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Abstract: In recent years, regression trackers have drawn increasing attention in the visual-object
tracking community due to their favorable performance and easy implementation. The tracker
algorithms directly learn mapping from dense samples around the target object to Gaussian-like soft
labels. However, in many real applications, when applied to test data, the extreme imbalanced
distribution of training samples usually hinders the robustness and accuracy of regression
trackers. In this paper, we propose a novel effective distractor-aware loss function to balance
this issue by highlighting the significant domain and by severely penalizing the pure background.
In addition, we introduce a full differentiable hierarchy-normalized concatenation connection to
exploit abstractions across multiple convolutional layers. Extensive experiments were conducted on
five challenging benchmark-tracking datasets, that is, OTB-13, OTB-15, TC-128, UAV-123, and VOT17.
The experimental results are promising and show that the proposed tracker performs much better
than nearly all the compared state-of-the-art approaches.

Keywords: object tracking; deep-regression networks; data imbalance; distractor aware

1. Introduction

Visual-object tracking aims to estimate the trajectory of the specified target in a video sequence,
which is labeled in the initial frame with a bounding box. It is widely used in various applications,
ranging from video surveillance, motion analysis, and autonomous driving. The main difficulty of
visual tracking is how to accurately and effectively locate the object in challenging scenarios caused by
illumination, deformation, occlusion, out of view, background cluttering, and other variations [1–3].

Modern tracking methods can be classified as either generative or discriminative. Generative
methods aim at describing the target appearance using some generative processes (e.g., statistical
models [4], templates [5], or sparse coding [6–10]), and searching the candidates to minimize
reconstruction errors. Discriminative approaches instead regard tracking as a classification problem by
differentiating target appearance and the surrounding background. Numerous classifiers have been
introduced in the tracking community, such as structured support vector machine [11,12], boosting [13],
oblique random forests [14], and online multiple-instance learning [15]. Recently, discriminative
correlation filters (DCF) trackers [16–25], which directly regress the dense samples to soft labels, have
sparked significant attention due to their high accuracy and efficiency. Furthermore, the favorable
performance of deep convolutional networks on several challenging vision tasks [26–28] encourages
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recent works to either exploit existing deep convolutional-neural-network (CNN) features within
discriminative correlation filters [29–33], or design deep architectures [34–40] for discriminative visual
tracking.

Despite top performance on benchmarks, discriminative correlation filters take few advantages
of end-to-end training. On the contrary, deep regression networks that reformulate the correlation
operation as a convolutional layer are fully differentiable and can be trained end to end. In this
paper, we show that a deep regression tracker, when properly designed, can achieve even better
and competitive results compared with the state-of-the-art trackers, especially with discriminative
correlation filters. A critical issue relating to deep regression trackers is the data-imbalance
problem [39,41,42] where the number of samples in the negative class is large but it is much smaller in
the positive class. It is known that “easy” negative samples dominate the training dataset, and this
inevitably suppresses the contribution of positive samples and therefore affects the performance of
the resulting regression networks. In addition, distractor samples whose semantic abstraction close
to the target may also be suppressed despite having an important contribution to model robustness.
The existing approaches to dealing with data imbalance in regression trackers mainly focus on
reducing the role and influence of background samples and pay little attention to the contribution of
semantic distractors. In this work, we try to address the imbalance-distribution issue by introducing a
novel distractor-aware loss function during the learning of the regression networks. The proposed
distractor-aware loss function differs from existing approaches (e.g., shrinkage loss [39] and focal
loss [43]) in that our approach barely utilizes easy negative samples and increase the importance of
distractor samples (see Section 3.2), whereas shrinkage loss only penalizes easy samples and focal loss
partially reduces the importance of hard samples.

To further promote the performance of deep feature-based trackers, many efforts have been made
in the visual-object tracking communities. Leveraging multilevel semantic abstraction exploitation
across multiple convolutional layers has drawn more and more attention. Residual connections across
multiple convolutional layers can mine distinguished information compared with independently
learning on multiple convolutional layers. However, residual connected regression networks will
become massive when the across-number of convolutional layers increases. Furthermore, the lack
of training data often makes the regression networks unable to effectively balance the numerical
values of multi-layer features. In this work, we propose to apply hierarchy-normalized concatenation
to fuse multiple convolutional layers. The proposed scheme, with a simple structure and without
numerical issue, can make full use of multi-level convolutional features across multiple convolutional
layers. By taking advantage of distractor-aware loss and hierarchy-normalized concatenation, the
proposed tracking method achieves favorable results against the state-of-the-art trackers on several
tracking benchmarks.

The main contributions of this work can be summarized as three parts:

1. The proposed novel distractor-aware loss can alleviate the data-imbalance issue in learning
deep-regression networks. We observe that the adversarial semantic distractors not only facilitate
robustness in the tracking phrase but also accelerate convergence in the training phrase.

2. We leveraged hierarchy-normalized concatenation to fully exploit multilevel semantic abstraction
across multiple convolutional layers. This results in a simple and easy-to-train end-to-end
regression network for visual tracking.

3. We extensively validated the proposed method on five benchmark datasets with large-scale
sequences. The proposed tracking algorithm had favorable results compared with state-of-the-art
trackers on all benchmark datasets. Furthermore, as far as we know, it achieves leading
performance in both OTB-13 [1] and OTB-15 [2]. To facilitate further studies, our source code, as
well as all experimental results, are available at https://github.com/Dewly/DaDRT.

https://github.com/Dewly/DaDRT
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2. Related Work

Visual tracking has long been an active research topic with extensive surveys and benchmark
evaluations. In this section, we give a brief review on most relevant tracking approaches and pay
attention to the data-imbalance issue. Comprehensive reviews on object tracking can be found in
References [2,44,45].

2.1. Trackers with Correlation Filters

Correlation filters have recently attracted considerable attention in the object-tracking community
due to their high computational efficiency and favorable robustness. Trackers based on correlation
filters regress all circular-shifted versions of input samples to Gaussian-like soft labels. Bolme et al. [46]
proposed to exploit the correlation filters for visual tracking and optimized the output sum of squared
errors in the Fourier domain, leading to an extremely fast tracker at 669 frames per second (FPS).
Henriques et al. [16] first suggested to regress all circular shifted versions of illumination-intensity
features to a Gaussian label. Furthermore, Henriques et al. [17] incorporated kernel functions into
the correlation filter and extended the correlation filters to multiple channel histograms of gradient
(HOG) features. Inspired by the work of Reference [16], several extensions have been proposed to
promote the accuracy and robustness of correlation filter-based trackers. Extensions include, but are
not limited to, kernelized correlation filters [17,47], scale estimation [19,48], redetection [24], spatial
regularization [20–22,31], context learning [23,49] and CNN feature integrations [29,32,33,50].

2.2. Trackers with Deep Regression

Benefiting from the strong representation of CNN features, correlation filter-based trackers have
achieved distinguishable performance. However, associated optimization in Fourier domain suffers the
boundary effect. Different from traditional correlation filter-based trackers, deep-regression trackers
try to obtain an approximate solution via gradient descent in spatial domain. They formulate the
correlation filter as a convolution operation and build a one-channel-output convolution layer, as used
in a typical convolutional neural network. Recent trackers [35,38,39,41] follow this manner and achieve
significant improvement in performance on par with correlation-filter trackers. Chen et al. [41]
introduced a single-layer regression model for visual tracking and exploited a novel automatic
hard-negative mining method to facilitate training the regression model. Wang et al. [35] introduced a
fully convolutional network to exploit multiple CNN features by leveraging a feature-map selection
strategy. Both a top layer and a lower layer were jointly used with a switch mechanism during tracking.
Song et al. [38] proposed to apply residual learning to take appearance changes into account on a single
convolutional layer, and formulated the tracking progress in an end-to-end manner by integrating
feature extraction, response-map generation, and model updates into the neural networks. Lu et al. [39]
proposed to apply residual connections to fuse two convolutional layers as well as their output response
maps, achieving remarkable results. However, we observed that residual connections across multiple
layers are more or less suffering from the numerical-imbalance issue (see Section 3.3). In order to tackle
the numerical-imbalance issue, we propose to apply a hierarchy-normalized concatenation operation
to directly connect multiple convolutional layers. The novel connection is fully differential and can
make the network more concise.

2.3. Data Imbalance

The data-imbalance issue often exists in learning applications and has been extensively studied.
Hard-negative mining [51,52], data resampling [53,54], and cost-sensitive loss [55,56] are helpful to
alleviate the data-imbalance issue to some extent. In visual tracking, it is possible to incorporate vast
samples from the whole image. However, the numbers of positive samples are extremely limited and
far fewer than the number of negative samples. Imbalance distribution between positive and negative
deteriorates the performance of the trackers. Chen et al. [41] applied the automatic hard-negative
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mining method to eliminate easy negatives and enhance positives. A recent work [43] on dense-object
detection proposed focal loss to decrease loss from easy samples as well as partially decrease the loss
of hard samples. Song et al. [42] proposed to apply cost-sensitive loss to decrease the effect from easy
negatives. Lu et al. [39] exploited shrinkage loss to penalize the loss from easy samples, and kept
the hard samples unchanged. Unlike the aforementioned solutions for the data-imbalance issue, we
propose a distractor-aware loss to adaptively reinforce significant semantics and extremely penalize
a pure background. This scheme improves both tracking accuracy and robustness, and accelerates
training convergence.

3. Proposed Algorithm

The proposed Distractor-aware Deep Regression Tracking (DaDRT) algorithm follows a general
one-channel-output regression framework. In addition, we exploit a novel distractor-aware loss
function to handle data imbalance and introduce a hierarchy-normalized concatenation connection
to fully exploit multilevel semantics across convolutional layers. Figure 1 shows an overview of our
pipeline. Details are discussed below.

C

Conv5

Conv4
Conv3

Conv2

Conv1

Figure 1. Overview of the proposed deep regression network. The left-side blocks are the fixed-feature
extractor backbone. The right-side blocks are trained in the first frame and updated frame by frame.
The blue blocks represent the 1× 1 channel reduction layers, and red blocks represent the normalization
and rescale layers. The yellow block indicates the target-specified one-channel-output convolutional
regression layer. The connection circle means hierarchy concatenation. The proposed network
effectively exploits semantic abstraction across three convolutional layers.

3.1. Regression via Convolution Layer

The regression model for visual tracking aims to regress dense samples to Gaussian-like soft
labels. Here, we revisit the linear-ridge regression model and formulate the regression model as one
convolutional layer. Given an initial image with labeled target, we can extract dense sample features
X, and generate corresponding Gaussian function labels Y. The coefficients W for regression function
f = X ∗W are estimated by solving the following minimization problem:

min
W
{‖W ∗ X− Y‖2

2 + λ‖W‖2
2} (1)

where ∗ denotes the convolution operation, and λ is a regularization parameter that controls overfitting.
Particularly, there exists a closed-form solution for this problem by transforming the convolution
operation between coefficients W and samples X into an elementwise product in the Fourier domain.
Here, we try to solve the regression problem in the spatial domain by reformulating the problem as
loss minimization of the convolutional neural network.

The loss function in Equation (1) can be reinterpreted as:
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L(W) = ‖F(W, X)− Y‖2
2 + λ‖W‖2

2 (2)

where F(W, X) = W ∗ X is the network output, W is the network weights, and Y is the ground-truth
labels. The convolution operation on X can be carried out via a convolution layer with one-channel
output. The size of the convolution kernel in the regression layer is different from conventional
convolution layers that adopt a small fixed receptive field, such as 3 × 3 and 5 × 5. We set
the receptive-field size of the regression layer to the size of a tracked target in our framework.
The convolutional weights can be effectively calculated by iteratively optimizing W in Equation (2)
using the gradient descent method, which can be implemented in almost all modern deep-learning
frameworks. Regularization parameter λ is usually explained as weight decay in deep-learning
frameworks. In this study, the value of parameter λ is determined by following the default setting in
the implemental platform.

3.2. Distractor-Aware Loss

For deep-regression tracking, it is possible to exploit all real extracted samples by sliding a window
fashion over the whole image during the training and detecting stages. The region of interest (ROI)
contains a large amount of context surrounding the target object, as shown in Figure 2a. The large
surrounding context contains a majority of pure background and few semantic distractors, as shown
in Figure 2b. A large amount of background helps strengthen the discriminative power of the target
object from the background, and distractors help discriminate the target object from a similar context.
However, this also leads to an increase in the number of easy negative samples. Reviewing Equation (2),
when summed over the large input search area, the loss values from easy negative samples submerge
the valuable and rare positive samples and distractors. The learning progress usually drifts to a
classification problem between objects and backgrounds due to the easy negative samples dominating
the gradient. The tracker is less robust to similar semantic distractors.

(a) (b)
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Figure 2. (a) Sliding sampled region of interest (ROI) centered on the target. (b) Obvious semantic
distractors labeled in red bounding boxes. (c) Modulating factor in one training epoch. Note that the
easy background is extremely suppressed, and the target and several selected distractors are reinforced.
(d) Output regression map of the regression network.

Existing solutions to the data-imbalance issue mainly focus on penalizing the importance of easy
negative samples. However, we observed that semantic distractors have a significant contribution
in learning deep-regression networks. We propose to add a modulating factor to the loss that highly
suppresses pure backgrounds and protrudes the target and semantic distractors, as shown in Figure 2c.
Formally, we formulate our distractor-aware loss function as:

L(W) = D� ‖F(W, X)− Y‖2
2 + λ‖W‖2

2 (3)

where D is a distractor-aware modulating factor that balances training sample loss, and � denotes
the elementwise product. In this work, we adaptively carried out the modulating factor for each
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optimization iteration. We denote the regression network output in every iteration by R, which
generally indicates the probability of a position to be the target object. Once we obtained the probability
map, we first identitied a number of N semantic objects by locating the local maximum of R. In general,
there is always one positive sample at the map center and N minus one distributed negative distract
samples. For each semantic sample, we generated a basic modulator Db in terms of soft labels Y
centered at the identified positions:

Db = Y� ek(Y−1) (4)

where k is a scalar penalization factor. Modulator Db aims at highlighting the central influence and
suppressing the surrounding influence. Then, we merged the N basic modulators by summation.
In addition, we took one more modulator on the target location to increase the importance of
positive samples. Figure 2c illustrates a modulating factor in the training iteration. Note that, in
comparison with general deep-regression trackers, the proposed loss function introduces two extra
hyperparameters, that is, k and N. We observed that the larger the value of k was, the larger the penalty
to the surrounding contexts. A larger N means taking more distractors to take into account, which may
overwhelm the only positive sample. On the other hand, a smaller N makes the training process overfit
to the target. Considering the proportion of positive and distractor samples, we fixed the k = 1.6
and the number of semantic objects N to be 6 in all our experiments, meaning we introduced five
adversarial distractors to go against the positive sample.

By applying the modulating factor, distractor-aware loss mainly focuses on positive samples and
adversarial distractors. Extensive comparison with other losses shows that our distractor-aware loss
not only promotes tracking accuracy but also accelerates training speed (see Section 5.3).

3.3. Hierarchy-Normalized Concatenation

The convolutional layers of a typical CNN model, e.g., VGG [28], provide different levels of
semantic abstraction in the features hierarchies. Features in the earlier layers, with higher spatial
details, are helpful in precise localization; features in the later layers capture more semantic abstraction
and are robust to large appearance changes. Motivated by this observation, many efforts have been
made to exploit the merits of multiple convolutional layers, including independent learning [32,35] and
residual connection [38,39]. Danelljan et al. [32] proposed to independently learns correlation filters
over the conv1 and conv5 layers and merges the corresponding output response maps with empirical
weights. Wang et al. [35] proposed to independently exploit two branch networks on the conv4 and
conv5 layers, and merge the output response map with a distractor-detection scheme. Song et al. [38]
proposed to apply residual connections on a single conv4 layer to capture the difference between the
base layer output and the ground truth. Lu et al. [39] exploited the residual connections to fuse conv4
and conv5 layers as well as their output response maps. Here, we propose a novel hierarchy-normalized
concatenation connection to make full use of multiple-level semantic abstraction. We introduced a
normalize operation to balance the features’ numeric value and then concatenated the conv3, conv4,
and conv5 layers to form a strong representation for visual tracking. We compare our scheme with the
aforementioned connections in Figure 3.

Different-level layers represent different types of semantic abstraction. We observed that
integrating across multiple convolutional layers usually suffers from the numeric issue, in which
different layers have significant divergence numeric distribution. We illustrate the numerical statistics
of features from three VGG16 convolutional layers in Figure 4. In general, the regression learning
progress cannot afford enough epochs and samples to regulate the convolutional weights of each
connection branch due to fast convergence. The training process leans to one branch because of numeric
magnitude rather than discrimination power. An existing solution for alleviating the dilemma is to
adjust the convolutional weights and learning rates during the network initialize phase. However, fixed
initialization does not harmonize with diversiform tracking sequences. In order to tackle the numeric
issue, we propose to apply L2 normalization (the red blocks in Figure 1) along the depth dimension
for each semantic abstraction. In addition, we leverage a channel attention scheme to reweight the



Sensors 2019, 19, 387 7 of 20

importance of feature channels. Our connection scheme not only jumps out the weight-initialization
straits but also permits a higher learning rate in regression training, which accelerates convergence.
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Figure 3. Three types of feature connection. (1) Independent connection that is used in traditional
correlation-filter trackers (e.g., ECO [32]). Pediction is obtained by weighted summing from different
correlation-filter responses. (2) By substituting a traditional correlation filter with a convolutional layer,
the second type can exploit various end-to-end residual connections. CREST [38] exploits only a single
convolutional layer (conv4_3 from VGG16) that means feature-1 and feature-2 are the same to form a base
and a residual network. The DSLT [39] leverages two convolutional layers (conv4_3 and conv5_3 from
VGG16) to learn the residual across multiple convolutional layers. (3) Our scheme exploits the feature
adjuster (normalization) to fuse multiple convolutional layers. We learn a regression layer directly on
the reinforced feature represented. The proposed scheme can easily incorporate more features without
increasing the convolutional parameters.
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Figure 4. Visualizations of numeric distribution at different abstraction levels on two sequences.
High-level abstractions (bottom row) emerge with smaller values compared with low-level abstractions
(top row). It is unreasonable to directly add the features of different convolutional layers together.
The limited training samples and epochs cannot afford enough learning procedure to obtain the
appropriate model parameters. Results are best viewed on high-resolution displays.
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4. Tracking via DaDRT

We illustrate the detailed procedure of DaDRT for visual tracking. We decomposed our tracking
process into four stages, namely, model initialization, online detection, scale estimation, and model
update. Details are as follows:

• Model Initialization. At this stage, we follow the general tracking initialization process [17,32,38]
to locate the target of interest as suggested by the benchmark [1–3,57,58]. In initial frame
I0, the target state is usually given by a bounding box bb0 = {x0, y0, w0, h0}, where {x0, y0}
denotes the left-top pixel position and {w0, h0} indicates the target width and height respectively.
We leveraged a new bounding box cp0 = {x0 + (1− cx)w0/2, y0 + (1− cy)h0/2, cxw0, cyh0} to
crop the sample patch for tracking initialization, where scalars cx and cy denote amplification
factors; in this study, we suggest cx = 5, cy = 9. Especially for the unbalanced target-aspect
ratio, we fixed the amplification factor of the long side to 5, and a larger amplification to the
short side to keep the bounding box squarelike. Once the sample patch is acquired, we adopt the
tailored VGG16 network as the backbone-feature extractor and feed the sample patch into the
extractor. Then, we take the output of the conv3_3, conv4_3, and conv5_3 layers as deep features
for further training the regression network. The data flow is illustrated in Figure 1. Meanwhile, all
parameters in the regression layers are randomly initialized following the improved Xavier [59]
method. The regression layers are well-initialized after a number of training steps.

• Online Detection. For current frame It, the previous predicted target state bbt−1 =

{xt−1, yt−1, wt−1, ht−1} is utilized to derive the search patch bounding box cpt = {xt−1 + (1−
cx)wt−1/2, yt−1 + (1− cy)ht−1/2, cxwt−1, cyht−1}. The search patch is cropped according to
bounding box cpt and is delivered to the designed network to generate a response map. Motion
constraint is further introduced to increase the robustness. We leverage an isotropy Gaussian
function to produce motion constraint map that penalizes large deviation away from the previous
target location. We carry out the prediction map by elementwise multiplying the motion map
with the response map. Once we obtain the prediction map, we predict the target object by
locating the maximum prediction value.

• Scale Estimation. After obtaining the target position in the current frame, we extract scale search
patches following the scale pyramid scheme as in ACF [48]. We generate the scale response map by
feeding these scale search patches into our regression network. The index of maximum response
indicates the current scale location. Then, we update the target scale by a smooth manner:

(wt, ht) = β(wp∗, hp) + (1− β)(wt−1, ht−1) (5)

where wt and ht represent the width and height of the target object at frame t, respectively; and
wp, hp are the predicted width and height from the detection scheme. Scalar weight β enables a
smooth update of the target scale.

• Model Update. In order to accommodate the model to the varied object appearance,
we incrementally update our tracker frame by frame. For each frame, we crop the training patch
relying on the estimated location and scale and generate corresponding soft labels. To alleviate
model drift from noisy updates, training data pairs from past T frames are all adopted for
online update.

5. Experiments

In this section, we introduce the implementation details and compare our DaDRT tracker with
state-of-the-art trackers on five frequently used benchmark datasets for performance evaluation.
Then, we conduct extensive ablation studies to analyze the effects of distractor-aware loss and
hierarchy-normalized concatenation connection.
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5.1. Implementation Setup

We implement the proposed DaDRT in Matlab using the matconvnet toolbox [60]. Our
backbone-feature extractor is based on VGG16 with only the first two pooling layers retrained. We
extract the feature abstractions from the conv3_3, conv4_3 and conv5_3 layers; then, we apply a 1 × 1
convolutional layer to reduce the feature channels to 48. Regression labels and the motion map are
both generated using a two-dimensional Gaussian function with a peak value of 1.0. We set the kernel
width to be proportional (0.08) to the target size for the regression labels and proportional (1.0) to the
geometric mean of target size for motion constraint map. In the initial training stage, we iteratively
apply the SGD optimizer to update the weights in the regression network with a fixed learning rate of
8 × 10−5 and weight decay of 5 × 10−4, until the loss in Equation (3) is below a given threshold of
0.1, or the maximum 30 train epochs that are allowed are reached. In the updating stage, we adopt the
training data pair from the past T = 4 frames to update the network beyond two train epochs with a
lower leaning rate 3 × 10−5. For scale estimation, we utilize three levels of scale pyramid with the
change ratio 5% and set the smooth update factor β = 0.6. The optimal hyperparameters (e.g., learning
rate and weight decay) are determined by the grid search method on a subset of OTB-15. Once the
optimal hyperparameters are obtained, we fix the optimal hyperparameters for all the evaluation
experiments. Our DaDRT tracker runs on a PC with an i7-2.4GHz CPU and a NVIDIA 1080-Ti GPU
and the average speed is about 3 FPS. The source code and evaluation results will be publicly available.

5.2. State-of-the-Art Comparison

Here, we extensively evaluate the proposed DaDRT algorithm on five challenging benchmark
datasets, OTB-13 [1], OTB-15 [2], TC128 [57], UAV123 [3], and VOT17 [58]. We follow the
standard evaluation approaches and compare our results with other state-of-the-art trackers using
the author-provided results for fair comparison. We used the same tracker configuration for
all experiments.

5.2.1. Comparison with OTB

There are two versions of OTB datasets, OTB-13 and OTB-15. OTB-15 is an extension of OTB-13,
and the two datasets contain 50 and 100 challenging sequences, respectively. All sequences are
labeled with ground-truth bounding boxes and various attributes including illumination variation
(IV), scale variation (SV), occlusion (OCC), deformation (DEF), motion blur (MB), fast motion (FM),
in-plane rotation (IPR), out-of-plane rotation (OPR), out-of-view (OV), background clutters (BC), and
low resolution (LR). We compared our tracker with 29 trackers from the OTB benchmark and 39
other state-of-the-art trackers, including C-COT [31], CF2 [29], CREST [38], DCFNet [61], SRDCF [22],
DeepSRDCF [30], DSST [19], ECO [32], HDT [50], deepLCT [62], LCT [24], MCPF [63], MDNet [36],
SRDCFdecon [64], STAPLE [25], VITAL [42], PSCF [65], CNN-SVM [66], KCF [17], MEEM [67],
MUSTer [68], HCF [69], ADNet [70], DLT [34], STC [71], TGPR [72], DSLT [39], BACF [21], DAT [73],
PTAV [74], SiamRPN [75], DaSiamRPN [76], DLSSVM [77], BIT [78], FCNT [35], ACFN [79], and
RCF [80]. We evaluated all tracker datasets using one-pass evaluation (OPE) with precision and
success plots metrics as proposed in References [1,2]. The precision metric measures the frame-location
rate within a certain threshold distance from ground-truth locations. Threshold distance was set as 20
pixels. The success plot metric was set to measure the overlap ratio between the predicted bounding
boxes and the groundtruth.

Figure 5 shows the evaluation results with one-pass evaluation. We only show the top 15 trackers
for presentation clarity. The distance-precision (DP) and area-under-curve (AUC) scores for each
tracker are reported in the figure legend. The proposed DaDRT approach outperformed all the other
trackers in terms of precision and success scores. Our tracker achieved leading performance with DP
of 0.962/0.942 and AUC of 0.736/0.717 on OTB-13 and OTB-15, respectively.
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Figure 5. Precision and success plots using one-pass evaluation on the OTB-13 and OTB-15 datasets.
The performance score for each tracker is shown in the legend. Our tracker achieves leading
performance among the evaluated trackers. Results are best viewed on high-resolution displays.

In addition, we further evaluated tracker performance under different video attributes on the
OTB-15 dataset. Figure 6 compares performance under eleven annotated video attributes using
one-pass evaluation with the AUC score. The results indicate that our DaDRT tracker is effective in
handing all challenging attributes, especially background clutter and illumination variation, obtaining a
significant success overlap score of 0.740/0.742, respectively. We attribute the outstanding performance
of the proposed DaDRT tracker to two reasons. Firstly, distractor-aware loss not only effectively
alleviates the data-imbalance issue, but also facilitates the robust model update. By automatically
mining the most relevant distractor, the updated tracker is robust to the target appearance’s obvious
changes and similar backgrounds, which often confuse the existing trackers such as DAT and C-COT.
Secondly, the hierarchy-normalized concatenation scheme integrates multiple convolutional layers to
strong feature representation and optimized as a whole that can fully take advantage of end-to-end
training across multiple convolutional layers.
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Success plots of OPE - deformation (44)
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Success plots of OPE - fast motion (39)
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Success plots of OPE - illumination variation (38)
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Success plots of OPE - in-plane rotation (51)
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Success plots of OPE - low resolution (9)
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Success plots of OPE - occlusion (49)
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Success plots of OPE - out-of-plane rotation (63)
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Success plots of OPE - out of view (14)

DADRT [0.678]

ECO [0.660]

VITAL [0.660]

PSCF [0.660]

C-COT [0.648]

MDNet [0.627]

DAT [0.615]

ADNet [0.599]

DSLT [0.595]

PATV [0.570]

CREST [0.566]

DCFNet [0.557]

deepSRDCF [0.553]

MCPF [0.553]

BACF [0.552]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - scale variation (64)
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Success plots of OPE on OTB-15
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Figure 6. Overlap success plots under the eleven annotated video attributes. We only show the top
10 trackers for each challenging attribution. Our tracker ranked first in all attributes. Results are best
viewed on high-resolution displays.

5.2.2. Comparison with TC-128

The Temple Color 128 (TC-128) dataset contains 128 colorful video sequences. We conducted
one-pass evaluation with the same setting as OTB datasets. We evaluated with 18 baseline trackers
provided by the authors of the TC-128 and other state-of-the-art trackers, including TLD [81],
SAMF [18], MUSTer [68], deepSRDCF [30], SRDCF [22], SRDCFdecon [64], C-COT [31], CREST [38],
DSST [19], STAPLE [25], MEEM [67], PATV [74], MCPF [63], and ECO [32]. The OPE precision plots
and success plots are shown in Figure 7. Among the evaluated methods, our approach achieved the
best distance precision and the second-best AUC success score. The proposed tracker achieved a
distance precision score of 0.821, which outperformed the ECO (0.800), MCPF (0.776), and PATV (0.741)
methods with a large margin.
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Figure 7. Precision and success plots with the TC-128 dataset using one-pass evaluation. We only show
the top 15 performance trackers for representation clarity. Our tracker ranked first in distance precision
and second in overlap success. Results are best viewed on high-resolution displays.

5.2.3. Comparison on UAV-123

The UAV-123 dataset contains 123 video sequences captured from low-altitude unmanned
aerial vehicles. Besides the baseline trackers evaluated in the UAV-123 benchmark, we compared
the proposed trackers with several representative trackers, including ECO [32], SiamRPN [75],
DaSiamRPN [76], and ECO-HC [32]. Figure 8 illustrates the precision and success plots of the compared
trackers using one-pass evaluation, respectively. Our approach achieved favorable performance
compared with state-of-the-art approaches. Specifically, the performance of the proposed tracker was
superior to other regression trackers (e.g., ECO and SRDCF) in terms of distance precision and overlap
success score.
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Figure 8. Precision and success plots with the UAV-123 dataset using one-pass evaluation. We only
show the top 10 trackers for representation clarity. Our tracker achieved favorable performance (ranking
third both in the distance-precision (DP) and area-under-curve (AUC) scores) against state-of-the-art
methods. Results are best viewed on high-resolution displays.

5.2.4. Comparison with VOT17

VOT datasets are from the visual-object-tracking (VOT) challenges that provide the tracking
community with a precisely defined and repeatable way of comparing short- and long-term trackers,
as well as a common platform for discussing the evaluation and advancements made in the field of
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visual tracking. The standard VOT evaluation scheme applies a reset-based methodology. Whenever a
failure (zero overlap with the ground truth) is detected, the tracker is reinitialized five frames after
failure. The overall performance is measured by the expected average overlap (EAO), which combines
the raw values of per-frame accuracies and failures in a principled manner. Here, we compared the
proposed tracker with 51 other state-of-the-art trackers on VOT17 challenges.

Figure 9 illustrates the EAO ranking. Our tracker achieves the remarkable rank (4th). VOT-2017
report [58] recommends a very strict state-of-the-art bound. Any tracker exceeding 0.201 under EAO
metric on the VOT17 benchmark is considered the state-of-the-art. The performance of DaDRT is on
par with the ECO and better than CCOT, MCPF and CRT. According to the definition of the VOT
report, all these trackers are state-of-the-art.
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Figure 9. Expected average overlap plot for VOT17 challenge with the proposed Distractor-aware
Deep Regression Tracking (DaDRT) tracker. Only the top 15 performing trackers are labeled for clarity.
Results are best viewed on high-resolution displays.

5.3. Ablation Studies

In DaDRT, we trained the regression network using three convolutional layers and
distractor-aware loss. We conducted several experiments to validate the effectiveness of each
component. By choosing two of the three used convolutional layers as features, we implemented
three alternative approaches to validate multiple convolutional-layer connections. We denoted
the three approaches as DaDRT_34, DaDRT_45, and DaDRT_35, where numbers indicate the used
convolutional layers. Figure 10 shows the evaluation results on the OTB-15 dataset. We observe that
only taking two convolutional layers as features could also achieve great performance compared with
other state-of-the-art trackers. Furthermore, the combination across low- and high-level abstractions
achieves better accuracy. The performance of DaDRT_34 and DaDRT_35 was almost the same, and the
performance of DaDRT_45 was far behind. The evaluation results indicate that spatial detail is more
important than semantic abstraction in learning regression networks.

Keeping the proposed regression network bone unchanged, we exploited two other
data-imbalance schemes, hard-negative mining loss (HN) [41] and shrinkage loss (SK) [39], to
exhibit the attribution comparing with other strategies to some extent. In order to obtain intuitive
observations, we measured the origin Euclidean distance (ED) between network output and ground
truth. The experimental results on sequence bolt are illustrated in Figure 11. From the training progress,
we observed that both schemes could handle the data-imbalance issue well, with a fast convergence
speed. However, HN and SK both have a large displacement (exceeding 1000) with the ground truth
under the same training conditions. Furthermore, our approach can achieve lightweight (less than 20)
Euclidean loss. Reviewing the schemes, both HN and SK loss take an importance factor to highlight
the valuable rare positive samples and extremely suppress the background, which may make the
model overfit to the target. Otherwise, the proposed distractor-aware loss scheme could exploit the
distractors from the background context to resist the target without overfitting.
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Figure 10. Ablation-study results on the OTB-15 dataset using one-pass evaluation. The numbers in
the legend indicate the average distance-precision scores at 20 pixels and the area-under-curve success
scores, respectively. Results are best viewed on high-resolution displays.
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Figure 11. Training progress on different data-imbalance schemes. Each pair illustrates strategy
loss and real Euclidean loss. With the same training conditions, all scheme losses rapidly converge.
However, the HN and SK losses emerge with large displacement in ED loss. The training process
actually requires more training epochs to prevent model overfitting. The proposed distractor-aware
loss method can converge rapidly without overfitting. Results are best viewed on high-resolution
displays.

5.4. Qualitative Evaluation

Figure 12 shows qualitative results of the top performing trackers: ECO [32], VITAL [42],
CREST [38], DSLT [39], HCF [69] and the proposed DaDRT tracker on 12 challenging sequences. In a
majority of these sequences, the CREST tracker failed to locate target objects or incorrectly estimated
the scale because of the data-imbalance and numerical issues. The DSLT tracker exploits shrinkage
loss to alleviate the data-imbalance issue. The VITAL tracker exploits an adversarial learning scheme
to make the model focus on the most temporally robust features, and leverages cost-sensitive loss to
handle the data imbalance-issue. The ECO tracker is a correlation-filter-based tracker. It extracts CNN
features in addition to handcrafted features (HOG) and independently learns correlation filters. It does
not take advantage of information across different features. The proposed DaDRT tracker emphasizes
distractors during the training process, which can facilitate the robustness. We further utilized a
hierarchy-normalized concatenation connection to fuse abstractions from multiple convolutional
layers. The proposed DaDRT tracker performs favorably against state-of-the-art trackers in a majority
of challenging sequences.
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Figure 12. Qualitative results comparing DaDRT with other trackers (ECO, VITAL, CREST, DSLT, HCF)
on 12 challenging sequences (from left to right and top to down: bike, basketball, bolt2, soccer, carscale,
clifbar, diving, freeman4, girl2, human3, motorrolling and matrix, respectively). The proposed DaDRT
tracker performed favorably against state-of-the-art methods. In the very challenging soccer, clifbar, and
motorrolling sequences, DaDRT can always track to the target when most other trackers fail. Results are
best viewed on high-resolution displays.

5.5. Failure Case

We show some typical failure cases of the proposed tracker in Figure 13. The proposed method
failed in these cases mainly because of long-term occlusions or nonrigid deformation with scale
change. The incremental frame-by-frame model update scheme may draft to the occlusions when
long-term occlusions occur (e.g., bird1). On the other hand, for nonrigid deformation with scale change
(e.g., jump, trans, ironman), the model must take a significant learning to account for large appearance
changes. The proposed method balances this dilemma with an asuassive model update pace, which
cannot take care of different challenges at the same time. Considering an effective discriminative
strategy to distinguishthe different situations may help to alleviate this problem to some extent.

#0080 #0170 #0190 #0010 #0020 #0050

#0040 #0060 #0100 #0010 #0110 #0150

Figure 13. Failure cases of the proposed method on bird1, jump, trans, ironman [2], where we used
red and green bounding boxes to denote our results and ground truths, respectively. Results are best
viewed on high-resolution displays.
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6. Conclusions

In this paper, we proposed novel distractor-aware loss to alleviate the data-imbalance issue
in learning regression networks. This enables the model to focus on positive and hard-negative
samples during the training process. We also applied a hierarchy-normalized concatenation scheme to
improve regression learning by exploiting strong representation across multiple convolutional layers.
The proposed regression network is fully differentiable and can be trained end to end. Furthermore,
incorporating other types of features is straightforward. Extensive experiments on five benchmarks
demonstrate that the proposed DaDRT tracker performs favorably against state-of-the-art methods.
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