effect of the parameter ψ is explained later. From the point set (P-Set1), an ITC
curve is generated and induced in the original trajectory.

Once the robots have shifted left, they move in a straight line and cross each other. Once the
robots have crossed over, the robots need to get back to the center of the corridor again. This is done
by generating a set (P-Set2) of three points:

P-Set2 =

ß
A :
Å

W
λ

, yt

ã
, B :

Å
W
λ

, yt + ψ2

ã
, C :

Å
W
2

, yt + 2ψ2

ã™
. (43)

Sensors 2019, 19, 4384 27 of 37

An ITC is generated again from set (P-Set2), and the robots smoothly traverse it to come back to
the center of the corridor and navigate towards their respective goals.

We have summarized the various actions taken by the two robots at different time-steps in
Figure 19 in Table 7.

(sm-1) (sm-2) (sm-3) (sm-4) (sm-5) (sm-6)

(sm-7) (sm-8) (sm-9) (sm-10) (sm-11) (sm-12)

(sm-13) (sm-14) (sm-15) (sm-16) (sm-17) (sm-18)

(sm-19) (sm-20) (sm-21) (sm-22) (sm-23) (sm-24)

(sm-25) (sm-26) (sm-27) (sm-28) (sm-29) (sm-30)

Figure 19. Timely snapshots of ITC based smoothed navigation and collision avoidance. The robot
actions at different steps are summarized in Table 7. Please see the supplementary video.

Table 7. Description of robot actions at different steps (smooth case of Figure 19).

Figure Action Description
Figure 19(sm-1)∼(sm-7) Move Straight Robots navigate towards each other

Figure 19(sm-8)∼(sm-11) Smooth Turn Left Both the robots smoothly move to left

Figure 19(sm-12)∼(sm-20) Crossover Robots cross each other

Figure 19(sm-21)∼(sm-24) Smooth Turn Right Both the robots smoothly approach corridor’s center

Figure 19(sm-25)∼(sm-30) Move Straight Robot navigate towards their goal

Figure 20 shows the trajectories of the two robots. In Figure 20, ‘T′ and ‘P′ show the starting
positions of Turtlebot and Pioneer robots, respectively. The trajectory of Turtlebot is shown in red,
whereas the trajectory of Pioneer robot is shown in blue. The original trajectories are shown in black.
As shown in Figure 16, the width of the corridor was 234 cm, and both the robots initially started from
the center of the corridor. The center line is shown as a dotted line in Figure 20.

In the experiment shown in Figure 20, we set the parameters ψ1 = ψ2 = 50. The Turtlebot’s
starting position of turn was (x = 117, y = 0) and the Pioneer robot’s starting position at a
smooth turn was (x = 117, y = 400). Setting the values in Equation (42), we get (P-Set1) as,
P-Set1 = {A : (117, 0), B : (117, 50), C : (58.5, 100)}. Similarly, another set of points are generated
and the smooth ITC trajectories are generated for both Turtlebot (red trajectory in Figure 20) and

Sensors 2019, 19, 4384 28 of 37

Pioneer robot (blue trajectory in Figure 20). Figure 20 also shows a zoomed out section of the trajectory
to visually confirm the induced G1 tangential curves. In the experiment, the same values of both the
parameters ψ1 and ψ2 were set for both of the robots. Hence, the generated trajectories in Figure 20 are
symmetrical. The smooth ITC trajectories were generated in 39.73 ms on Ubuntu 16.04 with Core-i7
processor and 16 GB RAM using Python 3.6 language. This is fast enough for real-time applications.

Figure 20. Trajectories of the two robots. Pioneer P3DX and Turtlebot are marked as P and T,
respectively. The parameters were set as ψ1 = ψ2 = 50.

6.6. Effect of ψ on a Smooth Trajectory

We now discuss the effect of parameters ψ1 and ψ2 on the smoothness of ITC curves.
The parameter ψ1 controls the robot’s frontal starting point of trajectory generation. Parameter
ψ2 is crucial in controlling the curvature of the smooth trajectories. This is explained using Figure 21,
in which the robot is assumed to be on the center of the corridor shown as a dotted line. Point A marks
the starting of the smooth trajectory generation, and the second point B is at a distance of ψ1 from point
A. The points C, C′, and C′′ are generated using different values 50, 75, and 100 of ψ2, respectively.

It should be noted that point B is common for the different ITC curves generated in Figure 21.
However, the values of ψ2 were different generating different set of points on the left side of the
corridor. The blue ITC curve in Figure 21 corresponds to ψ2 = 50. The green and magenta ITC
curves corresponds to ψ2 = 75, and ψ2 = 100, respectively. The seed point set for blue ITC curve
generation was P-Set1 = {A : (117, 0), B : (117, 50), C : (58.5, 100)}. The seed point set for green ITC
curve generation was: P-Set1 = {A : (117, 0), B : (117, 50), C : (58.5, 125)}. Similarly, the seed point
set for magenta ITC curve generation was: P-Set1 = {A : (117, 0), B : (117, 50), C : (58.5, 150)}.

The radius of the three curves seen in Figure 21 are shown in the plot of Figure 22a. Similarly,
the curvatures of the three curves are given in Figure 22b. It is clear that increasing the value of ψ2

generates an ITC curve with lesser curvature. The actual radii and curvatures of the three curves are
shown in Figure 22a,b, respectively.

Sensors 2019, 19, 4384 29 of 37

A

B

c

c'

c''

Figure 21. Effect of ψ2 on ITC curve generation. Blue, green, and magenta curves were generated with
ψ2 = 50, ψ2 = 75, and ψ2 = 100, respectively.

0 100 200 300 400
Radius

Blue

Green

Magenta

C
u
rv

e

84.6374

215.8544

428.9709

Radius of ITC Curves

(a)

0.000 0.002 0.004 0.006 0.008 0.010 0.012
Curvature

Blue

Green

Magenta

C
u
rv

e

0.0118

0.0046

0.0023

Curvature of ITC Curves

(b)

Figure 22. Radius and curvature of blue (ψ2 = 50), green (ψ2 = 75), and magenta (ψ2 = 100) curves in
Figure 21. (a) Radius of curves at different points. (b) Curvature of curves at different points.

6.7. Effect of λ on Smooth Trajectory

The parameter λ in Equation (42) controls the distance of the trajectory from the left wall of
the corridor. Figure 23 shows the smooth ITC trajectory generation with different values of λ.
For generating the left turn, the condition is:

Sensors 2019, 19, 4384 30 of 37

2 < λ <
Wcorridor

Wrobot
2

+ δthresh

,

where Wrobot is the width of the robot, and δthresh is the safety threshold from the corridor’s left wall.
Setting λ = 2 generates points on the straight line in the center of the corridor which does not require
smoothing. As shown in Figure 23, the black ITC curve marked ‘A’ is generated with λ = 2.5, and is
closest to the corridor’s center. On the other hand, the magenta ITC curve marked ‘F’ is generated with
λ = 12, and is the farthest from the corridor’s center and closest to the corridor’s left wall. The other
curves with different values of λ are also shown. The radii and curvatures of the different curves are
shown in Figure 24a,b, respectively.

ABCDEF

Figure 23. Effect of λ on different ITC curve generations for smooth left turns.

0 100 200 300 400
Radius

A (= 2.5)

B (= 3.0)

C (= 4.0)

D (= 6.0)

E (= 8.0)

F (= 12)

C
u
rv

e

450.4474

282.7308

215.8544

184.9098

177.5555

168.7989

Radius of ITC Curves

(a)

0.000 0.001 0.002 0.003 0.004 0.005 0.006

Curvature

A (= 2.5)

B (= 3.0)

C (= 4.0)

D (= 6.0)

E (= 8.0)

F (= 12)

C
u
rv

e

0.0022

0.0035

0.0046

0.0054

0.0056

0.0059

Curvature of ITC Curves

(b)

Figure 24. Radius and curvature of curves corresponding to different λ in Figure 23. (a) radius of
curves at different points; (b) curvature of curves at different points.

Sensors 2019, 19, 4384 31 of 37

The same parameter is also used for generating the smooth right turn of the robot. Figure 25
shows right turn trajectory generation. The value of λ for right turn generation is

Wcorridor

Wcorridor −
Å

Wrobot
2

+ δthresh

ã < λ < 2.

As shown in Figure 25, the black ITC curve marked ‘A’ is generated with λ = 1.8, and is closest
to the corridor’s center. On the other hand, the magenta ITC curve marked ‘F’ is generated with
λ = 1.05, and is the farthest from corridor’s center, and closest to the corridor’s right wall. Setting λ = 1
generates a trajectory touching the right wall of the corridor. The other curves with different values of λ

are also shown. The radii and curvatures of the different curves are shown in Figure 26a,b, respectively.
Thus, depending on the width of the robot and the obstacle ahead, appropriate value of λ can be

chosen to avoid collision, for both right and left turns.

ABC D E F

Figure 25. Effect of λ on different ITC curve generations for smooth right turns.

Sensors 2019, 19, 4384 32 of 37

0 100 200 300 400 500 600 700 800
Radius

A (= 1.05)

B (= 1.20)

C (= 1.35)

D (= 1.50)

E (= 1.65)

F (= 1.05)

C
u
rv

e

159.6923

184.9098

217.5963

286.6395

425.4039

777.4508

Radius of ITC Curves

(a)

0.000 0.001 0.002 0.003 0.004 0.005 0.006
Curvature

A (= 1.05)

B (= 1.20)

C (= 1.35)

D (= 1.50)

E (= 1.65)

F (= 1.05)

C
u
rv

e

0.0063

0.0054

0.0046

0.0035

0.0024

0.0013

Curvature of ITC Curves

(b)

Figure 26. Radius and curvature of curves corresponding to different λ in Figure 25. (a) radius of
curves at different points; (b) curvature of curves at different points.

7. ITC as a Path Smoothing Extension

An ITC path smoother is proposed to work in conjunction with traditional path planning
algorithms, and not to replace them. The overall idea of ITC as an ‘extension’ is shown in Figure 27.
The input to the global path planner is: (a) map with obstacles and free space marked, (b) start, and (c)
goal location in the map. Any of the global path planners like A*, D*, PRM, or RRT path planners
can be used. The output of the global path planner is the input to the proposed ITC path smoother.
The ITC smoother first detects the sharp turns and then smooths only the turns while keeping the
straight segments straight. It can be seen in Figure 27 that the map information is also input to the ITC
block. This is because ITC trajectories are generated keeping a safe distance from the obstacles. Thus, a
map which marks the location of obstacles is required. The outputs of the ITC smoother are smooth
trajectories whose angular turns have been smoothed out. In this way, the proposed ITC algorithm
can be used as an extension with existing planners. A major benefit of such extension is that there
is no need to replace the already tested planning algorithms used with the robots. The embedded
software used in robot platforms is generally tightly coupled with the hardware and replacing the
existing algorithms with new algorithms is generally avoided unless absolutely necessary as additional
testing and benchmarking must be performed for the new algorithm. In this regard, the proposed ITC
extension will integrate easily with existing algorithms. In addition, there is a lot of scope to customize
the ITC smoother as generation of smooth trajectories is done on a part-by-part basis and there is much
less computational overhead.

A* planner

D* planner

PRM planner

Dijkstra planner

RRT planner

D
et

ec
t

S
h
ar

p
 T

u
rn

s

Map

Start

Goal

angular paths
with sharp turns

IT
C
 P

at
h
 S

m
oo

th
er

Input Gloabl Planner ITC Smoother

S
M
O
O
T
H

P
A
T
H
S

Figure 27. ITC path smoothing extension.

Sensors 2019, 19, 4384 33 of 37

8. Conclusions

We presented a new algorithm called ITC for smooth trajectory generation for mobile robot
robots. The algorithm can smooth out the sharp turns in the path generated by the global path planner.
The trajectories generated by the algorithm are tangential to the path, thus preserving G1 continuity.
The curves can be generated fast in real-time by using only three key points on the path. Safety is
embedded in an ITC algorithm, and it is guaranteed that the robot maintains a safe threshold distance
from the obstacles, which is a crucial feature of mobile robot navigation. An essential feature of the
algorithm is that only the turns are smoothed out, while the straight paths are kept straight. This
feature is highly desired in case of mobile robot navigation in narrow corridors. We discussed ITC
curve generation for both 2D path smoothing for UGVs, and 3D path smoothing for UAVs.

We compared the proposed ITC algorithm with interpolation based approaches. The comparison
shows that ITC paths maintain a safe distance from the walls of the corridors and enables the robot
to move in the center. Unlike interpolation algorithms, it is easier to define the control points in ITC
algorithm. Moreover, unlike interpolation based methods, changing one point does not alter the whole
path. This is another merit of the proposed ITC algorithm—that it is easy to define control points,
and smoothing is done on a part-by-part basis for each turn. Thus, smoothing one section of the path
with sharp turns does not affect other paths. It is difficult to follow such an approach in interpolation
based algorithms as smoothing has to be done on a global basis, otherwise discontinuities or kinks get
introduced in the overall path. The proposed ITC algorithm has a disadvantage that G2 continuity
is not guaranteed. This may be a limitation for mobile robots moving at high speed. However, for
lower to medium speed robot navigation, this is not a problem. In fact, robots can traverse the straight
sections of the ITC path with high speed, and slow down at the turns while executing a smooth turn,
which is normally the case seen in robot’s navigation to ensure safety due to a change in view, and the
sudden appearance of moving obstacles at turn points. We showed how ITC curves can be generated
for different curvatures for smooth left and right turns by easily defining the parameters. Finally,
we showed a complex real world scenario of collision avoidance with real robots. We compared the
traditional navigation of the robots for collision avoidance with the proposed ITC based navigation and
collision avoidance. It was clear that traditional navigation required the robot to stop and execute sharp
turns. However, the ITC based navigation was smooth, natural, and robots could avoid collision by
computing the smooth trajectories in real-time. Our current work presented a real-world 2D navigation
of mobile robots and complex scenarios of collision avoidance. In the future, we will test the algorithm
with multiple UAVs. A ground robot’s 2D navigation and collision avoidance will be compared to
other algorithms with actual robots. In addition, apart from collision avoidance, we also consider
trajectory smoothing of robotic arm manipulators as future work.

Supplementary Materials: Experiment video is available online at http://www.mdpi.com/1424-8220/19/20/
4384/s1, Video S1: Video of Traditional Non-Smooth vs ITC Based Smooth Collision Avoidance of Multiple Robots.

Author Contributions: A.R. (Abhijeet Ravankar) and A.A.R. conceived the idea, designed, and performed the
experiments; A.R. (Arpit Rawankar) helped with proof checking and visualizations; Y.H. and Y.K. made valuable
suggestions to analyze the data and improve the work. The manuscript was written by A.R. (Abhijeet Ravankar).

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.C.Path Smoothing Techniques in Robot
Navigation: State-of-the-Art, Current and Future Challenges. Sensors 2018, 18, 3170. [CrossRef] [PubMed]

2. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Real-Time Path Smoothing for Mobile Robots in 2D
and 3D Environments. In Proceedings of the 2018 JSME Annual Conference on Robotics and Mechatronics
(Robomec), Kitakyushu, Japan, 2–5 June 2018; pp. 1A1–J03. [CrossRef]

http://www.mdpi.com/1424-8220/19/20/4384/s1
http://www.mdpi.com/1424-8220/19/20/4384/s1
http://dx.doi.org/10.3390/s18093170
http://www.ncbi.nlm.nih.gov/pubmed/30235894
http://dx.doi.org/10.1299/jsmermd.2018.1A1-J03

Sensors 2019, 19, 4384 34 of 37

3. Hart, P.; Nilsson, N.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths.
IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [CrossRef]

4. Stentz, A.; Mellon, I.C. Optimal and Efficient Path Planning for Unknown and Dynamic Environments.
Int. J. Robot. Autom. 1993, 10, 89–100.

5. Stentz, A. The Focussed D* Algorithm for Real-Time Replanning. In Proceedings of the International Joint
Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; pp. 1652–1659.

6. Hwang, Y.; Ahuja, N. A potential field approach to path planning. IEEE Trans. Robot. Autom. 1992, 8, 23–32.
[CrossRef]

7. Kavraki, L.; Svestka, P.; Latombe, J.C.; Overmars, M. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]

8. Lavalle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Technical Report; Iowa State
University: Ames, IA, USA, 1998.

9. LaValle, S.M.; Kuffner, J.J. Randomized Kinodynamic Planning. Int. J. Robot. Res. 2001, 20, 378–400,
doi:10.1177/02783640122067453. [CrossRef]

10. Lavalle, S.M.; Kuffner, J.J., Jr. Rapidly-Exploring Random Trees: Progress and Prospects. In Algorithmic and
Computational Robotics: New Directions; CRC Press: Boca Raton, FL, USA, 2000; pp. 293–308.

11. Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271.
[CrossRef]

12. Wang S.X. The Improved Dijkstra’s Shortest Path Algorithm and Its Application. Procedia Eng. 2012,
29, 1186–1190. [CrossRef]

13. Fujita, Y.; Nakamura, Y.; Shiller, Z. Dual Dijkstra Search for paths with different topologies. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA ’03), Taipei, Taiwan, 14–19 September
2003; Volume 3, pp. 3359–3364. [CrossRef]

14. Rösmann, C.; Hoffmann, F.; Bertram, T. Integrated online trajectory planning and optimization in distinctive
topologies. Robot. Autom. Syst. 2017, 88, 142–153. [CrossRef]

15. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T.Hitchhiking Robots: A Collaborative Approach for
Efficient Multi-Robot Navigation in Indoor Environments. Sensors 2017, 17, 1878. [CrossRef]

16. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.C.; Watanabe,M. Hitchhiking Based
Symbiotic Multi-Robot Navigation in Sensor Networks. Robotics 2018, 7, 37. [CrossRef]

17. Rashid, A.T.; Ali, A.A.; Frasca, M.; Fortuna, L. Path planning with obstacle avoidance based on visibility
binary tree algorithm. Robot. Autom. Syst. 2013, 61, 1440–1449. [CrossRef]

18. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T.Symbiotic Navigation in Multi-Robot Systems with
Remote Obstacle Knowledge Sharing. Sensors 2017, 17, 1581. [CrossRef] [PubMed]

19. Ravankar, A.; Ravankar, A.A.; Hoshino, Y.; Kobayashi, Y. On Sharing Spatial Data with Uncertainty
Integration Amongst Multiple Robots Having Different Maps. Appl. Sci. 2019, 9, 2753. [CrossRef]

20. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Can robots help each other to plan optimal paths in
dynamic maps? In Proceedings of the 2017 56th Annual Conference of the Society of Instrument and Control
Engineers of Japan (SICE), Kanazawa, Japan, 19–22 September 2017; pp. 317–320. [CrossRef]

21. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Peng, C.; Emaru, T. Real-time multi-robot path planning
revisited as a caching problem. In Proceedings of the 2018 IEEE International Conference on Applied System
Invention (ICASI), Tokyo, Japan, 13–17 April 2018; pp. 350–353. [CrossRef]

22. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Avoiding blind leading the blind: Uncertainty
integration in virtual pheromone deposition by robots. Int. J. Adv. Robot. Syst. 2016, 13, 1–16, [CrossRef]

23. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. On a bio-inspired hybrid pheromone signalling for
efficient map exploration of multiple mobile service robots. Artif. Life Robot. 2016, 1–11. [CrossRef]

24. Fraichard, T.; Scheuer, A. From Reeds and Shepp’s to continuous-curvature paths. IEEE Trans. Robot. 2004,
20, 1025–1035.[CrossRef]

25. Liscano, R.; Green, D. Design and Implementation of a Trajectory Generator for an Indoor Mobile
Robot. In Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems ’89,
The Autonomous Mobile Robots and Its Applications (IROS ’89), Tsukuba, Japan, 4–6 September 1989;
pp. 380–385. [CrossRef]

http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/70.127236
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1016/j.proeng.2012.01.110
http://dx.doi.org/10.1109/ROBOT.2003.1242109
http://dx.doi.org/10.1016/j.robot.2016.11.007
http://dx.doi.org/10.3390/s17081878
http://dx.doi.org/10.3390/robotics7030037
http://dx.doi.org/10.1016/j.robot.2013.07.010
http://dx.doi.org/10.3390/s17071581
http://www.ncbi.nlm.nih.gov/pubmed/28678193
http://dx.doi.org/10.3390/app9132753
http://dx.doi.org/10.23919/SICE.2017.8105701
http://dx.doi.org/10.1109/ICASI.2018.8394606
http://dx.doi.org/10.1177/1729881416666088
http://dx.doi.org/10.1007/s10015-016-0279-4
http://dx.doi.org/10.1109/TRO.2004.833789
http://dx.doi.org/10.1109/IROS.1989.637934

Sensors 2019, 19, 4384 35 of 37

26. Dubins, L.E. On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed
Initial and Terminal Positions and Tangents. Am. J. Math. 1957, 79, 497–516. [CrossRef]

27. Dubins, L.E. On plane curves with curvature. Pac. J. Math. 1961, 11, 471–481. [CrossRef]
28. Yang, D.; Li, D.; Sun, H. 2D Dubins Path in Environments with Obstacle. Math. Probl. Eng. 2013, 291372, 1–6.

[CrossRef]
29. Gerlach, A.R.; Kingston, D.; Walker, B.K. UAV navigation using predictive vector field control. In Proceedings

of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 4907–4912. [CrossRef]
30. Komoriya, K.; Tanie, K. Trajectory Design and Control of a Wheel-type Mobile Robot Using B-spline

Curve. In Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems ’89,
The Autonomous Mobile Robots and Its Applications (IROS ’89), Tsukuba, Japan, 4–6 September 1989;
pp. 398–405. [CrossRef]

31. Delingette, H.; Hebert, M.; Ikeuchi, K. Trajectory generation with curvature constraint based on energy
minimization. In Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems
’91, The Autonomous Mobile Robots and Its Applications (IROS ’91), Osaka, Japan, 3–5 November 1991;
Volume 1, pp. 206–211. [CrossRef]

32. Piazzi, A.; Guarino Lo Bianco, C.; Bertozzi, M.; Fascioli, A.; Broggi, A. Quintic G2-splines for the iterative
steering of vision-based autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2002, 3, 27–36. [CrossRef]

33. Schmid, A.J.; Wörn, H. Path planning for a humanoid using NURBS curves. In Proceedings of the IEEE
International Conference on Automation Science and Engineering, Edmonton, AB, Canada, 1–2 August 2005;
pp. 351–356.

34. Ravari, A.N.; Taghirad, H.D. NURBS-based representation of urban environments for mobile robots.
In Proceedings of the 2016 4th International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran,
26–28 October 2016; pp. 20–25. [CrossRef]

35. Belaidi, H.; Hentout, A.; Bouzouia, B.; Bentarzi, H.; Belaidi, A. NURBs trajectory generation and following
by an autonomous mobile robot navigating in 3D environment. In Proceedings of the 4th Annual IEEE
International Conference on Cyber Technology in Automation, Control and Intelligent, Hong Kong, China,
4–7 June 2014; pp. 168–173. [CrossRef]

36. Choi, J.W.; Curry, R.; Elkaim, G. Path Planning Based on Bezier Curve for Autonomous Ground Vehicles.
In Proceedings of the Advances in Electrical and Electronics Engineering—IAENG Special Edition of
the World Congress on Engineering and Computer Science 2008, WCECS ’08, San Francisco, CA, USA,
22–24 October 2008; pp. 158–166. [CrossRef]

37. Rastelli, J.P.; Lattarulo, R.; Nashashibi, F. Dynamic trajectory generation using continuous-curvature
algorithms for door to door assistance vehicles. In Proceedings of the 2014 IEEE Intelligent Vehicles
Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; pp. 510–515. [CrossRef]

38. Liang, Z.; Zheng, G.; Li, J. Automatic parking path optimization based on Bezier curve fitting. In Proceedings
of the 2012 IEEE International Conference on Automation and Logistics, Zhengzhou, China, 15–17 August
2012; pp. 583–587. [CrossRef]

39. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. SHP: Smooth Hypocycloidal Paths with
Collision-Free and Decoupled Multi-Robot Path Planning. Int. J. Adv. Robot. Syst. 2016, 13, 133. [CrossRef]

40. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Path smoothing extension for various robot path
planners. In Proceedings of the 2016 16th International Conference on Control, Automation and Systems
(ICCAS), Gyeongju, Korea, 16–19 October 2016; pp. 263–268. [CrossRef]

41. Mathematical Interpolation. Wikipedia 2016. Available online: https://en.wikipedia.org/wiki/Interpolation
(accessed on 11 February 2016) .

42. Campana, M.; Lamiraux, F.; Laumond, J.P. A Simple Path Optimization Method for Motion Planning.
Available online: https://hal.archives-ouvertes.fr/hal-01137844v2/document (accessed on 10 October 2019).

43. Park, C.; Pan, J.; Manocha, D. ITOMP: Incremental trajectory optimization for real-time replanning in
dynamic environments. In Proceedings of the 22nd International Conference on Automated Planning and
Scheduling (ICAPS 2012), Sao Paulo, Brazil, 25–29 June 2012; pp. 207–215.

http://dx.doi.org/10.2307/2372560
http://dx.doi.org/10.2140/pjm.1961.11.471
http://dx.doi.org/10.1155/2013/291372
http://dx.doi.org/10.1109/ACC.2014.6859082
http://dx.doi.org/10.1109/IROS.1989.637937
http://dx.doi.org/10.1109/IROS.1991.174451
http://dx.doi.org/10.1109/6979.994793
http://dx.doi.org/10.1109/ICRoM.2016.7886782
http://dx.doi.org/10.1109/CYBER.2014.6917455
http://dx.doi.org/10.1109/WCECS.2008.27
http://dx.doi.org/10.1109/IVS.2014.6856526
http://dx.doi.org/10.1109/ICAL.2012.6308145
http://dx.doi.org/10.5772/63458
http://dx.doi.org/10.1109/ICCAS.2016.7832330
https://en.wikipedia.org/wiki/Interpolation
https://hal.archives-ouvertes.fr/hal-01137844v2/document

Sensors 2019, 19, 4384 36 of 37

44. Garber, M.; Lin, M.C. Constraint-Based Motion Planning Using Voronoi Diagrams. In Algorithmic Foundations
of Robotics V; Boissonnat, J.D., Burdick, J., Goldberg, K., Hutchinson, S., Eds.; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 541–558._32. [CrossRef]

45. Richardson, A.; Olson, E. Iterative path optimization for practical robot planning. In Proceedings of
the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA,
25–30 September 2011; pp. 3881–3886. [CrossRef]

46. Zhu, Z.; Schmerling, E.; Pavone, M. A convex optimization approach to smooth trajectories for motion
planning with car-like robots. In Proceedings of the 2015 54th IEEE Conference on Decision and Control
(CDC), Osaka, Japan, 15–18 December 2015; pp. 835–842. [CrossRef]

47. Kogan, D.; Murray, R.M. Optimization-Based Navigation for the DARPA Grand Challenge. In Proceedings
of the 45th IEEE Conference on Decision and Control (CDC) in San Diego, CA, USA, 10–14 December 2006.

48. Roesmann, C.; Feiten, W.; Woesch, T.; Hoffmann, F.; Bertram, T. Trajectory modification considering dynamic
constraints of autonomous robots. In Proceedings of the 7th German Conference on Robotics ROBOTIK
2012, Munich, Germany, 21–22 May 2012; pp. 1–6.

49. Rösmann, C.; Feiten, W.; Wösch, T.; Hoffmann, F.; Bertram, T. Efficient trajectory optimization using
a sparse model. In Proceedings of the 2013 European Conference on Mobile Robots, Barcelona, Spain,
25–27 September 2013; pp. 138–143. [CrossRef]

50. Rösmann, C.; Hoffmann, F.; Bertram, T. Planning of multiple robot trajectories in distinctive topologies.
In Proceedings of the 2015 European Conference on Mobile Robots (ECMR), Lincoln, UK, 2–4 September
2015; pp. 1–6. [CrossRef]

51. Rösmann, C.; Hoffmann, F.; Bertram, T. Kinodynamic trajectory optimization and control for car-like robots.
In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 5681–5686. [CrossRef]

52. Ravankar, A.; Ravankar, A.A.; Hoshino, Y.; Emaru, T.; Kobayashi, Y. On a Hopping-points SVD and Hough
Transform Based Line Detection Algorithm for Robot Localization and Mapping. Int. J. Adv. Robot. Syst.
2016, 13, 98. [CrossRef]

53. Ravankar, A.A.; Hoshino, Y.; Ravankar, A.; Jixin, L.; Emaru, T.; Kobayashi, Y. Algorithms and a Framework
for Indoor Robot Mapping in a Noisy Environment Using Clustering in Spatial and Hough Domains. Int. J.
Adv. Robot. Syst. 2015, 12, 27. [CrossRef]

54. Ravankar, A.A.; Ravankar, A.; Emaru, T.; Kobayashi, Y. A hybrid topological mapping and navigation
method for large area robot mapping. In Proceedings of the 2017 56th Annual Conference of the Society of
Instrument and Control Engineers of Japan (SICE), Kanazawa, Japan, 19–22 September 2017; pp. 1104–1107.
[CrossRef]

55. Mullane, J.; Vo, B.N.; Adams, M.D.; Vo, B.T. A Random-Finite-Set Approach to Bayesian SLAM. IEEE Trans.
Robot. 2011, 27, 268–282. [CrossRef]

56. Huh, U.Y.; Chang, S.R. A G2 Continuous Path-Smoothing Algorithm Using Modified Quadratic Polynomial
Interpolation. Int. J. Adv. Robot Syst. 2013, 11:25., doi:10.5772/59463. [CrossRef]

57. Waring, E. Problems concerning Interpolations. Philoshopical Trans. R. Soc. 1779, 69, 59–67. [CrossRef]
58. Waring, E. Problems concerning Interpolations; The Royal Society Publishing: London, UK, 2015. Available

online: http://rstl.royalsocietypublishing.org/content/69/59.full.pdf+html (accessed on 15 January 2016).
59. Song, B.; Tian, G.; Zhou, F. A comparison study on path smoothing algorithms for laser robot navigated

mobile robot path planning in intelligent space. J. Inf. Comput. Sci. 2010, 7, 2943–2950.
60. Takahashi, A.; Hongo, T.; Ninomiya, Y.; Sugimoto, G. Local Path Planning and Motion Control for Agv in

Positioning. In Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems
’89, The Autonomous Mobile Robots and Its Applications (IROS ’89), Tsukuba, Japan, 4–6 September 1989;
pp. 392–397. [CrossRef]

61. Pioneer P3-DX. Pioneer P3-DX Robot. 2019. Available online: www.mobilerobots.com/Libraries/
Downloads/Pioneer3DX-P3DX-RevA.sflb.ashx (accessed on 2 May 2019).

62. TurtleBot 2. TurtleBot 2 Robot. 2019. Available online: http://turtlebot.com/ (accessed on 2 May 2019).
63. Wikipedia. Microsoft Kinect. 2019. Available online: https://en.wikipedia.org/wiki/Kinect (accessed on

2 May 2019).

http://dx.doi.org/10.1007/978-3-540-45058-0_32
http://dx.doi.org/10.1109/IROS.2011.6094881
http://dx.doi.org/10.1109/CDC.2015.7402333
http://dx.doi.org/10.1109/ECMR.2013.6698833
http://dx.doi.org/10.1109/ECMR.2015.7324179
http://dx.doi.org/10.1109/IROS.2017.8206458
http://dx.doi.org/10.5772/63540
http://dx.doi.org/10.5772/59992
http://dx.doi.org/10.23919/SICE.2017.8105770
http://dx.doi.org/10.1109/TRO.2010.2101370
http://dx.doi.org/10.5772/57340
http://dx.doi.org/10.1098/rstl.1779.0008
http://rstl.royalsocietypublishing.org/content/69/59.full.pdf+html
http://dx.doi.org/10.1109/IROS.1989.637936
www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-P3DX-RevA.sflb.ashx
www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-P3DX-RevA.sflb.ashx
http://turtlebot.com/
https://en.wikipedia.org/wiki/Kinect

Sensors 2019, 19, 4384 37 of 37

64. UHG-08LX Technical Specifications. UHG-08LX Technical Specifications. 2018. Available online: https:
//autonomoustuff.com/product/hokuyo-uhg-08lx/ (accessed on 2 May 2018).

65. Quigley, M.; Conley, K.; Gerkey, B.P.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An Open-Source
Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan,
17 May 2009.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://autonomoustuff.com/product/hokuyo-uhg-08lx/
https://autonomoustuff.com/product/hokuyo-uhg-08lx/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Induced Tangential Curves: 2D Path Smoothing Case
	Accelerating ITC Path Smoothing Algorithm
	Accelerating the Diffusion Algorithm
	Accelerating the Minimum Distance Calculation

	Robot's Proximity from Obstacles on the Smooth Path
	Induced Tangential Curves: 3D Path Smoothing Case
	Experiments and Results
	Results of 2D Path Smoothing
	Results of 3D Path Smoothing
	Comparison with Other Works
	Generation of Smooth Paths with Variable Curvature
	Results of Smoothing in Real Environment with Actual Robots
	Non-Smoothed Collision Avoidance and Navigation (Real Environment with Actual Robots)
	Smoothed Collision Avoidance and Navigation (Real Environment with Actual Robots)

	Effect of on a Smooth Trajectory
	Effect of on Smooth Trajectory

	ITC as a Path Smoothing Extension
	Conclusions
	References

