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Abstract: This paper presents a traversability assessment method and a trajectory planning method.
They are key features for the navigation of an unmanned ground vehicle (UGV) in a non-planar
environment. In this work, a 3D light detection and ranging (LiDAR) sensor is used to obtain the
geometric information about a rough terrain surface. For a given SE(2) pose of the vehicle and a
specific vehicle model, the SE(3) pose of the vehicle is estimated based on LiDAR points, and then
a traversability is computed. The traversability tells the vehicle the effects of its interaction with
the rough terrain. Note that the traversability is computed on demand during trajectory planning,
so there is not any explicit terrain discretization. The proposed trajectory planner finds an initial path
through the non-holonomic A*, which is a modified form of the conventional A* planner. A path
is a sequence of poses without timestamps. Then, the initial path is optimized in terms of the
traversability, using the method of Lagrange multipliers. The optimization accounts for the model of
the vehicle’s suspension system. Therefore, the optimized trajectory is dynamically feasible, and the
trajectory tracking error is small. The proposed methods were tested in both the simulation and the
real-world experiments. The simulation experiments were conducted in a simulator called Gazebo,
which uses a physics engine to compute the vehicle motion. The experiments were conducted in
various non-planar experiments. The results indicate that the proposed methods could accurately
estimate the SE(3) pose of the vehicle. Besides, the trajectory cost of the proposed planner was lower
than the trajectory costs of other state-of-the-art trajectory planners.

Keywords: autonomous navigation; mobile robot; unmanned ground vehicle; light detection and
ranging sensor; rough terrain

1. Introduction

Recently, ground mobile robots with different functions start to play essential roles in people’s
daily life. In particular, autonomous navigation in a non-planar environment is an important function.
It enables competent operations of a ground mobile robot in many challenging applications, such as
surveillance, rescue, and planet exploration. In this search field, two basic and critical problems need
to be addressed: traversability assessment and trajectory planning. On the one hand, the traversability
tells a robot the effects of its interaction with a rough terrain surface. The terrain information is obtained
using a 3D light detection and ranging (LiDAR) sensor and/or a visual sensor. On the other hand,
a trajectory planner utilizes a cost function considering the traversability to determine a dynamically
feasible motion trajectory. This trajectory permits a robot to move from an initial pose to a goal pose.
A pose is made up of the position (x, y, z) and the orientation (roll, pitch, yaw) of the robot.
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On an uneven terrain surface, the motion of a ground robot is constrained by the terrain shape.
Conventional trajectory planners that assume the terrain to be flat are not applicable, because the
trajectories generated by them are hard to be tracked or even non-traversable. These trajectories can
cause wheel slip, high roll/pitch angle, and so on. Therefore, it is necessary to quantitatively assess the
utility of passing through an uneven terrain surface, and then generate a trajectory based on the utility.
This utility is called traversability. Planning based on traversability can reduce the trajectory tracking
error in a predictive way at the planning time, which otherwise is reduced using a feedback-based
trajectory tracker at the control time.

Among different types of mobile robots, car-like unmanned ground vehicles (UGVs) are rapidly
gaining popularity from researchers. A car-like vehicle is often equipped with a suspension system,
which is the system of tires, tire air, springs, shock absorbers, and linkages that connects the vehicle to
its wheels and allows relative motion between the two. The suspension system has a significant effect
on the traversability of the vehicle. However, the suspension system was often neglected in previous
work. Therefore, to generate a dynamically feasible trajectory, the proposed approach incorporates the
model of the vehicle’s suspension system.

The purpose of this work is to navigate a car-like UGV safely and efficiently, with a focus on rough
and unstructured terrain. The proposed methods can help an autonomous vehicle to be applied in
many challenge applications. For example, the car-like vehicle may be required to dig a hole or unload
something on a complex terrain surface. Besides, in the application of teleoperations, the proposed
planner can be used to autonomously drive the vehicle to an operator-designated pose. This can
reduce the workload of the operator and the telemetry bandwidth.

In summary, the contributions of this paper and the characteristics of the proposed methods are
shown as follows:

1. The suspension system of the vehicle is used to reduce the pose estimation error and optimize the
trajectory. The optimized trajectory is easy to be tracked by the vehicle in non-planar environments.

2. The traversability is assessed on demand based on original LiDAR points during trajectory
planning, without any kind of explicit terrain surface reconstruction or discretization. This feature
makes the proposed method efficient in terms of computation and storage.

3. The cost function and the node-expansion rule of the conventional A* are modified to obtain a
path satisfying non-holonomic constraints. This path is then optimized by a constraint-aware
optimizer based on a custom cost function. The final trajectory is smoother and more traversable
than those generated by other state-of-the-art methods.

4. The proposed traversability assessor (or trajectory planner) is general and can be used with any
other motion planning method (or traversability assessment method).

The rest of this paper is organized as follows. First, some previous researches about the
traversability assessment and trajectory planning in a non-planar environment are reviewed. Then,
Section 2 introduces the architecture of the proposed methods briefly. Section 3 describes how to
assess the traversability of a ground vehicle based on its suspension system using a 3D LiDAR.
Section 4 introduces how to generate and optimize a vehicle trajectory on rough terrain using the
assessed traversabilities. Section 5 shows and analyzes the results of some simulation and real-world
experiments. Finally, the paper is concluded and a direction for future work is suggested.

1.1. Related Work

The safe and efficient navigation of an unmanned ground vehicle requires the terrain information,
which can be exploited to predict the future pose of the vehicle and assess the traversability. The sensors
used to obtain the terrain information include visual sensors [1–5], LiDARs [6–13], and so on. Visual
sensors can provide various kinds of terrain information, but processing visual data often requires a
long computation time. What is more, the performance of visual sensors may vary with the intensity of
sunlight [14]. The point clouds from LiDARs usually occupy large storage space, but the performance
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of a LiDAR-based terrain mapping approach is often relatively stable [15]. The point clouds or the
visual data can be converted into traversabilities directly, or be converted into a digital elevation map
(DEM) [16] or a 3D grid map [17,18]. A DEM is a 2.5D grid map with each grid value representing
the height information about the terrain surface. It is easy to be implemented but cannot model
overhanging obstacles, such as bridges. Besides, accurately computing the traversability needs a high
resolution DEM, but building and maintaining a high resolution DEM is time-consuming. A 3D grid
map is able to reconstruct an environment and suitable for the navigation in a multi-level building
[19], but it is inefficient in terms of computation and storage. Compared with the existing methods,
the proposed method assesses the vehicle traversability on demand using the original point cloud
from a 3D LiDAR. It does not include complex terrain mapping process, so it is more efficient in terms
of computation and storage.

A traversability assessor provides a mapping from the terrain maps or the sensor data to the
traversabilities. It evaluates the mobility of a ground vehicle. The traversability depends on the
pose of the vehicle and the terrain shape. The approaches that assess the traversability based on the
terrain maps can be classified into appearance-based methods [20], geometry-based methods [21,22],
and learning-based methods [23–25]. The approaches that assess the traversability based on original
sensor data are often free of artificial discretization, which is inherent to DEMs, 3D grid maps, or other
classical terrain models. For instance, Krüsi et al. propose an approach to determine the traversability
of a specific pose without any discretization [26]. This approach can plan a trajectory directly on LiDAR
points. Santamaria-Navarro et al. present a method for the large-scale traversability classification
of point clouds [27]. In this method, the model for the classification of points is learned from
training data using Gaussian processes. However, the existing methods usually ignore the vehicle’s
suspension system.

Once the traversability is known, a trajectory should be generated. In the context of trajectory
planning, researchers have paid much attention to the generation of a collision-free trajectory
assuming flat terrain. Common trajectory planning techniques include artificial potential field (APF)
methods [28,29], optimization-based methods [30,31], search-based methods [32,33], sampling-based
methods [34,35], and so on. However, in a non-planar environment, more complicated cost functions
and vehicle models must be used. For example, Amar et al. adapt the trajectory to the rough terrain
using the kinematic model of the vehicle [36], and Howard et al. propose to optimize a trajectory by
the model-based simulation of a vehicle on the rough terrain [37]. Recently, the trajectory planning
methods based on machine learning are rapidly gaining popularity, especially the end-to-end learning
methods. The main idea of these methods is to directly learn a mapping from the original sensor data
to a trajectory. Learning-based planners have enabled a long-range autonomous navigation using a
single stereo camera [38] or a LiDAR [39]. In terms of application, much of the work on trajectory
planning in a non-planar environment focused on rovers for planetary exploration [40,41] or military
vehicles [42].

The existing traversability assessors and trajectory planners seldom consider the suspension
model of the vehicle. They usually take the whole vehicle as a rigid body. However, in a non-planar
environment, the traversability of the vehicle largely depends on its suspension system. Therefore,
the proposed methods incorporate the vehicle’s suspension model in traversability assessment and
trajectory planning. This is essential for safe and efficient navigation in a non-planar environment.

2. System Architecture

Figure 1 shows the architecture of the proposed traversability assessor and trajectory planner.
The inputs of the system are a start pose and a goal pose. A non-holonomic A* planner generates
an initial path, which is then optimized by a trajectory optimizer. Formally, a path is defined as the
following mapping: [0, 1] → X , and a trajectory is defined as the following mapping: [0, T] → X
prescribing the evolution of the state of the vehicle in time, where T is the time instant at which the
vehicle reaches the end of the trajectory, and X is the state space of the vehicle. The state of the vehicle
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can be defined as the pose (position and orientation) of the vehicle. The final output of the system is
a solution trajectory. During the generation and the optimization of the trajectory, the traversability
assessor is invoked by both the planner and the optimizer on demand to calculate the traversabilities
at required poses. This calculation is based on a suspension model and the point clouds from a 3D
LiDAR. Note that the traversability assessment is not treated as a separate and upstream process. It is
regarded as an integral part of trajectory planning.

Goal Pose

Start Pose Initial
Path

Final
Trajectory

Non-holonomic
A* Planner

Trajectory
Optimizer

Traversability
Assessor

3D
Point Cloud

Traversability
Value

Traversability
Value

Suspension
Model

Figure 1. The architecture of the proposed traversability assessor and trajectory planner.

3. Traversability Assessment Using LiDAR

In this section, a method will be introduced to assess the traversability of a vehicle using a
3D LiDAR. The traversability depends on the pose of the vehicle, the terrain roughness, and the
height difference. The vehicle pose is estimated based on the point cloud and the suspension system.
The overview of this section is shown in Figure 2.

SE(2)
Vehicle Pose

3D
Point Cloud

SE(3)
Vehicle Pose

Traversability
Value

Pose Estimator Traversability Assessor

Suspension
Model

Figure 2. The overview of the traversability assessment approach.

3.1. Light Detection and Ranging

In this work, the 3D LiDAR used to acquire the geometric information of rough terrain is HDL-64E
S2 or HDL-32E developed by Velodyne LiDAR, as shown in Figure 3. The manufactory is located at
Silicon Valley. The specifications of the LiDAR are summarized in Table 1. The output of the 3D LiDAR
is a set of points, called a point cloud. The point cloud is a continuous terrain representation that is
free of any artificial discretization. Hence, It is suitable for accurately computing the traversabilities at
specific vehicle poses. Besides, it is a by-product of the SLAM module, so we do not spend additional
computation time on building and maintaining terrain maps. Next, we will compute the vehicle pose
and the traversability based on the point cloud.

(a) HDL-64E S2 (b) HDL-32E

Figure 3. The 3D light detection and ranging (LiDAR) used in this work.
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Table 1. The specifications of the LiDARs.

Parameter HDL-64E S2 HDL-32E

Distance accuracy <2 cm <2 cm
Measurement range 50 m for pavement and 120 m for cars and foliage 70 m
Vertical field of view +2.0◦ to −24.8◦ +10.7◦ to −30.7◦

Vertical angular resolution 0.4◦ 1.33◦

Horizontal angular resolution 0.09◦ 0.16◦

# Points per second 1,333,000 700,000

3.2. Pose Estimation

A ground vehicle is always constrained to move on the surface of rough terrain, so the height,
roll, and pitch of the vehicle are controlled by the local geometry of the terrain surface and need to be
estimated. Formally, pose estimation can be defined as the following function:

fpe : (P, s) −→ s̃ (1)

where P is a point cloud that is constructed before trajectory planning. s =
[
x y θz

]T ∈ SE(2) is a

query pose, and s̃ =
[

x̃ ỹ z̃ θ̃x θ̃y θ̃z

]T
∈ SE(3) is the estimated pose on the terrain surface. Note

that SE(2) is a state-space whose element is composed of x-coordinate, y-coordinate, and yaw. SE(3)
is a state-space whose element is composed of x-coordinate, y-coordinate, z-coordinate, roll, pitch,
and yaw. In the following, a pose estimation method developed assuming that the vehicle is static.
This approach first calculates a roll and a pitch according to the wheel-terrain interaction, and then
estimates the SE(3) pose of the vehicle based on its suspension system. The proposed pose estimation
method is based on Point Clouds and vehicle Suspension models, so it is called PC-Sus.

3.2.1. Euler Angle Estimation Based on Wheel-Terrain Interaction

First, the position of the vehicle’s wheels on the terrain surface is calculated. For a given query
pose s =

[
x y θz

]T
, the planar coordinates of the right front wheel are calculated as:[

xrf
yrf

]
=

[
cos θz sin θz

− sin θz cos θz

] [
W ′ / 2

L′

]
+

[
x
y

]
, (2)

where W ′ and L′ are the length of the vehicle’s axle and the wheelbase, respectively. Let Prf denote the
following 3D point set:

Prf =

{
p = [x y z]T | (x− xrf)

2 + (y− yrf)
2 <

(
Wtire

2

)2
, p ∈ P

}
, (3)

where Wtire is the width of the vehicle’s tire. Prf is the set of the LiDAR points that are near the contact
area between the vehicle’s tire and the terrain surface. Then, the center of gravity of the points in Prf is
computed as:

paverage =
1
n ∑

p∈Prf

p (4)

where n is the number of points in Prf. Let zrf be the z-coordinate of paverage. Finally, the position of
the right front wheel on the terrain surface can be represented by prf = [xrf yrf zrf]

T. The positions of
the right back wheel, the left front wheel, and the left back wheel are represented by prb, plf, and plb
respectively, which are all computed in a similar way.

In this paper, every three wheel positions are defined as a triple. For a given triple α = [p1 p2 p3]
T

(pi = [xi yi zi]
T), the normal vector of the plane passing through these three points is:
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n (α) = (p2 − p1)× (p3 − p1) =

∣∣∣∣∣∣∣
i j k

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣∣ = ai + bj + ck = [a b c]T , (5)

where i = [1 0 0]T, j = [0 1 0]T, k = [0 0 1]T, a = (y2 − y1)(z3 − z1) − (y3 − y1)(z2 − z1), b =

(z2− z1)(x3− x1)− (z3− z1)(x2− x1), and c = (x2− x1)(y3− y1)− (x3− x1)(y2− y1). Then, the roll
(θx (α)) and the pitch (θy (α)) of the plane that passes through the three points are calculated as:

θx (n(α)) = sgn(b) arccos
c√

b2 + c2
θy (n(α)) = sgn(a) arccos

√
b2 + c2

a2 + b2 + c2 (6)

where sgn is the sign function.
Recall that the wheel positions prf, prb, plf and plb have been computed previously. Let A be a

set of triples: {[prf plf plb]
T , [prf plf prb]

T , [prf plb prb]
T , [plf plb prb]

T}. Then, a roll (θ∗x) and a
pitch (θ∗y ) can be calculated as:

α∗x = arg max
α∈A

|θx (n(α)) | α∗y = arg max
α∈A

|θy (n(α)) |

θ∗x = θx(n(α∗x)) θ∗y = θy(n(α∗y))
(7)

where α∗x and α∗y are the triples that make the roll and the pitch equal to the maximal absolute values,
respectively. θ∗x and θ∗y are the maximal roll and pitch with signs (positive or negative), respectively.
If the vehicle is assumed to be a rigid body without a suspension system, θ∗x and θ∗y will be the roll and
the pitch of the vehicle, respectively.

3.2.2. Pose Estimation Based on Suspension System

Note that θ∗x and θ∗y cannot be used as the roll and the pitch of the vehicle, because the above
calculations do not consider the suspension model of the vehicle. The role of the suspension model is
a theoretical basis used to compute the roll and the pitch. Without the suspension model, the whole
vehicle can only be taken as a rigid body. However, a real vehicle is never a rigid body. Next,
the roll and the pitch will be computed based on the suspension model. During the computation,
an appropriate suspension model will be chosen based on θ∗x to estimate the SE(3) pose (s̃) of the
vehicle.

There are two well known passive suspension models: the half vehicle model and the full vehicle
model, as shown in Figure 4a,b. Formally, the dynamic model of a half vehicle contains four linear
differential equations [43]:

ms ¨̃z/2 = −µf(żsrf − żurf)− µb(żsrb − żurb)− kf(zsrf − zurf)− kb(zsrb − zurb)

Iy
¨̃θy/2 = −µfLf(żsrf − żurf) + µbLb(żsrb − żurb)− kfLf(zsrf − zurf) + kbLb(zsrb − zurb)

muf z̈urf = µf(żsrf − żurf) + kf(zsrf − zurf) + ktf(zrf − zurf)

mub z̈urb = µb(żsrb − żurb) + kb(zsrb − zurb) + ktb(zrb − zurb)

(8)

Note that the half vehicle model assumes that the roll of the vehicle is zero. The dynamic model of a
full vehicle contains seven linear differential equations [44]:
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ms ¨̃z =− µf(żsrf − żurf)− µf(żslf − żulf)− µb(żsrb − żurb)− µb(żslb − żulb)

− kf(zsrf − zurf)− kf(zslf − zulf)− kb(zsrb − zurb)− kb(zslb − zulb)

Ix
¨̃θx =− µfWf(żsrf − żurf) + µfWf(żslf − żulf)− µbWb(żsrb − żurb) + µbWb(żslb − żulb)

− kfWf(zsrf − zurf) + kfWf(zslf − zulf)− kbWb(zsrb − zurb) + kbWb(zslb − zulb)

Iy
¨̃θy =− µfLf(żsrf − żurf)− µfLf(żslf − żulf) + µbLb(żsrb − żurb) + µbLb(żslb − żulb)

− kfLf(zsrf − zurf)− kfLf(zslf − zulf) + kbLb(zsrb − zurb) + kbLb(zslb − zulb)

muf z̈urf = µf(żsrf − żurf) + kf(zsrf − zurf) + ktf(zrf − zurf)

muf z̈ulf = µf(żslf − żulf) + kf(zslf − zulf) + ktf(zlf − zulf)

mub z̈urb = µb(żsrb − żurb) + kb(zsrb − zurb) + ktb(zrb − zurb)

mub z̈ulb = µb(żslb − żulb) + kb(zslb − zulb) + ktb(zlb − zulb)

(9)

where zsrf = Wfθ̃x + Lfθ̃y + z̃, zslf = −Wfθ̃x + Lfθ̃y + z̃, zsrb = Wbθ̃x− Lbθ̃y + z̃, zslb = −Wbθ̃x− Lbθ̃y + z̃,
and zrf, zrb, zlf, zlb are the heights of the vehicle’s wheels on the terrain surface. The definitions of the
constants in Equations (8) and (9) are shown in Table 2. The values of these constants are obtained by
referring to the manufacturer’s specifications of the vehicle.
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Figure 4. The models of vehicle suspension systems.

Table 2. The definitions of the constants used in the vehicle suspension models.

Notation Definition

ms Mass of sprung
muf Mass of front unsprung
mub Mass of back unsprung
Ix Roll axis moment of inertia
Iy Pitch axis moment of inertia
ktf Stiffness of front tire
ktb Stiffness of back tire
kf Front suspension spring stiffness
kb Back suspension spring stiffness
µf Front suspension damping
µb Back suspension damping
Wf Width of front sprung
Wb Width of back sprung
Lf Length between vehicle front axle and center of gravity of sprung
Lb Length between vehicle back axle and center of gravity of sprung
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Note that during the generation of the initial path, the vehicle is assumed to be static and
all the first-order and second-order derivatives in Equations (8) and (9) are equal to zero. Let x =

[z̃ θ̃x θ̃y zurf zulf zurb zulb ]
T denote the state vector and w = [zrf zrb zlf zlb]

T denote the disturbance vector.
Then, Equation (9) can be written as the following state-transition equation: 0 = Ax+Ew, where A and
E are fixed matrices called state-transition matrix and disturbance matrix, respectively. The solution of this
equation is x = −A−1Ew, which can be considered as a mapping ffull : [zrf zrb zlf zlb]

T −→ [z̃ θ̃x θ̃y]T.
For the half vehicle model, the mapping fhalf : [zrf zrb]

T −→ [z̃ θ̃y]T can be obtained in a similar way.
Finally, the SE(3) pose (s̃) of the vehicle is calculated as:

s̃ =
[

x̃ ỹ z̃ θ̃x θ̃y θ̃z

]T
where [x̃ ỹ θ̃z]

T = s = [x y θz]
T

and

{
[z̃ θ̃y]T = fhalf([zrf zrb]

T), θ̃x = θ∗x if |θ∗x | 6 θ+x ,

[z̃ θ̃x θ̃y]T = ffull([zrf zrb zlf zlb]
T) otherwise.

(10)

If the roll is nearly zero, the pitch and the z-coordinate are computed using the half vehicle model.
Otherwise, the SE(3) pose of the vehicle is computed using the full vehicle model. In summary, given
the z-coordinates of the vehicle wheels, the half or full vehicle suspension model will become a linear
system of equations with 4 or 7 unknown variables. Then, the roll and the pitch of the vehicle can be
calculated via solving this linear system of equations.

3.3. Traversability Computation

In addition to the roll and the pitch calculated by Equation (10), terrain roughness is also necessary
in traversability computation. Let Pfoot denote the set of all LiDAR points that are located in the
footprint of the vehicle (Pfoot ⊂ P). Then, the center of gravity (pfoot) of the points in Pfoot and the
associated covariance matrix are calculated as:

pfoot =
1
n ∑

p∈Pfoot

p (11)

cov(pfoot, pfoot) =
1
n ∑

p∈Pfoot

(p− pfoot)(p− pfoot)
T, (12)

where n is the number of points in Pfoot. Figure 5 explains how the terrain roughness is computed.
The terrain roughness (ρ) is defined as the residual of the fitting plane:

√
∑n

j=1 dj, where dj represents

the distance between ith LiDAR point in Pfoot and the fitting plane. Let λmin be the minimum of the
eigenvalues of cov(pfoot, pfoot). Then, the residual of the fitting plane is:

ρ =
√

λmin (13)

height
difference

normal vector

fi#ing plane

LiDAR point

1
d 2
d n

d

Z

g

i
g

Figure 5. How are the terrain roughness and the height difference computed.
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Besides, the height difference need to be computed. As shown in Figure 5, let g denote the grid
in which the point [x̃ ỹ]T located, and let Pg denote the set of all LiDAR points located in g (Pg ⊂ P).
Then, the height of g can be calculated as:

hg =
1
n ∑

p∈Pg

p.z (14)

where p.z is the z-coordinate of p. Let g0, g1, · · · , g7 denote the eight-connected grids of g. Then, the
height difference (hd) is defined as: |hg − hgi |, where i = b[(θ̃z + 22.5) mod 360]/45c (θ̃z ∈ [0, 360)
and i ∈ [0, 7]). The symbols “b c” and “mod” represent the round-down operator and the modulo
operator, respectively. In fact, gi is the grid that is nearest to g in the heading direction of the vehicle.

Finally, the traversability is calculated as:

τ =


0, if |θ̃x| > θ̃xmax or θ̃y < θ̃ymin or θ̃y > θ̃ymax or ρ > ρmax or hd > hdmax

1−
[

wτ1max

(
θ̃y

θ̃ymin
,

θ̃y

θ̃ymax

)
+ wτ2

|θ̃x|
θ̃xmax

+ wτ3

ρ

ρmax
+ wτ4

hd
hdmax

]
, otherwise

(15)

Note that the traversability (Equation (15)) is defined artificially. It is a relative value ranged from
0 to 1. In this work, the definition is that if one of the roll (θ̃x), pitch (θ̃y), terrain roughness (ρ), or height
difference (hd) exceeds the respective limit value, the traversability is 0. Otherwise, the traversability is
the weighted sum of them, normalized by their respective limit values. Note that a vehicle is usually
not front-back symmetrical, so there are two different limit values (θ̃ymin and θ̃ymax) for the pitch.

4. Trajectory Planning

In this section, an initial path will first be generated, which is subject to the non-holonomic
constraints of a car-like vehicle. Then, this path will be converted into a trajectory, which will be
optimized in terms of safety, traversability, time consumption, trajectory smoothness, and so on.
Note that the proposed planner and optimizer are called on demand, so the frequency of planning
and optimization is not fixed. For example, if the solution trajectory is blocked by a new sensed
obstacle, then the planner and optimizer will be called to generate a new trajectory. The overview
of this section is shown in Figure 6. The proposed trajectory planner is based on Terrain Shapes and
vehicle Suspension models, so it is called TS-Sus.

Goal Pose

Start Pose Initial
Path

Path
Features

Predicted
Trajectory

Correction
Vector

+

Non-holonomic
A* Planner

Correction
Generator

Motion Predictor

Feature Extractor

Figure 6. Overview of the trajectory planning approach.

4.1. Non-Holonomic A*

For a given planning query (a start pose and a goal pose in the SE(2) space), an initial path is
first found by a non-holonomic A* planner, which takes into account the non-holonomic constraints,
the proximity to an obstacle, and the traversability. Next, the non-holonomic constraints of a car-like
vehicle will be introduced, and then the node expansion and the cost function of the non-holonomic
A* will be described.



Sensors 2019, 19, 4372 10 of 28

4.1.1. Non-Holonomic Constraints

For a mechanical system, kinematic constraints are described by the relations between the position
and the velocity of the system. The kinematic constraints that cannot be integrated to the form
containing only the position are called non-holonomic constraints. A system subject to non-holonomic
constraints is called a non-holonomic system. A car-like vehicle is a non-holonomic system. It cannot
move sideways, and its turning radius is lower bounded. Formally, the non-holonomic constraints
that a car-like vehicle (shown in Figure 7) satisfies are written as: ẋ

ẏ
θ̇z

 =

 v · sin θz

v · cos θz

(v · tan ψ) / L′

 , (16)

where [x y θz]T is the SE(2) pose of the vehicle, and v is the longitudinal velocity of the vehicle. ψ is
the steering angle, and L′ is the wheelbase.

Driving Wheel

Steering Wheel

Figure 7. A car-like vehicle and its kinematic model.

4.1.2. Node Expansion

In this section, a non-holonomic A* search is performed to find a path satisfying the non-holonomic
constraints. Figure 8 shows the differences between the conventional A* and the non-holonomic A*.
On the one hand, the conventional A* treats a car-like vehicle as a point without orientation and only
visits grid centers, as shown in Figure 8a. As a result, the path generated by the conventional A* is
piecewise-linear, which is a sequence of vehicle positions [xi yi]

T, i = 1, 2, · · · , n (as shown Figure 8b).
On the other hand, the non-holonomic A* considers a car-like vehicle as a vector. The child poses
are generated by assuming some different steering angles and a fixed forward/reverse velocity in
Equation (16). This method associates vehicle poses with grids, so any continuous pose of the vehicle
can be visited. Therefore, the resultant path satisfies the non-holonomic constraints, as shown in
Figure 8b. Mathematically, the path generated by the non-holonomic A* is a sequence of SE(2) poses
si = [xi yi θzi ]

T, i = 1, 2, · · · , n, which can be mapped to SE(3) poses using the pose estimation
method introduced in Section 3.2.

(a) The node mmm
expansion of the m
conventional A*

(b) The node mmm
expansion of the m
non-holonomic A*

(c) The path mmm
generated by the m
conventional A*

(d) The path mmm
generated by the m
non-holonomic A*

Figure 8. The differences between the conventional A* and the non-holonomic A*.
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The shapes of the grids in the conventional A* and the non-holonomic A* are also different.
The conventional A* planner and the non-holonomic A* planner search square-shaped grids and
sector-shaped grids, respectively. The sector-shaped grids can well represent the characteristics of
point cloud data (high resolution for the LiDAR points near the vehicle, and low resolution for the
points that are far from the vehicle).

4.1.3. Cost Function

The order of the node expansions in the non-holonomic A* is partly determined by movement
costs. There are different costs for different types of movements. For example, moving on the uneven
ground leads to a greater cost than moving on flat ground, and the cost of moving reverse is greater
than that of moving forward. In this work, the cost ( fm) of moving from a parent pose (s̃i ∈ SE(3)) to a
child pose (s̃i+1 ∈ SE(3)) is computed as:

fm (s̃i+1, s̃i) = wm1 εreverse
length(s̃i+1, s̃i)

Nm1

+ wm2

εswitch
Nm2

+ wm3

max(0, domax − di+1
o )

Nm3

+ wm4

1− τi+1

Nm4

, di+1
o 6= 0 and τi+1 6= 0 and ‖s̃i+1 − s̃i‖ 6 ξ (17)

where wmi (i = 1, 2, 3, 4) is a weight factor (determined empirically) that indicates the importance
of the respective cost, and Nmi (i = 1, 2, 3, 4) is a normalization factor that is determined as the
largest value of the respective cost. di+1

o is the distance between s̃i+1 and the obstacle nearest to s̃i+1.
domax, called safe distance, is determined according to the vehicle size and the environment. τi+1 is
the traversability of s̃i+1. ξ is the resolution of the path generated by the non-holonomic A* planner.
Besides, εreverse and εswitch are computed as:

εreverse = 1 + δ (1 + sgn(vi+1)) Preverse εswitch = δ (2− |sgn(vi+1)− sgn(vi)|) Pswitch (18)

where

δ(u) =

{
0, u 6= 0

1, u = 0
sgn(v) =


−1, v < 0

0, v = 0

1, v > 0

(19)

and Preverse, Pswitch are the multiplicative penalty applied to driving reverse and the additive penalty
applied to switching direction, respectively. Finally, length(s̃i+1, s̃i) is the length of the path segment
connecting the parent pose (s̃i) and the child pose (s̃i+1). It can be calculated as:

length(s̃i+1, s̃i) =

{
∆θ̃zrturn, ∆θ̃z 6= 0

(∆x̃2 + ∆ỹ2 + ∆z̃2)1/2, ∆θ̃z = 0
(20)

where rturn is the maximal turning radius of the vehicle. ∆x̃ is computed as x̃i+1 − x̃i. ∆ỹ, ∆z̃, and ∆θ̃z

are all computed in a similar way. During the non-holonomic A* search, the cost ( fg, called cost-to-come)
of moving from the start pose (s̃0) to the current pose (s̃i) can be calculated as:

fg (s̃i) = fm (s̃i, s̃i−1) + fg (s̃i−1) = fm (s̃i, s̃i−1) + fm (s̃i−1, s̃i−2) + · · ·+ fm (s̃1, s̃0) . (21)

Note that the pose whose do or τ equals 0 is not considered in Equation (17), because it is the
non-traversable pose that is not expanded by the A* search. The computational complexity of A* is
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well known: O(bd), where b is the branching factor of the A* search tree, and d is the depth of the
goal node.

4.2. Trajectory Optimization

The non-holonomic A* only accounts for the kinematic model of the ground vehicle. However,
the pose of the vehicle is also largely affected by its suspension model in a non-planar environment.
Besides, the initial path produced by the non-holonomic A* is usually not smooth enough and worthy
of further improvement. Next, the features of the initial path will first be extracted and the trajectory
of the vehicle will be predicted. This prediction is based on the extracted features and the suspension
model of the vehicle. Then, the predicted trajectory corresponding to the features will be optimized in
terms of smoothness, traversability, and so on.

4.2.1. Feature Extraction

The initial path is a sequence of SE(3) poses, which is a high-dimensional vector and hard to be
optimized directly. So the features of this path are first extracted to descend its dimension. The feature
vector (u) is defined as:

u = [uT
v uT

_z]
T, uv = [v0 a0 vmax af vf tf]

T and uωz = [ωz(0) ωz(∆t) ωz(2∆t) · · · ωz(tf)]
T (22)

where uv determines the parameters of the trapezoid shown in Figure 9, and uωz determines the
knot-points of the spline curve shown in Figure 10. v0, a0, vmax, af, and vf are the start velocity, the start
acceleration, the maximal velocity (or called the traverse velocity), the terminal acceleration, and the
terminal velocity. ωz(t) is the angular velocity of the vehicle at time instant t.

t

v

0

0
v

f
v

f
t

max
v

f
a

0
a

Figure 9. The trapezoidal profile of the longitudinal velocity.

t0 f
t

z
ω

Δt 2Δt 3Δt

(Δ )
z

ω t
(2Δ )
z

ω t

(3Δ )
z

ω t
f

( )
z

ω t

Figure 10. The spline profile of the angular velocity.

The initial path produced by the non-holonomic A* contains no information about the velocity
and the acceleration of the vehicle, so v0, a0, vmax, af and vf are set manually according to the limitation
of the vehicle. tf is the time spent on moving from the start pose to the goal pose, and it can be
calculated as:

tf =

[
lf +

(vmax − v0)
2

2a0
− (vmax − vf)

2

2af

] /
vmax (23)
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where lf is the length of the initial path. Once uv is known, the mapping from the time instant (t)
to the traveled distance of the vehicle (l) can be obtained via integration. Besides, for a given initial
path, the mapping from l to the yaw of the vehicle (θ̃z) can be obtained via interpolation. Finally, the
mapping from t to θ̃z (t ∈ [0, tf]) can be obtained. Let K be the dimension of uωz and ∆t = tf/(K− 1).
Then, uωz can be calculated approximately using forward differences:

ωz(t) =
dθ̃z

dt
≈ θ̃z(t + e)− θ̃z(t)

e
(24)

4.2.2. Motion Prediction

Before the feature vector is optimized, it should first be mapped to a vehicle trajectory by a motion
prediction method, which contains two steps: motion simulation and pose estimation. Note that
in the motion prediction the vehicle is not assumed to be static. This means that the derivatives in
Equation (9) can be non-zero, so the pose estimation in the motion prediction is different from that in
Section 3.2.

The motion simulation works as follows. Given the SE(3) pose of the vehicle at the current
time instant ti (ti ∈ [0, tf]) and a feature vector (u), Euler’s method is used to calculate the planar
position and the yaw at the next time instant ti+1. This calculation is based on the following vehicle
motion model:

 ˙̃x
˙̃y
˙̃θz

 =


cos θ̃z cos θ̃y cos θ̃z sin θ̃y sin θ̃x − sin θ̃z cos θ̃x 0
sin θ̃z cos θ̃y sin θ̃z sin θ̃y sin θ̃x + cos θ̃z cos θ̃x 0

0 0
cos θ̃x

cos θ̃y


 v

0
ωz

 . (25)

The pose estimation works as follows. Given the planar position and the yaw at ti+1,
Equations (2)–(4) are used to compute the heights of the four vehicle wheels (zrf, zrb, zlf, zlb), which
are the disturbance inputs of the vehicle’s suspension model (shown in Equation (9)). Then, Euler’s
method is used again to compute the height (z̃), the roll (θ̃x), and the pitch (θ̃y) of the vehicle at ti+1
based on Equation (9). A vehicle trajectory, which is a sequence of SE(3) vehicle poses, is generated
when ti is equal to tf. Note that this vehicle trajectory is different from the initial path produced by the
non-holonomic A*. The poses along the trajectory are all time-indexed, and the trajectory is generated
without assuming that the vehicle is static.

4.2.3. Numerical Optimization

To generate an optimal trajectory, the optimizer must adjust the feature vector (u) to satisfy the
constraint: ∆s̃f(u) = s̃f − s̃(tf) = 0, and minimize a cost function ( ft(u)), where s̃f is the goal pose and
s̃(tf) is the terminal pose of the trajectory generated by the motion prediction. This is a constrained
optimization problem, which can be solved using the method of Lagrange multipliers. The basic idea is to
convert a constrained problem into a form such that the derivative test of an unconstrained problem
can be applied. The Lagrange function (L) is written as:

L(u, λ) = ft(u) + λT∆s̃f(u), (26)

where λ is the Lagrange multiplier vector. The necessary conditions for optimality are:

∇u,λL(u, λ) = 0 ⇐⇒


∂L(u, λ)

∂u
=

∂ ft(u)
∂u

+ λT ∂∆s̃f(u)
∂u

= 0T

∂L(u, λ)

∂λ
= ∆s̃f(u) = 0

. (27)
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Equation (27) can be solved using Newton’s method. The feature vector and the Lagrange
multiplier vector are adjusted iteratively until a sufficiently precise value is reached. According to
Newton’s method, a correction vector for u and λ at each iteration of the optimization is computed as:

[
∆u
∆λ

]
= −βH−1J = −β


∂2L(u, λ)

∂u2
∂∆s̃f(u)

∂u

T

∂∆s̃f(u)
∂u

0


−1 

∂L(u, λ)

∂u

T

∆s̃f(u)

 , (28)

where H and J are the Hessian matrix and the Jacobian matrix of the Lagrange function. A step size
scaling factor (β) is used to improve numerical stability. In the implementation, forward differences
are used to estimate the partial derivatives:

∂∆s̃i(u)
∂uj

≈
∆s̃i(u1, u2, · · · , uj + e, · · · , un)− ∆s̃i(u)

e
(29)

∂2L(u)
∂uk∂ul

≈ ∆2L
e2 , ∆2L = L(u1, u2, · · · , uk + e, · · · , ul + e, · · · , un)

− L(u1, u2, · · · , uk + e, · · · , un)

− L(u1, u2, · · · , ul + e, · · · , un) + L(u).

(30)

where ∆s̃i is the ith element of ∆s̃f, and uj is the jth element of u.
Note that the cost function ( ft(u)) used in the trajectory optimization is different from that used

in the non-holonomic A*. The former is used to compute the cost of a trajectory corresponding to u.
The poses along a trajectory are time-indexed, so ft(u) often accounts for more optimization criteria
such as velocity, acceleration and time consumption. Next, the optimization criteria that are considered
by ft(u) will be introduced.

Firstly, the proximity (do) of the trajectory to an obstacle and the traversability (τ) of the trajectory
are included. The cost functions corresponding to them are written as:

fdo(u) := fdo( fmp(u)) = fdo(t) =
1
n

n

∑
i=1

max(0, domax − di
o) fτ(u) =

1
n

n

∑
i=1

1− τi (31)

where fmp: u −→ t is the motion prediction, and t is a vehicle trajectory. n is the number of poses along
t, and the other notations are the same as the notations in Equation (17). For clarity, t will always be
replaced by u in the following definitions of cost functions. That is to say, if a cost is calculated based
on the properties of a vehicle trajectory, the feature vector (u) will always be mapped to a trajectory (t)
based on fmp.

Secondly, the velocity and the acceleration should be bounded from above and below according
to the manufacturer’s specifications of the vehicle. For example, the cost function ( fv) corresponding
to the longitudinal velocity is defined as:

fv(u) =
1
n

n

∑
i=1

max(0, v−lim − vi, vi − v+lim), v−lim < 0 and v+lim > 0, (32)

where vi is the longitudinal velocity of the vehicle when it is at the ith pose along the trajectory. v−lim
and v+lim are the reversing velocity limit and the forward velocity limit of the vehicle, respectively. In a
similar way, the cost functions corresponding to the angular velocity, the longitudinal acceleration and
the angular acceleration of the vehicle are defined as fωz(u), fa(u), and fαz(u), respectively.
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Thirdly, the time consumption (tf) and the length (lf) of the trajectory should also be included.
The cost functions corresponding to them are ftf(u) = tf and flf(u) = lf. lf is computed by Equation (23)
when tf is known. Fourthly, the trajectory should be optimized in terms of smoothness to reduce
unnatural swerves. The cost function ( fσ) corresponding to the trajectory smoothness is defined as:

fσ(u) =
1

n− 2

n−1

∑
i=2

([x̃i+1 ỹi+1 z̃i+1]
T − 2[x̃i ỹi z̃i]

T + [x̃i−1 ỹi−1 z̃i−1]
T)2. (33)

Note that the z-coordinate is also considered in the calculation of the smoothness cost. In this way,
a trajectory that prevents the vehicle from rising and falling frequently can be obtained. Finally, the
total cost function ( ft(u)) is computed as a weighted sum of all the above-mentioned cost functions.

The computational complexity of the trajectory optimization is O(mn), where m is the number
of optimization iteration, and n is the number of poses along the trajectory that is optimized. Recall
that the computational complexity of A* is O(bd), so the computational complexity of the proposed
approach is O(bd + mn).

5. Experimental Results and Discussion

This section provides a precise description of the experimental results and discusses them.
Moreover, the proposed traversability assessor and trajectory planner are analyzed according to
these results. The experiments were conducted in both the simulation and the real world, with the
same set of parameter values. The half and full vehicle suspension models used in experiments are
shown in Figure 4, Equations (8) and (9). The programs of the proposed approaches are executed on a
single core of a 3.2 GHz Intel Core i5-3470 processor.

5.1. Simulation Experiments

In the simulation experiments, virtual terrain surfaces were created using a terrain editor called
EarthSculptor, and the point clouds of these virtual terrain surfaces were generated by a virtual
HDL-64E S2 LiDAR in a simulator called Gazebo, which was run on the Robot Operating System
(ROS). Besides, a virtual vehicle with the samespecifications as our real vehicle (an all-terrain vehicle)
was created in the Gazebo simulator.

Let S denote the following set: {[x y θz]T | x/1 ∈ Z, y/1 ∈ Z, θz/0.1 ∈ Z, x ∈ [0, Wm], y ∈
[0, Lm], θz ∈ [0, 2π)}, where Wm and Lm are the width and the length of a terrain surface (in meters),
respectively. Z is the set of all integers. For each terrain surface in Figure 11, all the query poses
in S were mapped to SE(3) poses using the proposed pose estimation method. Then, to acquire the
ground truths of the vehicle’s height, roll, and pitch, the virtual vehicle was launched at each query
pose in S, and the corresponding SE(3) pose was acquired via the ROS message published by the
Gazebo simulator. Finally, the errors of our pose estimation method (PC-Sus) could be calculated.
Similarly, we computed the errors of a pose estimation method [2] (called DEM-Kin) that is based on
Digital Elevation Maps and vehicle Kinematic models, and another pose estimation method [45] (called
Kin-GP-VE) that is based on Kinematics, Gaussian Processes, and Vehicle Experiences. Table 3 shows
these errors and the improvement in pose estimation using the proposed PC-Sus method. The Root
Mean Squared Errors (RMSEs) in roll and pitch estimation were reduced by approximately 35% and
47% over the Kin-GP-VE method and the DEM-Kin method, respectively.
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(a) (b)

Figure 11. The virtual terrain surfaces used to test the proposed pose estimation method.

Table 3. The errors of the different pose estimation methods.

Terrain Surface Method RMSE of Roll (Rad) RMSE of Pitch (Rad)

DEM-Kin 0.0751 0.0806
Figure 11a Kin-GP-VE 0.0612 0.0654

PC-Sus 0.0389 0.0405

DEM-Kin 0.0921 0.0984
Figure 11b Kin-GP-VE 0.0763 0.0817

PC-Sus 0.0502 0.0535

Improvement over DEM-Kin 46.85% 47.69%
Improvement over Kin-GP-VE 35.33% 36.30%

Let Θ denote the following set: {θz | θz/0.1 ∈ Z, θz ∈ [0, 2π)}. Then, the traversability at [x y]T

can be defined as:

τxy := max
θz∈Θ

τ
(

fpe

(
[x y θz]

T
))

, (34)

where τ is calculated using Equation (15), and fpe is shown in Equation (1). Figure 12 shows the heat
map colored by τxy, which is called traversability map. According to the results, the proposed method
can evaluate the traversabilities of different terrain shapes, such as ramps, pits, and so on. Note that
the traversability maps were constructed only for the purpose of validating the proposed traversability
assessor. The traversability map would not be built in trajectory planning. During the process of
planning, only the traversabilities of the query poses would be computed.

The proposed trajectory planner was tested on different terrain surfaces. Figure 13 shows the
initial paths (red) produced by the non-holonomic A*, the trajectories (green) after optimization, and the
real trajectories (blue) of the virtual vehicle. The blue trajectories were generated by making the virtual
vehicle track the green trajectories. For clarity, all the above trajectories were drawn on the grayscale
traversability maps of the terrain surfaces. Figure 14 shows the z-coordinate, the roll and the pitch
of the vehicle along these paths and trajectories. Table 4 shows the performance comparison of these
paths and trajectories. Note that do is +∞ when there is no obstacle in the environments. According
to the results, the initial paths had many unnatural swerves (according to Figure 13). Although such
paths were drivable, they often led to excessive steering of the vehicle. Compared with the initial paths,
the trajectories after optimization were shorter, smoother and had higher traversabilities (according to
Figure 14 and Table 4). Therefore, the total cost of the trajectory is reduced after the optimization.
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(a) Virtual terrain surface (b) Traversability map colored by τxy

0.0
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0.4

0.6

0.8

1.0

Figure 12. A virtual terrain surface and its traversability map.

(a) Simulation results in a non-planar environment with steep ramps

(b) Simulation results in a non-planar environment with gentle ramps

Figure 13. The initial paths (red), the trajectories (green) after optimization, and the real trajectories
(blue) of the vehicle on the virtual terrain surfaces. For clarity, the trajectories are drawn on the
grayscale traversability maps.
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(f) Pitch

Figure 14. The z-coordinate, the roll and the pitch of the vehicle along the paths and the trajectories.
(a–c) The vehicle state along the trajectories shown in Figure 13a; (d–f) The vehicle state along the
trajectories shown in Figure 13b.

Table 4. The performance comparison of the paths and the trajectories shown in Figure 13. Note that
the real trajectories were often different between different runs, so the data of the real trajectories were
averaged over 50 runs.

Terrain Surface Shown in Figure 13a

Path or Trajectory do (m) τ tf (s) lf (m) Trajectory Smoothness Total Cost

Initial path 6.09 0.9099 207.09 617.48 0.0111 1.0000
Optimized trajectory 6.53 0.9281 200.24 596.23 1.0000 0.2079
Real trajectory 6.45 0.9267 201.33 598.79 0.9822 0.2190

Terrain Surface Shown in Figure 13b

Path or Trajectory do (m) τ tf (s) lf (m) Trajectory Smoothness Total Cost

Initial path 15.44 0.9329 115.03 340.60 0.4484 1.0000
Optimized trajectory 18.08 0.9466 111.71 330.62 1.0000 0.6461
Real trajectory 18.72 0.9465 111.98 331.88 0.9937 0.6526

Furthermore, Figures 15 and 16, and Table 5 compare the proposed trajectory planner (TS-Sus)
with two other state-of-the-art trajectory planners. One [46] (referred to as NoTS) of the two methods
does Not account for the Terrain Shape. The other one [26] (referred to as TS-NoSus) takes the Terrain
Shape into consideration, but it ignores the Suspension system of the vehicle. In the environment
shown in Figure 15a, the TS-NoSus method computed a trajectory that avoided the small terrain
undulations. This trajectory was highly traversable (according Figure 16a–c and Table 5) but not
smooth (according to Table 5). In fact, the all-terrain vehicle could directly pass through the small
terrain undulations without reducing the traversability, due to the shock absorption of its suspension
system. The proposed TS-Sus method accounted for the vehicle suspension in the pose estimation,
so its trajectory only avoided some large undulations and was smoother than that generated by
TS-NoSus.

The terrain undulations become larger in the environments shown in Figure 15b,c and there
were even non-traversable areas (or called obstacles) in the latter environment. The NoTS method,
which did not consider the terrain shape, calculated two nearly “straight” trajectories in these two
environments. However, these trajectory were not really straight and longer than the trajectories
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generated by TS-NoSus and TS-Sus, because the z-coordinate along these “straight” trajectories
changed dramatically (according to Figure 16d,g). Recall that the trajectory smoothness was computed
using Equation (33). Therefore, the trajectories generated by the NoTS method were not smooth in
these two environments. Besides, the TS-Sus trajectories were still shorter and smoother than the
TS-NoSus trajectories in these two environments (according to Table 5). In summary, the costs of
the TS-Sus trajectories were the lowest, and the runtime of TS-Sus was only a little longer than that
of NoTS.

(a) Simulation results in a non-planar environment with small undulations

(b) Simulation results in a non-planar environment with medium undulations

(c) Simulation results in a non-planar environment with large undulations

Figure 15. The trajectories generated by NoTS (red), TS-NoSus (green), and TS-Sus (blue).
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Figure 16. The z-coordinate, the roll and the pitch of the vehicle along the trajectories. (a–c) The vehicle
state along the trajectories shown in Figure 15a; (d–f) The vehicle state along the trajectories shown in
Figure 15b; (g–i) The vehicle state along the trajectories shown in Figure 15c.

Table 5. The performance comparison of the trajectories shown in Figure 15 (averaged over 50 runs).

Terrain Surface Shown in Figure 15a

Method do (m) τ tf (s) lf (m) Trajectory Smoothness Total Cost Runtime (s)

NoTS +∞ 0.9318 114.53 336.08 0.7738 0.3533 3.220
TS-NoSus +∞ 0.9495 121.22 344.15 0.2050 1.0000 4.861
TS-Sus +∞ 0.9497 112.46 332.87 1.0000 0.3299 3.338

Terrain Surface Shown in Figure 15b

Method do (m) τ tf (s) lf (m) Trajectory Smoothness Total Cost Runtime (s)

NoTS +∞ 0.2765 119.81 354.92 0.2714 1.0000 3.385
TS-NoSus +∞ 0.9708 123.82 366.95 0.5066 0.3973 4.217
TS-Sus +∞ 0.9795 117.97 351.42 1.0000 0.2880 3.782

Terrain Surface Shown in Figure 15c

Method do (m) τ tf (s) lf (m) Trajectory Smoothness Total Cost Runtime (s)

NoTS 6.08 0.3461 127.96 379.39 0.2966 1.0000 3.617
TS-NoSus 11.69 0.9317 152.22 452.17 0.7318 0.4407 4.418
TS-Sus 12.82 0.9296 124.65 378.46 1.0000 0.3748 3.730

5.2. Real-World Experiments

In the real-world experiments, the point clouds of real terrain surfaces were generated by a real
HDL-32E LiDAR. An all-terrain vehicle developed by Polaris (shown in Figure 17) was used to test our
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approaches. Besides, an inertial measurement unit (IMU) was combined with the global positioning
system (GPS) to measure the roll and the pitch of the vehicle, which would be used to compute the
errors of different pose estimation methods. The IMU and its specifications are shown in Figure 18 and
Table 6, respectively. The GPS receiver is equipped with NT1065 “Nomada” and bladeRF as the RF
front end. They can simultaneously receive various GNSS satellite signals, including GPS (L1, L2, L3,
L5). The IMU is similar to an odometer, whose error increases as time goes on. This accumulated error
can be decreased using GPS. The IMU can generate continuous measurements and is more robust in
non-planar environments than other odometers. Therefore, the combination of the IMU and the GPS is
suitable for obtaining the ground truths of the vehicle’s roll and pitch.

Figure 17. The vehicle used in experiments on rough terrain.

Figure 18. Inertial Measurement Unit (IMU).

Table 6. The specifications of the IMU.

Measurement Range (Roll, Pitch) Accuracy (Roll, Pitch) Resolution (Roll, Pitch) Bandwidth

−180.0◦ to 180.0◦ < 0.2◦ 0.01◦ 300 Hz

Figure 19a,b show a piece of uneven soil and a piece of rock ground, respectively. The terrain
shape of the latter is more complex than that of the former. The vehicle was driven in the above two
environments, and the SE(3) pose of the vehicle was recorded at a fixed frequency. Then, different pose
estimation algorithms were performed based on the planar positions and the yaws of all the recorded
poses. Table 7 shows the errors of the three different pose estimation methods. Typically, the errors are
larger when the vehicle runs on a more complex terrain surface. The results show that the proposed
method (PC-Sus) outperformed Kin-GP-VE and DEM-Kin (by approximately 36% and 49%).
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(a) Uneven soil (b) Rock ground

Figure 19. Non-planar environments in the real world.

Table 7. The errors of the different pose estimation methods.

Non-Planar Environment Method RMSE of Roll (Rad) RMSE of Pitch (Rad)

DEM-Kin 0.0763 0.0819
Figure 19a Kin-GP-VE 0.0605 0.0640

PC-Sus 0.0343 0.0367

DEM-Kin 0.1104 0.1196
Figure 19b Kin-GP-VE 0.0879 0.0963

PC-Sus 0.0617 0.0662

Improvement over DEM-Kin 49.58% 49.92%
Improvement over Kin-GP-VE 36.56% 36.96%

To analyze the computational complexities of the different stages of the proposed trajectory
planning approach, an experiment comprising 3000 different random planning queries (3000 pairs
of start and goal poses) was conducted. For this experiment, the point clouds of the non-planar
environments shown in Figure 19a,b were used. Each planning query was randomly set in one of
these two environments. The results are shown in Figure 20. In all the three stages, the runtime and its
variance increase approximately proportionally with the length of the planned trajectory. On average,
the non-holonomic A* search is the most computationally expensive.
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Figure 20. The statistic evaluation of the computational complexities.

Next, three different trajectory planning methods (NoTS, TS-NoSus, and the proposed TS-Sus)
were compared in the real-world experiments. Figure 21a shows a piece of soil whose terrain
undulations are small. In this environment, the TS-NoSus method computed a trajectory that avoided
these small terrain undulations. However, the small terrain undulations often have little impact on
the traversability of the vehicle that has a suspension system. Therefore, the propose TS-Sus method
generated a trajectory that only avoided some large undulations. As a result, the traversability of
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the TS-Sus trajectory is nearly the same as that of the TS-NoSus trajectory (according to Figure 22a–c,
and Table 8), but the TS-Sus trajectory is much smoother than the TS-NoSus trajectory (according to
Table 8).

Figure 21b shows a piece of rock ground that has a ramp and many large terrain undulations.
In this environment, the NoTS method computed a trajectory that only avoided the non-traversable
areas (or called obstacles). The roll and the pitch along this trajectory were larger than those
along the trajectories generated by the other two planners (according to Figure 22e,f). As a result,
the traversability of this trajectory was smaller than the traversabilities of the other two trajectories
(according to Table 8). In conclusion, the total costs of the trajectories generated by the proposed
planner were the lowest in the comparative experiments. The runtime of our planner was a little longer
than that of the NoTS planner, because our planner spent more time on processing the information of
terrain shapes.

(a) Comparative experiment results on a uneven soil

(b) Comparative experiment results on a rock ground

Figure 21. The trajectories generated by NoTS (red), TS-NoSus (green), and TS-Sus (blue).
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Figure 22. The z-coordinate, the roll, and the pitch of the vehicle along the paths and the trajectories.
(a–c) The vehicle state along the trajectories shown in Figure 21a; (d–f) The vehicle state along the
trajectories shown in Figure 21b.

Table 8. The performance comparison of the trajectories shown in Figure 21 (averaged over 50 runs).

Non-Planar Environment Shown in Figure 21a

Method do (m) τ tf (s) lf (m) Trajectory Smoothness Total Cost Runtime (s)

NoTS +∞ 0.9046 60.47 178.57 0.9970 0.6944 1.489
TS-NoSus +∞ 0.9185 61.81 183.18 0.4490 1.0000 2.334
TS-Sus +∞ 0.9174 60.04 177.68 1.0000 0.5176 1.519

Non-Planar Environment Shown in Figure 21b

Method do (m) τ tf (s) lf (m) Trajectory Smoothness Total Cost Runtime (s)

NoTS 13.45 0.5165 69.09 196.83 0.9982 1.0000 3.103
TS-NoSus 14.33 0.9155 78.05 222.62 0.8409 0.7358 4.840
TS-Sus 14.51 0.9165 70.54 199.08 1.0000 0.6435 3.174

At last, Figure 23 shows the trajectories (green) after optimization and the real trajectories (blue)
of the vehicle in the real world. The blue trajectories were generated by making the vehicle track the
green trajectories. Table 9 shows the performance comparison of these trajectories. The results show
that there was little difference between the optimized trajectories (green) and the real trajectories (blue).
This implies that the optimized trajectories were easy to be tracked by the vehicle on the real rough
terrain. The reason is that planning based on the traversability can reduce the trajectory tracking error
in a predictive way.
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(a) Real-world experiment results on a uneven soil

(b) Real-world experiment results on a rock ground

Figure 23. The trajectories (green) after optimization and the real trajectories (blue) of the vehicle in the
real world.

Table 9. The performance comparison of the trajectories shown in Figure 23. Note that the real
trajectories were often different between different runs, so the data of the real trajectories were averaged
over 50 runs.

Terrain Surface Shown in Figure 23a

Trajectory do (m) τ tf (s) lf (m) Trajectory Smoothness Total Cost

Optimized trajectory +∞ 0.9165 60.93 180.28 1.0000 0.9797
Real trajectory +∞ 0.9128 61.02 180.65 0.9791 1.0000

Terrain Surface Shown in Figure 23b

Trajectory do (m) τ tf (s) lf (m) Trajectory Smoothness Total Cost

Optimized trajectory 6.44 0.9143 68.04 194.59 1.0000 0.9816
Real trajectory 6.29 0.9085 67.92 194.02 0.9804 1.0000

6. Conclusions

This paper presents a traversability assessment method and a trajectory planning method, which
can be applied to generate a safe and efficient trajectory for a car-like vehicle running on a rough terrain
surface. The proposed suspension-based traversability calculation enables planning dynamically
feasible trajectories on different terrain surfaces. Also, computing the traversability on demand based
on original LiDAR points helps us get rid of the explicit terrain reconstruction or discretization. Besides,
the proposed traversability assessment method (or trajectory planning method) is a general approach
that can be used in any other navigation system of a ground mobile robot.

The proposed method has been tested and analyzed in both the simulation and the real-world
experiments. According to the experimental results, the error of our pose estimation method,
which accounts for the vehicle suspension model, was smaller than the other methods that ignore
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the suspension model. In a non-planar environment with various terrain shapes, the proposed
traversability assessment method was validated by showing a heat map colored by the traversability.
Besides, the different stages of the proposed planner were analyzed in terms of the trajectory costs and
the computational complexities. The results indicate that the optimization based on the suspension
model could make the trajectory smoother and easier to be tracked. Finally, the proposed planner was
compared with some other state-of-the-art planners in various non-planar environments. In these
comparative experiments, the proposed planner showed a better generalization ability to compute
trajectories with lower costs on both simple and complex terrain surfaces.

In the future, the traversability will be calculated based on not only the geometric information but
also the semantic information of rough terrain surfaces. The semantic-based traversability can enable
the trajectory planner to navigate a vehicle more intelligently, which needs techniques to perform the
semantic segmentation of 3D point clouds from laser sensors or images from visual sensors.
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