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Abstract: Early detection of changes in transient running status from sensor signals attracts
increasing attention in modern industries. To achieve this end, this paper presents a new differential
equation-based prediction model that can realize one-step-ahead prediction of machine status. Together
with this model, an analysis of continuous monitoring of condition signal by means of a null
hypothesis testing is presented to inspect/diagnose whether an abnormal status change occurs
or not during successive machine operations. The detection operation is executed periodically and
continuously, such that the machine running status can be monitored with an online and real-time
manner. The effectiveness of the proposed method is demonstrated using three representative
real-engineering applications: external loading status monitoring, bearing health status monitoring
and speed condition monitoring. The method is also compared with those benchmark methods
reported in the literature. From the results, the proposed method demonstrates significant
improvements over others, which suggests its superiority and great potentials in real applications.

Keywords: prediction model; early change detection; differential equation; machine running status

1. Introduction

Real-world systems are seldom in steady status, and they almost always operate in transient
conditions that are varying over time. Detection of change(s) in running status at an early stage
enables to find and locate abnormal and unexpected/undesired system behavior(s) in its successive
operations. With this, corrective schedule could be made to prevent potential operation failures and
ensure equipment and product reliability, safety, quality, productivity, etc. [1–4]. The problem of
running status monitoring may arise in process monitoring and control applications where the system
needs to make a response and/or take appropriate actions as soon as possible after a change of machine
status occurs [5–8].

In industrial and manufacturing areas existing approaches of change detection are mainly
data-driven methods [7,9–25]. They normally use a detailed mathematical model evaluating dynamic
running status, parameters of which are estimated and updated with relevant condition monitoring
(CM) signals that are collected form considered machines. Once the dynamic machine behaviors are
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modeled, it is possible to detect potential status change(s) via analysis of changes of input parameters
to the model.

Depending on the adopted models, these data-driven methods can be further classified into three
categories: (1) density estimation methods [9–12], (2) rule-based or case-based methods [13–16] and (3)
time-series analysis based methods [7,17–20]. The density estimation methods are developed from
the availability of input/output histories of machine conditions that were collected from the field or
laboratory. They are based on density estimation techniques modeling the past normal machine status,
and produce change decision output based on the Bayesian probability theory for newly observed
data. Typical Gaussian kernels [9] as well as relatives such as non-Gaussian process [11] and Gaussian
mixture model (GMM) [12] can be employed to accomplish the density estimation. In spite of their
success and popularity in simulation scenarios, they are, however, not effective when the available
condition data is insufficient. The rule-based or case-based methods are expert systems that are
driven by data mining, including the Dempster-Shafer (DS) theory [15], fuzzy set theory [16], etc.
In these methods, there exist lots of parameter settings that need to be confirmed under human-made
supervision, which would limit their practical value in real applications. In comparison, the time-series
analysis methods use previous outputs regressed on to itself to provide an estimate of the current
output, such that one-step-ahead prediction is allowed for residual error analysis in order to generate
final detection result [19,20]. In the context of time-series analysis methods, various auto-regressive
(AR) models have been proposed, going from simple linear time-series model to advanced nonlinear
regression methods. For example, in [7], a linear AR model was assumed for analytical expression of
those linear distributed condition signals, e.g., power consumption signal. Meanwhile, it has been
widely recognized and accepted those periodic condition signals, such as vibration and sound signals,
are more powerful when describing the machine system [21–25]. It is concluded that the statistical
modelling by the way of AR models is relatively simplified in implementation, such that they can be
applied to the monitoring and prognosis of industrial systems, especially when real-time and online
processing is required.

In this paper, we extend the work of [26] and present a new prediction model with the purpose
of monitoring and diagnosing the running status for a considered machine. The baseline of the
presented method is an early change detection using a differential equation (DE) based prediction
model. This model can describe dynamic properties of a system which change with time quite well
and can predict the future status of the system conveniently [27,28]. Moreover, it has been also
proven more powerful when discovering of sciential laws for dynamic systems [27]. The DE model
has been successfully used in many fields [29–32]; however, to the best of our knowledge, it is the
first time to apply it to machine running status monitoring. In this paper, together with the DE
model, an analysis of continuous monitoring of CM signals by means of a null hypothesis testing is
proposed to inspect/diagnose whether an abnormal running status change occurs or not in successive
machine operations.

Besides of the methodological contributions put forth in the proposed method, we apply the
method to three representative applications: external loading status monitoring, bearing health
status monitoring, and speed condition monitoring. Three testing data sets are considered in
the experiment. The first one is taken from the publicly available data set provided by the Case
Western Reserve University (CWRU) [33], the second one is from the publicly available PRONOSTIA
dataset provided by FEMTO-ST in France [34,35] and the last one is established based on our
experimental setup. The proposed method is also compared with those reported in the literature,
including autoregressive-integrated-movingaverage (ARIMA) model [18], root mean square (RMS)
and kurtosis [36–38]. Experimental results demonstrate its significant improvements over others.

The rest of this paper are organized as follows. Section 2 describes the proposed prediction
model. Section 3 gives the hypothesis testing used for decision-making. Section 4 gives the proposed
framework for machine running status monitoring, followed by experiments in Section 5. Section 6
finally summarizes this paper with some concluding remarks.
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2. Differential Equation-Based Prediction Model

This section first provides an overview of the proposed prediction model, and then discusses
techniques carried out in the main steps.

2.1. Overview of the Proposed Model

Given a data stream composing of continuously monitoring condition signal xt, let us assume that
it has been denoted by a periodic form xt → XnT+v, where T is the period, v ∈ [1, T] is the phase or
timing, and n is the cycle index. In this paper, we assume the condition signal is periodically stationary
as made in some previous works, e.g., [25,39], thus we can employ a prior periodicity estimation
proposed in [18] to confirm the value of T. Then, main steps of the proposed prediction model includes
the following:

• Model formulation, i.e., the proposed model is formulated with the considered CM signals. In this
paper, a family of new time series are formed by arranging the original data at the same phase.
As such, the model is formulated so as to predict next value of each phase.

• Parameters estimation, which estimates the parameters of the model. The numerical solution
method of differential equations is used to estimate the model’s parameters. The parameters of
the model are constantly updated during each data prediction process.

• Data prediction, i.e., the prediction of next data with the estimated model. The prediction value at
each phase can be obtained with the model whose parameters have been estimated successfully.

The above steps are executed continuously for each observed cycles of CM data, allowing for
residual error analysis that can quantify the error between the predicted values and the observed
ones. The resulting error reflects the amount of temporal fluctuations in the CM data; more specifically,
the higher residual error implies a higher probability that a change occurs and vice versa.

In the following, techniques used in the main steps of the model are discussed.

2.2. Proposed Model Description

2.2.1. Model Formulation

For an arrived CM data stream up to the kth cycle, for each phase v, we take i continuous cycles
before k to form a new series, i.e., Pv = {x(k−i)T+v, ..., x(k−1)T+v}, such that the DE model can be
formulated for all phases.

Conventionally, the DE model relies on the following system state function f (·) to establish
the prediction,

dxt

dt
= f (xt, β, t), (1)

where xt is the value of differential equation in a series of time stamp t, β is parameter of the
differential equation.

In this paper, since we use the past observed data at the same phase for prediction, the above-given
new time series Pv allows linear characteristics to emerge, based on which, we can obtain the prediction
value, i.e., x̂(k)T+v with the Pv correspondingly. In the following, for each considered phase v,
we re-denote the Pv as the series {xtj}, j = 1, ..., i for simplicity.

According to the linear assumption made already, the time-series {xtj} will satisfy,

f (xt, β, t) = a + b× t, (2)

where a( 6= 0) and b( 6= 0) are the parameters of differential equations that need to be estimated
before prediction.
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2.2.2. Data Prediction

Assuming that we have estimated the values of a and b, according to [40], the corresponding time
response function of Equation (1) can be written as

x̂(k)T+v = xti+1 =
1
2

b× (t2
i+1 − t2

i ) + a× (ti+1 − ti) + xti , (3)

where ti = t0 + i× h, t0 = 0, ti+1 is the time stamp of the value xti+1 , which can also be regarded as
the prediction value x̂(k)T+v, and h is the distance between the two time stamps. We set h as 1 in this
article. The xti is the initial value of the response function, represented by the average value of the
sequence value in order to decrease effect of errors in data collection.

2.2.3. Parameters Estimation

For the purpose of prediction of x̂(k)T+v, the first step is to estimate the optimal parameters
of a and b in the DE model given in Equation (2). Because the signal is usually sampled through
observation, we re-define the above variables at sampling time tj (j = 1, ..., i) with subscription j (e.g.,
xtj = xj) for convenience in the following of this paper. The differential Equation (1) is calculated by
simpsons method [40] by

xj+2 − xj =
1
3

h( f j+2 + 4× f j+1 + f j) + Rj+2, (4)

in which f j = f (xj, u, tj), j = 1, ..., i− 2 and Rj+2 is local truncation error [40]. According to Equation (2),
Equation (4) can be transformed into

xj+2 − xj = 2× a +
h
3
(tj+2 + 4× tj+1 + tj) + Rj+2, (5)

which is thus re-written as

xj+2 − xj

2
= a +

h
6
(tj+2 + 4× tj+1 + tj) +

Rj+2

2
. (6)

Then, Equation (6) can be re-expressed as

x(0)j+2 = a + x(1)j+2 × b + Ej+2, (7)

where x(0)j+2 =
xj+2−xj

2 , x(1)j+2 =
(tj+2+4×tj+1+tj)h

6 , Ej+2 =
Rj+2

2 . When ∑i−2
j=1 E2

j+2 has a minimum value for
the observed value xj, the estimated parameters a and b can be finally obtained by

(a, b)T = (BT B)−1BTY, (8)

in which

B =

[
1 · · · 1

x(1)3 · · · x(1)i

]T

, Y =
[

x(0)3 · · · x(0)i

]T
.

The predicted value x̂(k)T+v can be obtained by substituting the estimated parameters a and b
into the time response Equation (3), where i = 4 is used in the following experiment.

2.3. Residual Error Analysis

The residual error q(k)T+v can be defined by the absolute value of the difference between prediction
data x̂(k)T+v and the actual monitoring data x(k)T+v as

q(k)T+v = |x̂(k)T+v − x(k)T+v|. (9)
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The cumulative value of {q(k)T+v} for a whole cycle is gathered, allowing for analyzing the
machine condition periodically, which is calculated by

Qk =
T

∑
v=1

q(k)T+v, (10)

where Qk is the resulting value for the kth cycle.
Subsequently, we further standardize the obtained sequence {Qk} by sk = (Qk −Q)/σ, where Q

and σ are the sample mean and standard deviation of {Qk}.
The anomaly score {sk} describes the dynamic characteristics of machine condition monitoring

over time. That is, when the condition of machine is stable, this implies that the condition change does
not occur, and the values of {sk} will be relatively small; otherwise, the values will be large.

2.4. Simulation Validation

For the purpose of evaluation of the effectiveness of the proposed model, we applied it on
synthetically generated testing data, where different levels of Gaussian White Noise are added for
simulating the real engineering scenarios. Considering that the status change(s) in real machine
operations can result in the change(s) of relevant CM variables in terms of amplitude, frequency, or
both of them [7,18,41–43], the testing signals are formulated, respectively, as

xt =

{
sin(ω× t) + noise, 1 ≤ t ≤ c− 1,
2× sin(ω× t) + noise, c ≤ t ≤ m,

(11)

xt =

{
sin(ω× t) + noise, 1 ≤ t ≤ c− 1,
sin(2ω× t) + noise, c ≤ t ≤ m,

(12)

xt =

{
sin(ω× t) + noise, 1 ≤ t ≤ c− 1,
2× sin(2ω× t) + noise, c ≤ t ≤ m,

(13)

where c is the change time, m is the length of data, and ω is set as π. The results are given in Figure 1,
where the Figure 1a–c shows the simulated signals generated by Equations (11)–(13), respectively.
For each subfigure, the SNR are set as 10, 30 and 50 dB, respectively. It can be clearly seen that the
anomaly scores are stable before the status change, and then the occurrence of status change causes
an abrupt increase of the anomaly score, which implies that it can be detected successfully. Here, we
also found that, for amplitude change and amplitude and frequency change cases, the residuals of
30 dB and 50 dB are different from the one of the case 10 dB. The main possible reason is that, with
a lower SNR, i.e., 10 dB, the noise will be more taken into account for prediction of the future value
with an amplitude change; however, with a higher SNR, the noise will have less influence on the
perdition process.
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Figure 1. Results on testing data containing different changes: (a) amplitude change; (b) frequency
change; (c) amplitude and frequency change.

3. Hypothesis Testing for Decision-Making

On the basis of the resulting anomaly score sk, we test a null hypothesis using the 3σ criterion in
order to detect whether a change occurs at the current kth cycle by

H0 :| sk − sk−1 |< 3σ′,

H1 :| sk − sk−1 |≥ 3σ′,
(14)

where H0 means that no change occurs on the kth cycle as long as | sk − sk−1 |< 3σ′, and H1 indicates
that a change occurs when | sk − sk−1 |≥ 3σ′ (Note that the beginning nine cycles of data are used for
initialization and the change detection begins with the 6th cycle after initialization). Here, sk−1 and σ′

are the mean and standard deviation of an assumed Gaussian distribution, respectively, and they are
calculated by

sk−1 =
1

k− 1

k−1

∑
j=1

sj, (15)

σ′ =

√√√√ 1
k− 1

k−1

∑
j=1

(sj − sk−1)2. (16)

Here, it is worth mentioning that there exist other alternatives such as Gaussian Mixed Model
(GMM) [44] and other non-Gaussian assumptions [11,45] for change detection. However, since the
focus of this paper is on the prediction model, we do not investigate these alternatives in this study.
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4. Proposed Machine Running Status Monitoring Framework

Together with the DE model described in Section 2, an analysis of continuous monitoring of CM
signals by means of a null hypothesis testing (Section 3) is proposed to inspect/diagnose whether an
abnormal running status change occurs or not in successive machine operations. Total four steps are
included in the framework as given below:

(1) Collect CM data from the considered machine in a continuous manner;
(2) Compute the prediction value using the proposed DE model;
(3) Calculate anomaly scores based on residual error analysis at the current inspection time;
(4) Make the change decision by testing a null hypothesis. Report an alarm to the user; otherwise,

go to Step 2 to continue.

The flowchart of the proposed framework is provided in Figure 2.

Continuous signal collection

Signal source
Data acquisition

card 

On-line signal process

𝑞 𝑘 𝑇+𝑣 = |ො𝑥 𝑘 𝑇+𝑣 − 𝑥 𝑘 𝑇+𝑣|, 𝑄𝑘 = σ𝑣=1
𝑇 𝑞 𝑘 𝑇+𝑣

tx

Differential equation prediction model

Original data

Prediction data

Prediction signal

Real-time change detection

Time

Change alarm

A
n
o
m

al
y
 s

co
re

s

Hypothesis 

testing using the 

3σ criterion
Normal status

Confidence area

Abnormal status

Normal status

CM signal

Calculate anomaly score based on residual error analysis

Upper control limit (UCL)

Lower control limit (LCL)
Abnormal status

Figure 2. Flowchart of the proposed framework.

5. Experimental Validation

To evaluate the effectiveness of the proposed method, we applied it to three representative
industrial applications/tasks which are listed as below:

• External loading status monitoring: External loading status is essential for condition monitoring
during unsteady machine operations because a piece of equipment under operation may be
exposed to a series of varying loads according to the user’s needs [46]. Moreover, the load is a
critical operating condition factor which has significant impact on machine health [47]. Detection
of changes in load condition makes it possible for the machine to adjust itself once a load change
occurs for safety protection [48].
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• Bearing health status monitoring: As we all know, functional degeneration of machine components
during the lifetime is common and unavoidable. The component degeneration will cause some
undesired/unexpected consequences [48–50]. Based on CBM, maintenance can be scheduled in
an optimal way with respect to cost, reliability, availability, or other logistic metrics of interest.
Thus, automatic detection of changes in bearing health status can serve as a starting point for
fault diagnosis or prediction of functional failure at an early stage.

• Rotational speed monitoring: The rotational speed in machine operations may fluctuate due to
condition variations or unsteady environments [51]. Speed condition monitoring helps to find the
unexpected running behaviors for operation maintenance [52,53], thus highly desired in online
process monitoring of industrial manufacturing, numerical controlled machining, ect.

The proposed method is compared with the ARIMA model proposed in [18]. In addition, we also
compare it with two methods: RMS and kurtosis, which are widely used in the literature [36–38].
In the following experiments, we utilize the first detected alarm to determine whether the detection
is successful or false. We then use the precision indicator which is defined as ratio of the number of
correctly detected changes over the total number of changes to quantify the detection performance.
However, for the case only including several testing data, we directly provide the detection result.

5.1. Case Study I: External Loading Status Monitoring

The testing data used in this section are the motor bearing data provided by CWRU [33]. In the
experiment, the vibration data were collected from the drive end and the fan end of the motor driving
mechanical system with the sampling frequency of 12 kHz [54].

The testing data for loading change detection was formed by concatenating each two load
condition signals with fixed other relevant variables. We use the L→ L + ∆L to represent a loading
status change, where L hp is the initializing load and ∆L hp is the changing load. More specifically,
∆L > 0 represents an increasing load change and ∆L < 0 represents a decreasing load change.
The combination of L = {0, 1, 2, 3} hp and ∆L = {−3,−2,−1, 1, 2, 3} hp (indicating different loading
conditions in the employed CWRU data set) are used to simulate the loading changes. For example,
when the load L begins at 3 and decreases by ∆L of −3, the change can be expressed as 3→ 3 + (−3).
In total, we have 12 combinations of simulated working load changes, as given in Table 1. In each
combination, the vibration signals collected from drive end and fan end are used for analysis,
respectively; thus, 24 signals are used for change detection.

Table 1. Simulated working load change of L→ L + ∆L hp.

L \ L + ∆L 0 1 2 3

0 - 0→ 0 + (1) 0→ 0 + (2) 0→ 0 + (3)
1 1→ 1 + (−1) - 1→ 1 + (1) 1→ 1 + (2)
2 2→ 2 + (−2) 2→ 2 + (−1) - 2→ 2 + (1)
3 3→ 3 + (−3) 3→ 3 + (−2) 3→ 3 + (−1) -

Figure 3 shows an example of change detection for a working load change from 1 hp to 2 hp,
where the original signal was collected from drive end with 1:10 down sampling and the change is
labeled by a human instructor. From Figure 3a–d, we show the detection result by our method, ARIMA
model, Kurtosis and RMS. It can be seen that our method can successfully detect the change cycle with
a slight time delay. As seen in Figure 3a, the anomaly scores are relatively small and are distributed
irregularly when the motor load is set around 1 hp. Then, the occurrence of loading status change
causes an abrupt increase of the anomaly score which can be successfully detected through the 3σ

criterion based hypothesis testing; however, the method using the ARIMA model did not detect any
alarm because the anomaly score is always in the confidence area, as shown in Figure 3b; the detected
change cycle using the Kurtosis and RMS are much earlier than the actual change cycle, which belong
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to false detection as seen in Figure 3c,d; the main reason is that the proposed method has better power
to detect weak changes than the other three methods.

(a) (b)

(c) (d)

Initialization Initialization

Initialization

Successful detection

False alarm

Confidence area
Control limits

Initialization

False alarm

Loading change Loading change

Loading change Loading change

Figure 3. An example of change detection of load condition change from 1 hp to 2 hp. (a) DE model;
(b) ARIMA model; (c) kurtosis; (d) RMS.

Table 2 gives the comparison results. In the table, the N/3 represents that the number of samples
N in which change cycle is correctly detected in the three samples, N ∈ {1, 2, 3}. It can be clearly
observed that our method achieves the best performance and the detection precision is 100%. In other
words, whether the vibration signal is collected from the driven or the fan end, the proposed method
can detect all the state changes precisely without generating any false alarms.

Table 2. Results of loading change for different setting initial working loads L.

Case\L 0 1 2 3 Average

Drive 3/3 3/3 3/3 3/3Our method
Fan 3/3 3/3 3/3 3/3

100%

Drive 3/3 2/3 3/3 2/3ARIMA
Fan 3/3 2/3 3/3 3/3

87.5%

Drive 3/3 1/3 0/3 0/3Kurtosis
Fan 0/3 0/3 2/3 0/3

20.8%

Drive 1/3 1/3 1/3 1/3RMS
Fan 0/3 0/3 1/3 3/3

33.3%

5.2. Case Study II: Bearing Health Status Monitoring

This section considers two real-engineering scenarios of bearing health status: a gradually
degenerated process and a sharply degenerated process. Consequently, this case study is employed
for this investigation.
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The testing data set comes from the publicly available PRONOSTIA platform [34]. This system is
designed to test and validate bearings fault detection, diagnostic, and prognostic approaches. The main
purpose of PRONOSTIA platform is to provide real experimental data that characterize the degradation
of ball bearings along their whole operational life (until their total failure). In order to reduce the
bearing’s life duration, a radial force is set to the bearing’s maximum dynamic load of 4 kN and applied
on the tested bearings. The force is generated by a cylinder pressure, and the pressure is delivered
through a pressure regulator.

During the tests, accelerometers are fixed on the outer race of the bearing, and vibration signals
are captured. The sampling rate is 25.6 kHz, the length of every sampled acceleration waveform
is 2560 data points, i.e., 0.1 s, whereas recordings are repeated every 10 s. The vibration signals
are transmitted into a PC for data visualization and storage through a National Instruments data
acquisition (DAQ) card. Based on experience, it is considered as the end of life when the vibration
level is greater than 20 g.

The experiment is carried out under three different operating conditions. In our case study,
four representative bearing signals during the first operating condition are used for bearing early failure
detection. The operating condition is under 1800 r/min (resolution per minute) with a 4000 N load.

Figure 4 shows detection results of the four bearings with different methods. From the original
data of each Figure 4a,b, we can see that the vibration amplitude of bearing 1 and bearing 2 have
gradually increasing trends, which indicates that the failure gets severe gradually. On the contrary, the
vibration amplitude of bearing 3 and bearing 4 increases sharply at the end of lifetime as seen in the
original data of each Figure 4c,d, which means a quick degradation processes. Table 3 gives the specific
comparison results accordingly, where the number in the table represents the first early failure alarm
point, and “N/A” represents false detection status change because there are too many alarm points
and the first alarm point is far earlier than the early failure point. Thus, it can be clearly seen that
kurtosis fails to distinguish the normal and the abnormal states, which can be verified by subfigure (3)s
in all subfigures a, b, c and d in Figure 4. In addition, for bearing 3, as shown in subfigure (c), ARIMA
and RMS have false alarms in a normal state. To summarize, the detection performance order is: our
method > RMS > ARIMA > Kurtosis, revealing that our method has a superior ability compared to
the others.

Table 3. Results of bearing early failure detection.

Gradual Degeneration Sharp Degeneration
Method\Case

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Our method 1441 1183 2433 2190
ARIMA 1435 1282 424 2184
Kurtosis N/A N/A N/A N/A

RMS 1422 1083 424 2208
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(1) (2)

(3) (4)
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Figure 4. Cont.
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False alarm
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(1) (2)

(3) (4)

Confidence area Control limits

B1_5

(c) Bearing1_5

False alarm

(1) (2)

(3) (4)

Confidence area Control limits

B1_7

(d) Bearing1_7

Figure 4. Results of change detection of bearing early failure detection: (a) bearing 1; (b) bearing 2;
(c) bearing 3; (d) bearing 4. In each piece of testing data: (1) the result by DE model; (2) the result by
ARIMA model; (3) the result by Kurtosis, and (4) the result by RMS.

5.3. Case Study III: Speed Condition Monitoring

We used the experimental setup as shown in Figure 5 to collect testing data. In this setup,
an accelerometer sensor mounted on the gearbox was used to acquire vibration signals with a sampling
frequency of 1000 Hz, and then the collected signal data were transmitted to PC. During the data
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collection, we first set the initial speed of motor at ν, and then changed with an interval of ∆ν to
simulate a speed status change (i.e., ν→ ν + ∆ν). The testing values of ν and ∆ν were given as follows:

• νε{250, 300, 350} rpm and ∆νε{50, 100, 150, 200, 250} rpm.

Therefore, we can obtain 15 parameter combinations with different speed condition changes as
seen in Table 4. For each combination, we collected 10 data samples to form testing data set. Thus,
we have a total number of 150 data sequences in our testing dataset.

Table 4. Simulated speed condition change ν→ ν + ∆ν rpm.

∆ν\ν 250 300 350

50 250→ 250 + 50 300→ 300 + 50 350→ 350 + 50
100 250→ 250 + 100 300→ 300 + 100 350→ 350 + 100
150 250→ 250 + 150 300→ 300 + 150 350→ 350 + 150
200 250→ 250 + 200 300→ 300 + 200 350→ 350 + 200
250 250→ 250 + 250 300→ 300 + 250 350→ 350 + 250

Motor Accelerometer

Gear box

Load

Figure 5. Experimental setup.

Figure 6 shows an example of change detection for a speed change from 350 rpm to 400 rpm,
where the change is labeled by a human instructor. From Figure 6a–d, we show the detection result
by our method, ARIMA model, Kurtosis and RMS. It can be seen that our method can successfully
detect the change cycle. As seen in Figure 6a, the anomaly sores show a remarkable increase at the
change time such that the change was detected successfully. However, the method using the ARIMA
model did not detect any alarm because the anomaly score is always in the confidence area, as shown
in Figure 6b; the detected change cycle using the Kurtosis and RMS is much earlier than the actual
change cycle, which is attributed to false detection, as seen in Figure 6c,d.

Table 5 gives the comparison results of the different methods under different settings of initial
speed ν rpm. We can see that the proposed method also achieves a perfect detection performance on
speed status change detection.

Table 5. Results of speed condition change detection by different setting initial speeds ν rpm.

250 300 350 Average

Our method 100% 100% 100% 100%
ARIMA 90% 70% 90% 83.3%
Kurtosis 72% 86% 82% 80%

RMS 100% 44% 80% 74.6%
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(a) (b)

(c) (d)

Confidence area
Control limits

InitializationInitialization

Initialization InitializationFalse alarm False alarm

Successful detection

Speed condition change Speed condition change

Speed condition change Speed condition change

Figure 6. An example of change detection of speed condition change from 350 rpm to 400 rpm. (a) DE
model; (b) ARIMA model; (c) Kurtosis; (d) RMS.

5.4. Results Summary and Discussion

To summarize, from the above experiments, we notice that the proposed differential equation-based
prediction model has prior and remarkable detection performances in three different real applications,
especially in weak state change. However, in the proposed method, we assume that the collected
condition monitoring signal is periodically stationary. Although this assumption is reasonable and
widely used in the literature [7,18,41], we have also noted that the actually collected signal in some
cases may vary in periods, i.e., cycle non-stationary. With the purpose of extending the method to
these cases, we would employ a preprocessing, e.g., angle re-sampling [55] and phase estimation using
dynamic time warping [56,57], in order to suppress such temporal non-stationary before applying it to
monitoring non-stationary condition signals.

6. Conclusions

In this paper, we have proposed a new method for monitoring and diagnosing the running
condition of considered rotating machines. The base of the method is an early detection of condition
changes based on the DE model that can realize one-step-ahead prediction of machine status. Together
with this model, an analysis of continuously monitoring condition signal by means of sum residual
error is presented to inspect/diagnose whether an abnormal condition change occurs or not based on
a null hypothesis testing. The method was evaluated with three representative condition monitoring
applications: external load status monitoring, bearing health status monitoring and speed condition
monitoring. The method was also compared with those benchmark methods reported in the literature.
The results demonstrated significant improvements of the proposed method over others, indicating its
superiority and great potential in real engineering applications.

In the future, we will optimize the method to achieve a higher computational efficiency, and apply
the method in the workshop for practical usages.
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