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Abstract: Methods of point cloud registration based on ICP algorithm are always limited by
convergence rate, which is related to initial guess. A good initial alignment transformation can
sharply reduce convergence time and raise efficiency. In this paper, we propose a global registration
method to estimate the initial alignment transformation based on HEALPix (Hierarchical Equal Area
isoLatitude Pixelation of a sphere), an algorithm for spherical projections. We adopt EGI (Extended
Gaussian Image) method to map the normals of the point cloud and estimate the transformation
with optimized point correspondence. Cross-correlation method is used to search the best alignment
results in consideration of the accuracy and robustness of the algorithm. The efficiency and accuracy
of the proposed algorithm were verified with created model and real data from various sensors in
comparison with similar methods.

Keywords: global registration; 3D alignment; point cloud registration; machining allowance analysis

1. Introduction

A point cloud is a set of data points in space. A 3D point cloud is generally produced by sensors
such as 3D scanner, 3D camera, Light Detection and Ranging equipment (LiDAR) and so on. Although
accuracy and density from the sensors above are different [1], similar analysis methods, such as
conversion to 3D surfaces, alignment and registration, are processing in different fields. 3D point cloud
registration or alignment is a fundamental problem in computer and robotic vision. The main task is
to find the transformation describing rigid motion in SE(3) (Lie group for 3D Rigid transformations)
between two given sets of the same or similar point clouds through the analysis of local or global
feature. This technique is widely applied to object pose estimation [2], simultaneous localization and
mapping (SLAM) [3], medical image processing [4], industrial manufacturing and inspection [5,6],
culture heritage reconstruction [7–9], topography change detection [10], etc. With the development of
3D scanning sensors and reconstruction technology, the accuracy of point cloud data has improved
while the cost of scanning sensor has dropped. The point cloud registration technique is gradually
entering low cost application fields, especially industrial areas. For the production mode of small lots
and multiple categories, it is important to apply industrial robots and other flexible manufacturing
equipments into grinding and polishing in consideration of poor working condition, increasing
human cost and frequent product changes. However, the robot system needs a whole process with
information such as CAD model, machining allowance (MA), tool path planning and process, and
process inspection. Among these processes, 3D point cloud registration technique can be applied to
MA analysis and process inspection. When a workpiece is scanned, point cloud data are acquired to
align with the CAD model. The redundant parts are calculated as machining allowance, which is taken
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as input for tool path planning and process. On the other hand, registration is applied to calculate the
error between workpiece and CAD model in process inspection.

The application mentioned above in industrial field has used coordinate measuring machine
(CMM) to acquire sparse patterns, which are used for localization and MA analysis in early
studies [5,11,12], and even is still the mainstream method today. Nevertheless, the CMM method
is limited by shape of the workpiece. Complex curve surfaces need plenty of time for measuring
and recording or even cannot be dealt with. With the development of laser scanners, stereo cameras
and other same type of sensors, the density of points is sharply increasing, as we call the dataset
“point cloud”. The improved accuracy of points and reconstruction makes it more precise for
registration, but more complex. Researchers have proposed different methods for MA registration
with dense point cloud. Li, X. et al. [13] introduced a novel two-step rough–precise automatic method.
A PCA-based (principal component analysis) rough alignment algorithm is utilized with the precise
registration method, which only considers plane feature matching. Wang, H. et al. [14] introduced a
heuristic algorithm into PCA/ICP registration method with multi-objective optimization considering
envelopment, wall thickness and plane alignment. Sun, Y. et al. [15] combined the multipliers
method and the BFGS algorithm to handle many constraints. The objective function is driven by
Euclidean oriented distance with the assumption of a small initial rigid transformation and only
envelopment constraint is considered. Whatever the optimization constraints, the methods above have
been processed by two steps, rough alignment and optimal registration. Since dense point cloud data
are acquired, Sac-IA [16], PCA [17–19], 3D-NDT [20] and EGI-based alignment algorithms [21–25] are
common methods for rough alignment in different applications. Optimal registration methods are
always based on ICP algorithm with different process requirements. Generally, the optimal registration
algorithms mentioned above are all local methods, which could be trapped into local minima easily [26].
Thus, a good initial transformation could accelerate the convergence and improve accuracy of the
optimization method significantly.

We propose a fast global registration method based on EGI mapping to resolve the contradiction
between efficiency and accuracy of dense point cloud registration. The main algorithm includes
several steps: (1) equal-area pixelization; (2) EGI mapping; (3) point correspondence searching;
(4) transformation estimating; and (5) correlation optimization. The point correspondence searching
and correlation optimization could achieve a high accuracy within several iterations in our experiments.
The proposed method was compared with other initial alignment registration methods, such as Sac-IA,
PCA, 3D-NDT and EGI-based methods. Several contributions are made in this paper: First, a new
division method is suggested to improve the division efficiency. Second, a point corresponding
optimization is proposed to improve the accuracy. Finally, the application of the algorithm to MA
analysis is presented.

The rest of the paper is organized as follows: First, the related works on other initial alignment
registration methods are introduced in Section 2. The problem is expressed in Section 3. The main
strategy, HEALPix-IA Algorithm, is discussed in Section 4. In Section 5, experiments are presented
to demonstrate the advantages of this algorithm over other rough registration methods. Section 6
concludes the paper.

2. Related Works

Various rough registration methods are suggested for initial alignment to solve the local minima
problem within a couple of seconds or even more quickly.

PCA-based algorithm can perform object alignment in real-time and without constraints on
the three registration parameters (i.e., translation, rotation, and scaling). Principal Components
Analysis (PCA) computes the mutually orthogonal directions of maximum variance in a collection
of d-dimensional data and measures the global features by eigenvalues. It is widely used for image
registration [27,28] and 3D alignment [17–19]. However, PCA-based methods are sensitive to noise [29],
which limits accuracy.
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The Sample Consensus-Initial Alignment (SAC-IA) algorithm was introduced by
Rusu et al. [16,30], using 16-dimensional point feature histograms (FPFH) that describe the
local surface structure. FPFH gives a good discriminative power for point correspondence search.
Nevertheless, the robustness to outliers, invariance to pose, sampling density and measurement noise
are not mentioned and the extensive computational steps result in time-consuming process.

Another 3D point set registration algorithm is the normal distributions transform (NDT) [20] that
represents the underlying scene geometry as a Gaussian probability distribution. 3D-NDT method
generates disjoint voxels in space and represents points within the voxels as a probability density
function (PDF). Its benefit is to give piece-wise smooth spatial representations; however, the division
results in discontinuities in the cost function that could be trapped in local minima [31].

EGI-based algorithms are another branch of 3D point registration, which describes the global
features by Extended Gaussian Images (EGI) of laser scan. The intensity image mapping from
normals is invariant to translation, thus such algorithms have the advantage that pose parameters
can be recovered in two separate steps. Latitude and longitude tessellation [21], regular polyhedron
tessellation [22], and other complex EGI division methods [23–25] have been suggested to raise the
accuracy. A voting/correlation procedure, such as spherical correlation, cross correlation and kernel
correlation [32] is generated to search the best alignment. However, the accuracy and efficiency of
these algorithms are limited by the division method [33] and it is not sensitive to constant EGI (such as
a sphere) [34].

In this paper, an EGI-based registration algorithm is introduced with new division method, which
is equal area pixelization. We suggest a special procedure for point correspondence optimization
to reduce the error introduced by low level division method. In addition, several conditions are
configured to avoid the mismatch caused by constant EGI.

3. Problem Formulation

In the standard point-to-point ICP algorithm, registration problem is defined with two 3D
point-sets X = {xi}, i = 1, ..., N and Y = {yj}, j = 1, ..., M, where xi, yi ∈ R are point coordinates.
We call X model point cloud and Y data. The registration problem is to estimate a rigid motion
transformation with translation t ∈ R3 and rotation R ∈ SO(3) (Lie group for 3D rotations), which
minimizes the error E:

E(R, t) =
N

∑
i=1

ei(R, t)2 =
N

∑
i=1
‖ Rxi + t− yj∗ ‖2, (1)

where ei(R, t)2 is the per-point residual error for xi, and ‖ · ‖ denotes the Euclidean norm. Given r
and t, the point yj∗ ∈ Y is denoted as the optimal correspondence of xi, which is the closest point to
the transformed xi in Y , i.e.,

j∗ = arg min
j∈{1,...,M}

‖ Rxi + t− yj∗ ‖ . (2)

According to ICP algorithm, two prominent cost functions are used to measure “resemblance”:
Hausdorff distance and root mean square distances (RMS) [32]. In this paper, we discuss the
registration application that data and model are not totally resembled because of machining allowance.
Hausdorff distance shows the measure of maximal error and RMS, which is more suitable for the
“under-resembled” registration problem, shows the average measure. We used the notation

RMS(R, t) =
1
N

N

∑
i=1
‖ Rxi + t− yj∗ ‖2=

1
N

E(R, t), (3)

for the evaluation of various methods in experiments.
In this paper we also define the registration problem with X , Y , R and t. The proposed method is

applied to the rough alignment stage of the whole registration process, so that global measure is selected
in consideration of convergence region, noise sensitivity and robustness. The histogram is brought in
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as a global feature notation to simplify the local features of the point set, as the notation H(X ) denotes
the feature histogram of data point cloud. As correlation-based method is demonstrated to outperform
ICP algorithm [32], we defined the objective function to minimize the following cost function,

COST (X ,Y , R, t) = −Corr(H(X ), H(T(Y , R, t)), (4)

where Corr(·) is the correlation function. Since two point clouds are resembled, t is the difference of
the centroids, which are easily calculated with the coordinates of the points. Ignoring the slight error
of t, the problem is transformed into solving the value of R.

4. HEALPix-IA Algorithm

We call the algorithm HEALPix-IA because it is an initial alignment method based on HEALPix.
To minimize the cost function in Equation (4), several steps need to be followed in order. In this
section, HEALPix is introduced to reduce the dimensions by mapping the local features to 2-sphere
first. After getting the histogram, corresponding points are estimated and optimized. The rotation can
be estimated with the corresponding points and optimized with the correlation function.

4.1. Pixelization, Projection and Indexing

HEALPix (Hierarchical Equal Area isoLatitude Pixelization of a 2-sphere) is an algorithm for
pixelization of the 2-sphere, and the associated class of map projections [35].

It was first used for satellite missions to measure the cosmic microwave background anisotropy.
The HEALPix map was created for the construction of full-sky maps of the microwave sky at an angular
resolution of a few arcminutes. The sphere is hierarchically tessellated into curvilinear quadrilaterals.
The lowest resolution partition is comprised of 12 base pixels. Resolution of the tessellation increases by
division of each pixel into four new ones. Figure 1 illustrates (clockwise from upper-left to bottom-left)
the resolution increase by three steps from the base level (i.e., the sphere is partitioned, respectively,
into 12, 48, 192, and 768 pixels). We use the notation

m = 12× 4n−1, n = 1, 2, 3, ..., (5)

where m denotes the number of the pixel under nth level of the division.

Figure 1. HEALPix: The resolution increase by three steps from the base level (the figure is cited from
https://healpix.jpl.nasa.gov/).

https://healpix.jpl.nasa.gov/
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The scheme has three advantages for our method: (1) Equal-area mapping can reduce the normal
feature error generated in different posture (SO(3)). (2) Areas of all pixels at a given resolution are
identical. (3) It has a less complexity computation of integrals over individual spherical harmonics.
This gives a strong base for high speed performance of the proposed algorithm.

For the point sets data and model, let the scale be equalled by voxel filter to simplify the projection.
In consideration of the efficiency and accuracy, let n = 5 and the tessellation be divided into 3072 grids.
As we obtain the EGI or normal sphere (NS) of the point cloud, it can be projected to HEALPix
sphere (HS). The HealpixLib is utilized to generate sampling points and convert them from Spherical
Coordination to Cartesian Coordination. The projection is equivalent to finding the nearest sample
point of the normal vector using k-nearest neighbors algorithm. Thus, the projection from a single
normal to the corresponding Healpix sample point is defined as

Px = P(Ns). (6)

In this paper, we give hierarchic projection method to accelerate accessing data, which is different
from other EGI methods. Let n = 1 in Equation (5); we call the 12 pixels basic girds. In every basic grid,
there are 256 subdivided grids. Here, we create the index using the notation

HS = {HS
1 , ..., HS

i , ..., HS
12},HT = {HT

1 , ..., HT
i , ..., HS

12}, (7)

where HS
i and HT

i are the histograms of the 12 basic grids. Each histogram has 256 values, which
stand for the intensity of subdivided grids. The mapping relation from the normals to histogram is
defined as

Hx = H(Ns), (8)

where Ns denotes a group normals and Hx denotes the intensive histogram of the corresponding
Healpix grids.

4.2. Point Correspondence Searching

Corresponding points are used to estimate the rotation. Generally, we use the peaks in the
histogram to estimate at least two corresponding points. However, two situations would make this
method fail. One is the histogram is relatively even in some range. The other is the two corresponding
points are opposite (nearly 180 degree) in EGI. To tackle this problem, we use a relative feature instead
of the absolute coordinate of the corresponding points.

First, finding the maximal grid in HS
i and HT

i , we get

PS = {PS
1 , ..., PS

i , ..., PS
12}, and PT = {PT

1 , ..., PT
i , ..., PS

12}, (9)

where PS
i and PT

i are the indices of the maximal intensity and sorted in intensity descending order.
Then, we let the center point of the sphere be the origin and get the vectors VS

i , VS
j , VT

i and VT
j point

to the sample point of PS
i , PS

j , PT
i and PT

j , where PS
j and PT

j are the indices of the maximal intensity in

HS
j and HT

j . For PS
i , PS

j must meet the condition

arccos(VS
i , VS

j ) < 0.94, i < j 6 12, (10)

or PS
j is excluded. The parameter 0.94 is an empirical value less than 1, as the two vectors are not

absolutely coincident. The same condition is met with VT
i and VT

j . Distance between the rest grids is
calculated and denote as

DS = {dS
ij | PS

i , PS
j ∈ PS}, and DT = {dT

ij | PT
i , PT

j ∈ PT}, (11)
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where dS
ij and dT

mn are the distance between each two rest grids. If ∃i, j, let

ε =| dS
ij − dT

ij |< 0.05, (12)

then subdivided grids PS
i and PS

j can be aligned with PT
i and PT

j initially. The error 0.05 is an empirical
value according to the difference and accuracy of the two data.

4.3. Point Correspondence Optimization

The Healpix method is limited by its accuracy for the pixelization. Although the sphere is divided
into over 3000 grids, there is still intolerable error up to four degrees. To improve the corresponding
point alignment accuracy, we optimize the method to calculate the peak of the intensive region in
geometry instead of the sample points of Healpix grids.

In the last subsection, the two pairs of corresponding points are PS
1 , PS

2 , PT
1 and PT

2 . The normal set
is defined as

Np = {Nq | P(Nq) ∈ {P0, ..., Pn}} (13)

where Pn are the n neighbours of the subdivided Healpix grid P0. P0 is one of the corresponding points
mentioned above. Then, a plane A is created through the origin of the Healpix sphere, perpendicular
to the normal vector of P0. The projection of Np is defined on the plane A, as N′p ∈ R2. In this optimal
method, the intensity peak in plane A is searched by KD-tree using a circle with fixed radius, which is
denoted as

r =
max ‖ xi − xj ‖

τ
, (14)

where τ is the parameter to control radius, and numerator is the range of the normals in x axis. In the
range of radius r, we mesh the region with grid in fixed step, and search for the maximum intensity
grid with KD-tree method. Assuming (xp, yp) is the peak point, it is projected back to Healpix sphere,
denoted as P′0, which is the modified corresponding point. Thus, we modify the corresponding points
as PS

1
′, PS

2
′, PT

1
′ and PT

2
′. Algorithm 1 describes how to estimate and optimize the corresponding points.

4.4. Rotation Estimation

To align two EGIs, we assume that the origins coincide, so that only two rotation angles are
needed for entire alignment. Defining the normal vectors of the corresponding points VS

i
′, and VT

i
′,

the rotation vector is

Vi =
VT

i
′ ×VS

i
′

‖ VT
i
′ ×VS

i
′ ‖

, (15)

and rotation angle is

θi =
arccos(VT

i
′ ×VS

i
′
)

‖ VT
i
′ ‖ · ‖ VS

i
′ ‖

. (16)

According to Rodrigues’ rotation formula, the rotation matrix is

Ri = cos(θi)I + (1− cos(θi))ViVH
i + sin(θi)

 0 −Viz Viz
Viz 0 −Vix
−Viy Vix 0,

 (17)

where I is identity matrix, VH
i is the transposed matrix, and Vix, Viy, and Viz are the components of Vi.

Then, we calculate the final rotation matrix with Equation (17),

R = R1 · R2. (18)
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Algorithm 1: Estimate and optimize the corresponding points.
input : Model S and Data T with normals of size N × 6 (N is the scale of Model/Data)
output : 2 pairs of corresponding points PS

1
′, PS

2
′, PT

1
′ and PT

2
′

1 extract normals NS and NT from S and T;
2 HS ← H(NS); HT ← H(NT); // see Equations (7) & (8)
3 for i← 1 to 12 do
4 HS(i), IS(i)← max(HS

i ); // maximum intensity and the index
5 HT(i), IT(i)← max(HT

i );
6 NS(i)← IS(i); NT(i)← IT(i); // normals of the max
7 PS

i ← P(NS(i)); PT
i ← P(NT(i)); // see Equation (6)

8 construct Struct Q(i) = {H(i), I(i), Pi};
9 end for

10 QS ← sortrows(HS); QT ← sortrows(HT); // descending sort
11 i = 2;
12 PS

temp = PS
2 ;

13 while arccos(VS
i , VS

temp) > 0.94 do // see Equation (10)
14 PS

temp = PS
i+1;

15 i← i + 1;
16 end while
17 PS

2 = PS
temp;

18 for i← 2 to 12 do
19 PT

temp = PT
i ;

20 if | dS
1temp − dT

1temp |< 0.05 then // see Equation (12)

21 PT
2 = PT

temp;

22 break;
23 end if
24 end for
25 let n = 4 then calculate NS

1 ,NS
2 ,NT

1 ,NT
2 ; // see Equation 13

26 [a, b, c] = VS
1 ;

27 create e1 = (1, 1,− a+b
c ) in plane A then e2 = e1 ×VS

1 ;

28 NS
1
′
= ([ei; e2] · (NS

1 )
T)T ; // project normals to A

29 calculate rS
1 ; // see Equation (14)

30 mesh rS
1 × rS

1 region into 100 grids;
31 search (xp, yp) with the peak intensity in meshed grids;

32 calculate inverse projection point PS
1
′;

33 calculate PS
2
′, PT

1
′, PT

2
′;

4.5. Correlation Searching

According to Equation (4), cost function is employed to maximize the correlation of the model and
transformed data. In this method, we use cross correlation method and simply define the correlation
function as

Corr =
〈HS, HT〉

‖ HS ‖ · ‖ HT ‖
. (19)

When Corr → 1, the model and transformed data are most correlative. Iterative search is carried
out with halt conditions in this method. Moreover, parameter correlation and iteration are recommended
as 0.98 and 50.
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In the process of the optimizing search, random rotation angle θ is given in rotation matrix form

Trand = Rω(θ)Rφ(θ)Rκ(θ), (20)

where ω, φ, κ ∈ (−π, π). The basic rotations follow the right-hand rule. Algorithm 2 describes the
search strategy of transformation estimation.

Algorithm 2: Optimal transformation search.
input : Model S and Data T with normals of size N × 6 (N is the scale of Model/Data)
output : transformation T, correlation corr, iteration iter

1 initialize iter = 0; stall = 0; corr = 0; T = eye(3);
2 extract normals NS and NT from S and T;
3 HS ← H(NS); // see Equation (8)
4 while corr < 0.98 and iter < 50 do
5 estimate initial transformation Ttemp with Equations (15)∼(18);
6 HT ← H((Ttemp · (NT)

T)T);
7 calculate corrtemp; // see Equation (19)
8 stall ← stall + 1;
9 if corr < corrtemp then

10 if corrtemp > corr× 1.005 then
11 stall ← stall − 1;
12 end if
13 corr ← corrtemp;
14 T ← Ttemp · T;
15 NT ← (Ttemp · (NT)

T)T ;
16 end if
17 if stall > 3 and corrtemp < 0.98 then
18 T ← Trand · T; // see Equation (20)
19 NT ← (Trand · (NT)

T)T ;
20 stall ← 0;
21 end if
22 iter ← iter + 1;
23 end while

5. Results and Evaluation

The proposed algorithm was verified with both model simulation and real data. It was compared
with other EGI-based methods and other sophisticated rough registration algorithms.

5.1. Simulation

Three tests were carried out in simulation. The test method was self-registration with random
rotations. Different division methods and point correspondence optimization were verified in the first
test. The performance of the proposed algorithm was compared with other rough registration methods
in the second test. How different features affect on the method was tested in the end. The four CAD
models shown in Figure 2 were prepared to test HEALPix-IA algorithm. They were all casting parts
that need grinding after molding.
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Figure 2. CAD models for HEALPix-IA tests.

5.1.1. Compared with EGI-Based Methods

In the proposed algorithm, new division method and point correspondence method are suggested.
To measure the effectivity of the algorithm, root mean square distances (RMS) and running time
are two key evaluation criteria. We used several different types of models to test the registration
results with two EGI-based algorithms. Latitude and longitude tessellation (Lati-Longi, in Ameesh’s
algorithm [21]) and regular polyhedron tessellation (Reg-Poly, in Christoph’s algorithm [22]) were
both tested in this experiment. In addition, point correspondence optimization (PC-Opt) was also
separated. Six trials included HEALPix tessellation, Lati-Longi tessellation, Reg-Poly tessellation,
HEALPix-IA, and Lati-Longi, respectively, with point correspondence optimization and Reg-Poly
with point correspondence optimization, carried out with two models and 50 samples. The results are
shown in Figure 3, where RMS and running time are both in logarithm. The tests were configured
with the same halt conditions: 0.02 correlation value and 50 iterations.

Figure 3. The results of different EGI-based methods for HEALPix-IA tests.

The two selected models were water turbine blade and casting parts 2 with typical features
friendly to EGI-based methods. The first three groups without PC-Opt in the boxplot show HEALPix
division method won in both RMS and running time, while the three groups with PC-Opt performed
more distinctly. The comparison between each division method with or without PC-Opt showed that
PC-Opt gave better performance for HEALPix and Lati-Longi. HEALPix and Lati-Longi overwhelmed
Reg-Poly in running time because the letter one uses an iteration division method that costs time for
every generation. Furthermore, the higher level the sphere is divided, the more time is cost. This is the
main limit of the regular polyhedron tessellation. The methods with PC-Opt ran more accurately than
the ones with only divide tessellations. With the same RMS for two methods with PC-Opt, the running
time of the proposed algorithm had an advantage over other methods.
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5.1.2. Compared with Other Rough Registration Methods

With PCL library, PCA, 3D-NDT, and Sac-IA were applied, respectively, on the registration tasks
of four CAD models together with HEALPix-IA (C + + ). One hundred trials were carried out for each
model. The results are shown in Figures 4 and 5. The RMS values are shown in logarithm.

Figure 4. RMS results in logarithm of four rough registration methods contrast tests.

Figure 5. Running time results of four rough registration methods contrast tests.

From the boxplot, we can see HEALPix-IA performed the best in both accuracy and efficiency
and PCA performed the worst. For accuracy, HEALPix-IA and Sac-IA obtained about the same
RMS; however, Sac-IA had a more stable performance because it had over 1000 searching iterations,
which resulted in long running time. In addition, HEALPix-IA won by almost an order of magnitude
in running time over Sac-IA. Nevertheless, 3D-NDT’s results depended on its complex parameter
configurations, which would hinder its application in automatic process. Although it ran quickly, the
accuracy was quite low. Furthermore, 3D-NDT is not safe because it is a local method that is easily
trapped into local minima. The three other global methods are better choices to carry out an automatic
rough registration task.



Sensors 2019, 19, 427 11 of 15

5.1.3. Tests on Real Data with Different Features via Various Sensors

We chose nine different data, shown in Figure 6, to test the proposed algorithm. Three kinds of
sensors were used in this test: 3D laser scanner, 3D cameras and 3D lidar (Figure 7). The 3D laser
scanner can reach the volumetric accuracy up to 30 µm and the 3D camera with image stitching
technique can reach about 0.8 mm. All data obtained from the sensors had their noise eliminated.
The different features are explained in Table 1 and the test results are shown in Figure 8.

Figure 6. Other types of models for HEALPix-IA tests.

Figure 7. Various sensors used for tests.

Figure 8. Results of different types of models for HEALPix-IA tests.
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Table 1. Features of nine data for tests.

Model (Abbreviation) Features Sensors

Water Turbine Blade (WaTB) complex Curve Surface 3D laser scanner
Wind Turbine Blade (WiTB) complex curve Surface 3D laser scanner

Casting Parts 1 (CP1) thin-walled, large plane 3D laser scanner
Casting Parts 2 (CP2) mirror symmetry 3D laser scanner

Carbon Fiber Seat (CFS) thin-walled, curve surface 3D laser scanner
Human Arm Dummy (HAD) unstructureed features 3D laser scanner

Laser Cut Rocket (LCR) rotational symmetry 3D laser scanner
Star Destroyer (SD) mirror symmetry 3D Camera

3D Map In Door (Map) low dense data 3D LiDAR

In this test, we raised the search iteration to 50 generations to adapt to different types of features.
The boxplot shows that HEALPix-IA performed poorly with “human arm dummy” and “laser cut
rocket”. The reason is that they both have the constant EGI features similar to sphere surface, which is
a disadvantage of all EGI-based methods. The “casting parts 1” with thin-walled plane led to a fast
convergence in searching iteration, so that it performed a quick registration with unstable accuracy.
Besides, the two other sensors achieved better results in both accuracy and efficiency. In summary,
HEALPix-IA is applicable with most features and different sensors, yet its stability needs to be
improved further.

5.2. MA Analysis Test

In this paper, we suggest HEALPix-IA is applicable to MA analysis for manufacturing. In this
experiment, two real workpieces were scanned by 3D scanner (Creaform HandyScan 700) and aligned
to the CAD models. As the rough registration is the first step for MA analysis, another evaluation
criterion, optimization time for MA analysis process, was used. The results are shown in Table 2
with Sac-IA and HEALPix-IA. Here, we abandoned PCA and 3D-NDT for stability and local method.
HEALPix-IA was verified to perform relatively better in accuracy (RMS) and efficiency (time) for MA
analysis application with almost the same stability though the variance values. The MA analysis results
are shown in Figure 9 which can be used for follow-up manufacturing processes such as debugging
and grinding.

Figure 9. Results of real workpiece MA analysis using HEALPix-IA.
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Table 2. MA analysis with different rough registration methods.

Models and Criteria Sac-IA HEALPix-IA

WaTB-RMS Ave 2.9 × 10−2 3.4 × 10−3

Var 8.1 × 10−4 4.9 × 10−5

WaTB-time (ms) Ave 4932.1 3830.8
Var 6.3 × 103 2.7 × 104

WaTB-opt time (ms) Ave 7222.7 10,110.5
Var 1.6 × 107 2.2 × 107

CP2-RMS Ave 1.2 × 10−2 7.2 × 10−3

Var 3.5 × 10−5 1.1 × 10−6

CP2-time (ms) Ave 5953.2 4818.3
Var 8.7 × 103 4.5 × 103

CP2-opt time (ms) Ave 9049.9 8066.5
Var 2.65 × 107 1.4 × 107

6. Conclusions

In this paper, a new rough registration method—HEALPix-IA—is proposed especially for MA
analysis application. HEALPix-IA is based on EGI, and has the same features with other EGI-based
algorithms, such as global method, robust to noise, and sensitive to constant EGI. Furthermore,
we suggest a new division method, which was proven to be more effective. Point correspondence
optimization is also implemented to improve the accuracy. HEALPix-IA was compared with other
sophisticated rough registration algorithms, PCA, 3D-NDT and Sac-IA, on RMS and running time,
utilizing nine real scanned data and two pairs of datasets for MA analysis, which were obtained from
three different kinds of sensors. The experiments verified HEALPix-IA shows a better performance on
accuracy and efficiency.
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Abbreviations

The following abbreviations are used in this manuscript:

ICP Iterative Closest Point
EGI Extended Gaussian Image
SLAM Simultaneous Localization And Mapping
MA Machining Allowance
CMM coordinate measuring machine
PCA principal component analysis
FPFH Fast Point Feature Histograms
Sac-IA Sample Consensus-Initial Alignment
NDT Normal Distributions Transform
RMS Root Mean Square distances
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