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Abstract: Hysteresis is a kind of nonlinearity with memory, which is usually unwanted in practice.
Many phenomenological models have been proposed to describe the observed hysteresis. For instance,
the Prandtl-Ishlinskii (PI) model, which consists of several backlash operators, is the most widely
used. On the other hand, the well-known Madelung’s rules are always used to validate hysteresis
models. It is worth pointing out that the PI model obeys Madelung’s rules. In this paper, instead
of considering these rules as criteria, we propose a modeling method for symmetric hysteresis by
directly constructing the trajectory based on Madelung’s rules. In the proposed method, turning
points are recorded and wiped out according to the input value. After the implementation of the
recording and wiping-out mechanisms, the curve which the current trajectory moves along can be
determined and then the trajectory can be described. Furthermore, the relationship between the
proposed method and the PI model is also investigated. The effectiveness of the presented method is
validated by simulation and experimental results.
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1. Introduction

Hysteresis is the phenomenon that can be found in a wide variety of smart materials [1–3], such as
piezoceramics [4–6], magnetostrictive materials [7], and shape memory alloys [8]. It brings considerable
problems to the application of smart materials because the output of the system actuated by these materials
cannot be predicted without the knowledge of the hysteresis behavior of the system. Generally, it is hard
to give an accurate and general model through basic physical principles of a material. To simulate the
observed hysteresis behavior, many phenomenological models have been developed in the literature,
e.g., Bouc-Wen [9–12], Duhem, Preisach model [1], Maxwell [4], and Prandtl-Ishlinskii (PI) models [13].

The above phenomenological models can further be classified into two categories: differential-based
models and operator-based models. The Bouc-Wen and Duhem models are differential-based models since
they contain the derivative of the output in the model. Compared with the Duhem model, the Bouc-Wen
model is more popular since it has only a few parameters to be identified. For this reason, it has been
widely used in precision control systems actuated by piezoelectric ceramics [10,11]. However, it was shown
in Reference [12] that the Bouc–Wen model is inferior to the Preisach model in the trajectory prediction of
piezoelectric actuators (PEAs). The inverse of a hysteresis model is also important since it can be used
as a feedforward controller to reduce the hysteretic effect. Unfortunately, the construction of the inverse
for the Bouc–Wen model is a difficult task since it cannot be inversed analytically [3]. In Reference [9],
a Bouc–Wen least square support vector machine was proposed for hysteresis compensation without
the need to model the inverse. A multiplicative inverse structure was proposed in Reference [10] to
compensate the hysteresis modeled by the Bouc–Wen model. The Preisach model, Maxwell model,
and PI model all belong to operator-based models. The main idea of operator-based models is to use
the weighted sum of several simple motions to describe complex movements. For example, the simple
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relay hysteron is the basic operator in the Preisach model. Generally, the number of adopted operators
influences the accuracy of the Preisach model. The accuracy grows with the number of operators.
However, the computation time also increases. It is not convenient to use the Preisach model in
real-time applications since it cannot be inversed analytically. Some strategies were proposed to overcome
these disadvantages of the Preisach model, such as the inverse multiplicative technique [14] and the
recursive approach [15]. As for the Maxwell model, the basic operator is the elasto-slide element, which
consists of a massless linear spring and a massless block that suffers from Coulomb friction. To give
a physical insight into PEAs, the elasto-slide element was replaced with the resistive capacitance element in
Reference [4]. Among the operator-based models, the PI model is the most widely used in practice [10,13].
It is a weighted superposition of several backlash operators. One of the advantages of the PI model lies in
the fact that its inverse exists and is also of the PI type. The parameters of the inverse PI model can be
derived from those of the PI model, and this property facilitates the design of feedforward controllers.
It should be emphasized that the above mentioned phenomenological models are only good at describing
rate-independent and symmetric hysteresis.

However, the observed hysteresis is always rate-dependent or asymmetric, or both of them.
A rate-dependent circuit model was proposed in Reference [16], where the creep phenomenon was
also considered. Note that this model has an equivalent hardware circuit. In References [17,18],
the rate-dependent PI model was developed by dynamically changing its threshold values according
to the input rate. In Reference [19], the Bouc–Wen model cascaded with a linear dynamic model was
used to describe rate-dependent hysteresis. Based on the classical PI model, many modified forms have
been presented to describe asymmetric hysteresis [13,20,21] and rate-dependent hysteresis [22–24].
In essence, the core of these models is still the classical PI model. Therefore, the investigation for
rate-independent and symmetric hysteresis models is important, since they are the basis of describing
rate-dependent and asymmetric hysteresis.

On the other hand, German physicist Madelung presented three rules based on his observation
of the hysteresis phenomenon in the early 20th century. These rules are always used to validate
hysteresis models [25], such as the Preisach model and the PI model [13]. In this paper, instead of
considering Madelung’s rules as criteria, we propose a modeling method for the rate-independent and
symmetric hysteresis based on these rules. In our method, turning points are recorded as the record
of movement history and then wiped out according to the input value. After the implementation of
the recording and wiping-out mechanisms, a key turning point named as the current turning point
(CTP) is determined. Then the trajectory of the symmetric hysteresis can be described by this CTP.
The contributions of this paper are listed as follows:

• We propose a modeling method to describe the symmetric hysteresis by directly constructing its
trajectory based on Madelung’s rules rather than considering these rules as criteria. Furthermore,
this method is translated into an algorithm that can be run by digital processors.

• The relationship between the proposed method and the PI model is investigated.

The remainder of this paper is organized as follows: In Section 2, the proposed hysteresis modeling
method is explained in detail. Simulations and experiments are conducted in Section 3 to show the
effectiveness of this method. At last, some discussions and conclusions are drawn in Section 4.

2. Trajectory Construction Method

2.1. Madelung’s Rules and Their Applications in Trajectory Construction

In this subsection, the definition of turning point is first given. A turning point is a point on
the trajectory where the input changes its direction, for instance, point A0 and point A1 as shown in
Figure 1a,b, respectively. For point A on the trajectory, we use xA and yA to represent its x− and y−
coordinates, respectively (see Figure 1a). Before introducing our method, we list Madelung’s rules
as follows [13,25]:
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1. Any trajectory starting from a turning point is uniquely determined by the coordinates of this
point. For example, the turning point A1 in Figure 1b is the starting point of curve A1 A0, as we
will see in the next that the function of A1 A0 can be uniquely described by xA1 and yA1 .

2. If any point A2 on the trajectory, as shown in Figure 1c, becomes a new turning point, then the
trajectory leads back to the previous turning point A1. In other words, any hysteresis loop is closed.

3. If the trajectory moving along curve A2 A1 is continued beyond A1, then it coincides with the
continuation of curve A0 A′0 as if hysteresis loop A1 A2− A2 A1 did not exist, as shown in Figure 1d.

In addition to the above three rules, a fourth rule can be given for symmetric hysteresis.

4. The hysteresis loops of symmetric hysteresis are centrally symmetric.
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(b) Trajectory on A1 A0; (c) Trajectory on A2 A1; (d) Transfer of the trajectory from A2 A1 to A0 A′0.

In our method, it is assumed that the starting point of the hysteretic trajectory is point A0

which corresponds to the minimum input value, as shown in Figure 1a. Starting from point A0,
the trajectory moves along the major ascending curve A0 A′0. Note that the function of A0 A′0 is f0(x),
where x ∈ D f0 = [A0, A′0] and D f0 is the domain of f0(x). According to Rule 2, the trajectory leads
back to A0 along A1 A0 after it is reversed at point A1, where xA1 ∈ (xA0 , xA′0

] (see Figure 1b). We
can see from Rule 4 that A1 A0 and A0 A1 are centrally symmetric as illustrated in Figure 1b, and,
thus, point (x, f1(x)) on A1 A0 and its corresponding point (xt, f0(xt)) on A0 A1 has the following
relationship:  x+xt

2 =
xA0+xA′0

2
f1(x)+ f0(xt)

2 =
f0(xA0 )+ f0(xA′0

)

2

(1)

where (xA0 + xA′0
)/2, ( f0(xA0) + f0(xA′0

))/2) is the central point of hysteresis loop A1 A2 − A2 A1.
Removing xt in Equation (1), the function of A1 A0 can be expressed by

f1(x) = f0(xA0) + f0(xA1)− f0(xA0 + xA1 − x), x ∈ D f1 = (xA0 , xA1). (2)

If point A2 on A1 A0 becomes a new turning point, the new curve A2 A1 can be described by

f2(x) = f1(xA1) + f1(xA2)− f1(xA1 + xA2 − x), x ∈ D f2 = (xA2 , xA1). (3)
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At this time, the trajectory moves along curve A2 A1 as illustrated in Figure 1c. If the trajectory is
continued beyond the former turning point A1, the trajectory will then move onto curve A0 A′0 as if
hysteresis loop A1 A2 − A2 A1 did not exist at all (see Rule 3), which means A1 and A2 can be wiped
out. Otherwise, the trajectory should be reversed at turning point A3 which belongs to A2 A1, and the
function of the new curve A3 A2 can be written as

f3(x) = f2(xA2) + f2(xA3)− f2(xA2 + xA3 − x), x ∈ D f3 = (xA2 , xA3). (4)

Similarly, we can construct the following trajectory for any input signal. Without loss of generality,
when turning points A0, A1, · · · , Am are generated in sequence, the function of curve Ak Ak−1 can be
expressed by

fk(x) = fk−1(xAk−1) + fk−1(xAk )− fk−1(xAk−1 + xAk − x),

{
x ∈ D fk

= (xAk−1 , xAk ) f or k is even
x ∈ D fk

= (xAk , xAk−1) f or k is odd
(5)

where k = 1, 2, · · · , m. It is noted that Equation (5) is not suitable for real-time applications since it is
an iterative equation. In fact, Equation (5) can be simplified as follows:

fk(x) =

{
fk−1(xAk )− f0(xA0) + f0(xA0 + xAk − x), x ∈ D fk

= (xAk−1 , xAk ) f or k is even
fk−1(xAk ) + f0(xA0)− f0(xA0 − xAk + x), x ∈ D fk

= (xAk , xAk−1) f or k is odd
(6)

where fk−1(xAk ) is the y-coordinate of point Ak. Note that there are three terms in Equation (6)
for each value of k, the first term is fk−1(xAk ) and the other two terms can be computed by f0(x).
This means that curve Ak Ak−1 can be considered to be determined by the coordinates of point Ak
and, thus, Rule 1 is validated. According to Rule 3, the trajectory is transferred from Ak Ak−1 to
Ak−2 Ak−3 (k = 3, 4, · · · , m) once point Ak−1 is surpassed.

Until now, we have shown how to use Madelung’s rules to describe the trajectory of symmetric
hysteresis. Next, we will translate this method into a computer algorithm. Before we proceed, some
observations are made as follows:

• As the recorders of the movement history, all the turning points should be identified and recorded.
• If the trajectory surpasses previous turning point Ak−1, it will be transferred to the previous curve

Ak−2 Ak−3. Point Ak−1 and its previous point Ak should be wiped out since they are of no use to
describe the future trajectory.

• The domain range of the curve described by Equation (6) is decreasing with k, which means that

D fk
⊂ D fk−1

⊂ · · · ⊂ D f1 ⊂ D f0 (7)

• The trajectory at any time instant must be on one of the curves described by Equation (6), namely
the current curve. If the current curve is determined, the trajectory can then be described. In fact,
this curve can be determined by finding the minimum domain that contains the input value x
among the existing curves. Mathematically, we have

Dc = min
σ(D f )

{
x ∈ D f , D f ∈ Dall

}
(8)

where Dc is the domain of the current curve, σ(D f ) represents the length of D f , and

Dall =
{

D f0 , D f1 , · · · , D fm

}
.

• If k is odd, the curve described by Equation (6) is a descending curve, and it is an ascending curve
when k is even.
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2.2. Algorithm and Complex Analysis

Based on the above analysis, it is obvious that the trajectory at any time instant must be on the
current curve. The starting point of this curve is defined to be the current turning point (CTP). Once the
CTP is determined, the trajectory can be described by Equation (6) according to Rule 1. The flowchart
of the algorithm is shown in Figure 2, where each block is labeled to facilitate the presentation.Sensors 2018, 18, x 6 of 17 
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At the beginning, the initialization is conducted in S0. The function of the major ascending curve
is f0(x), and it is described by the following polynomial

f0(x) = cnxn + cn−1xn−1 + · · · c1x + c0 (9)

where ci (i = 0, 1, · · · , n) is the coefficient and n is the degree of the polynomial. In the algorithm,
TPs are further classified into two types: left turning points (LTPs) and right turning points (RTPs).
For instance, A0, A2, A4, · · · are LTPs and A1, A3, A5, · · · are RTPs. Array XLTP and array YLTP are
used to record the x− and y− coordinates of LTPs, respectively. Similarly, XRTP and YRTP are used to
record the coordinates of RTPs. Auxiliary variables x1, y1, and x2 are utilized to identify turning points.
The Boolean variable TP_ f lag is the indicator for the type of the latest turning point. For instance,
TP_ f lag = 0 implies that the latest turning point is an LTP and the trajectory moves along some
ascending curve. The integer variable index represents the position of the CTP in turning point arrays.
Furthermore, temporary variables le f t, right, and mid are used in the binary search method. In S1,
the new input value x is read into the program. The remainder of the algorithm can mainly be divided
into three parts:

The first part consists of S2, S3, S4_1, and S4_2. The first step aims to identify turning points.
To identify whether the previous point (x1, y1) is a turning point, the following inequality is utilized.

(x− x1)(x1 − x2) < 0 (10)

where x1 and x2 are two input values previous to x. If Inequality (10) holds, point (x1, y1) is a turning
point. Furthermore, it is an LTP if x− x1 > 0 and it is an RTP if x− x2 < 0. Next, this point is restored
in either S4_1 or S4_2 according to its type.

The second part contains S5, S6_1, S6_2, and S7. The objective of this part is to determine the CTP
and to wipe out the turning points after the CTP. As mentioned earlier, the current curve and the
CTP can be determined by Equations (7) and (8). Herein, we will give simplified results. We can see
from Equation (7) that XLTP and XRTP are naturally sorted in ascending order and descending order,
respectively. To see the fact, the domains of the functions described by Equation (6) are plotted in
Figure 3, where we have
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{
xA0 < xA2 < xA4 < xA6 < · · ·
xA1 > xA3 > xA5 > xA7 > · · · (11)

If TP_ f lag = 0, the latest turning point Am is an LTP and the current curve is an ascending curve.
Furthermore, we have xA0 < xA1 < · · · < xAm < x, and, thus, Expression (8) can be simplified as
follows:

D f =


D fm , x < xAm−1

D fk
, xAk ≤ x < xAk−2 , k = 3, 5, · · · , m− 1

D f0 , xA1 ≤ x ≤ xA′0

(12)
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On the contrary, if TP_ f lag = 1, the turning point Am is an RTP and Expression (8) can be
rewritten as

D f =


D fm , xAm−1 < x
D fk

, xAk−2 ≤ x < xAk , k = 4, 6, · · · , m− 1
D f0 , xA0 ≤ x ≤ xA2

(13)

Apparently, the CTP can be determined by locating the position of x in XLTP or XRTP. As shown
in S6_1 and S6_2 of Figure 2, the binary search method is used to locate the position of x. After the
“while” operation, the value of right is exactly the target position. Furthermore, all the turning points
after the CTP are wiped out by setting index = right in S7.

The third part comprises S8, S9_1, S9_2, and S10. In this part, the output y is computed using the
CTP (see Equation (6)). In addition, auxiliary variables are updated only when x 6= x1, since successive
identical input values will influence the identification of turning points.

Owing to the wiping-out mechanism, the number of turning points cannot be increased infinitely.
The maximum number of turning points equals to Nu, where Nu is the number of different input
values. For instance, a data acquisition system with a 12-bit digital-to-analog converter (DAC) has
Nu = 212 = 4096 different input values. On the other hand, since LTPs and RTPs are generated
alternatively and eliminated in pairs. Thus, we can simply suppose that the number of LTPs is the
same as that of RTPs. Note that the number of turning points should be no more than Nu. Therefore,
the length of each array in the algorithm can be set to Nu/2.

Apparently, the binary search method is the main body of the algorithm, and its computational
complexity is T(L) = O(log2 L), where L is the length of the input array. In our algorithm,
the maximum value of L is L = Nu/2 = 2ns−1, where ns is the resolution of the used DAC. Then we can
see that the computational complexity of the algorithm is O(log2 2ns−1) = O(ns) and the maximum
computation time (MCT) of the algorithm corresponds to the case when L = 2ns−1. In addition to
computational complexity, the space complexity of the algorithm is O(Nu) = O(2ns).

2.3. Parameter Identification

The least mean square method is used to identify the parameters of f0(x) in Equation (9).
The oscillating input signals, such as the sinusoidal and triangular waves, between the minimum and
maximum input are used to get the input and output data. When the input is increased from the
minimum value xA0 to the maximum value xA′0

, the trajectory moves along the major ascending curve.
However, note that when the input value decreases, the trajectory moves along the descending curve
f1(x) rather than f0(x). In order not to lose the information of the descending curve f1(x), the point
on the descending curve has to be translated to its corresponding point on the major ascending
curve. Note that f0(x) and f1(x) are centrally symmetric, the point (x, f1(x)) can be translated to its
corresponding point (xt, f0(xt)), as shown in Figure 4, where{

xt = xA0 + xA′0
− x,

f0(xt) = f0(xA0) + f0(xA′0
)− f1(x).

(14)

Based on Equation (14), the output–input data can be reproduced by the algorithm shown in
Figure 5. In the algorithm, the output–input characteristics of f0(x) can be totally captured by the
reproduced arrays X′_data and Y′_data. Then the least mean square method can be used to derive the
coefficients of f0(x).
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Figure 5. Data reproduction algorithm.

Simulation Example 1: We assume that x2 (x ∈ [0, 1]) is the function of the major ascending
curve. After the injection of the sinusoidal wave with constant amplitude 1, the input and output
data are collected in X_data and Y_data, respectively. The plot of Y_data versus X_data is shown in
Figure 6, where the output data are affected by noises. Setting n = 2 in Equation (9) and applying the
identification algorithm, we have f0(x) = 1.0005x2 − 0.0008x + 0.0002 (see Figure 6), which is very
close to the function x2.



Sensors 2019, 19, 352 9 of 15
Sensors 2018, 18, x 10 of 17 

 

 
Figure 6. Simulation data and the function 0( )f x  in Example 1. 

2.4. Relationship with the PI Model 

Generally, the PI model consists of a set of backlash operators. Considering the fact that input 
signals for PEAs are positive, one-side backlash operators [20,21] are used in this paper. The PI 
model with one-side backlash operators can be written as 

= =

= =

= = −

= = − −

 
 

PI PI

PI PI

PI 1 1

PI PI1 1

(0) [ ](0) max( (0) ,min( (0),0))

( ) [ ]( ) max( ( ) ,min( ( ), ( )))

n n
i i i ii i

n n
i i i i si i

y w H x w x r x

y t w H x t w x t r x t y t T
 (15) 

where [ ]( )iH x t  is the one-side backlash operator, iw  is the weight value, ir  is the threshold 

value, and PIn  is an integer which represents the number of operators. The function of the major 
ascending curve the PI model is  

κ
=

= PI

PI 1
( ) ( )n

i ii
f x w x  (16) 

where 

κ
 ∈=  − ∈

0, [0, ]
( )

, ( , ]
i

i
i i

x r
x

x r x r r
 (17) 

It is assumed that = < < <
PI1 20 nr r r . At this time, we can present a question as follows: If 

PI ( )f x  is used to replace 0 ( )f x , is the trajectory construction method able to compute the output of 
the PI model? The answer is “yes” since the PI model is symmetric and obedient to Madelung’s 
rules. In other words, the output of the trajectory construction method is equivalent to that of the PI 
model. This equivalence is not accidental since the trajectory construction method captures the 
symmetric property of the PI model and guarantees the equivalence in principle. 

Simulation Example 2: To simulate the hysteresis phenomenon in Example 1, we use ten 
operators to construct the PI model. The parameters of the PI model are listed in Table 1. Next, a 
series of different types of input signals are used to excite both models. The output signals of these 
two models are also plotted in Figure 7, where we can see that these two methods have the same 
output signals. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Original data
f0(x)

Figure 6. Simulation data and the function f0(x) in Example 1.

2.4. Relationship with the PI Model

Generally, the PI model consists of a set of backlash operators. Considering the fact that input
signals for PEAs are positive, one-side backlash operators [20,21] are used in this paper. The PI model
with one-side backlash operators can be written as

yPI(0) = ∑nPI
i=1 wi Hi[x](0) = ∑nPI

i=1 wi max(x(0)− ri, min(x(0), 0))
yPI(t) = ∑nPI

i=1 wi Hi[x](t) = ∑nPI
i=1 wi max(x(t)− ri, min(x(t), yPI(t− Ts)))

(15)

where Hi[x](t) is the one-side backlash operator, wi is the weight value, ri is the threshold value, and
nPI is an integer which represents the number of operators. The function of the major ascending curve
the PI model is

fPI(x) =
nPI

∑
i=1

wiκi(x) (16)

where

κi(x) =

{
0, x ∈ [0, ri]

x− ri, x ∈ (ri, r]
(17)

It is assumed that 0 = r1 < r2 < · · · < rnPI . At this time, we can present a question as follows:
If fPI(x) is used to replace f0(x), is the trajectory construction method able to compute the output of
the PI model? The answer is “yes” since the PI model is symmetric and obedient to Madelung’s rules.
In other words, the output of the trajectory construction method is equivalent to that of the PI model.
This equivalence is not accidental since the trajectory construction method captures the symmetric
property of the PI model and guarantees the equivalence in principle.

Simulation Example 2: To simulate the hysteresis phenomenon in Example 1, we use ten operators
to construct the PI model. The parameters of the PI model are listed in Table 1. Next, a series of
different types of input signals are used to excite both models. The output signals of these two models
are also plotted in Figure 7, where we can see that these two methods have the same output signals.Sensors 2018, 18, x 11 of 17 
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Table 1. Parameters of the Prandtl-Ishlinskii (PI) model.

i Weight Threshold i Weight Threshold

1 0.0789 0 6 0.2001 0.5
2 0.2268 0.1 7 0.2000 0.6
3 0.1928 0.2 8 0.2000 0.7
4 0.2019 0.3 9 0.1999 0.8
5 0.1995 0.4 10 0.2005 0.9

3. Simulations and Experiments

3.1. HIL Simulations

Hardware-in-the-Loop (HIL) simulations are conducted in this subsection to investigate the
computation time of the trajectory construction method with a DSP28335 development board. One pin
of the DSP is programmed to denote the state of the algorithm. The pin turns to be a high level when
the algorithm starts a new cycle and becomes low at the end of the cycle. The duration of the high
level represents the computation time of the trajectory construction method.

It is obvious from Figure 2 that the computation time depends on the number p of numerical
comparisons in the binary search. According to the property of the binary search, there is a logarithmic
relation between p and m, with the function given by

p = dlog2 m + 1e (18)

where m is the number of non-empty elements in array XLTP or array XRTP. It is noted that the
computation time increases with the amount of turning points. Fortunately, thanks to the logarithmic
relation of Equation (18), p grows slowly with the increase of m. On the other hand, owing to the
wiping-out mechanism, m cannot increase infinitely. As mentioned above, the maximum value of
m is Nu/2, where Nu represents the number of different input values in the data acquisition system.
To cope with the following experiments, we assume Nu= 2ns = 212 = 4096 in the HIL simulations.
Figure 8 depicts the relation between computation time and the number of comparisons in the binary
search. The data in Figure 8 can be fitted by a straight line 0.19p + 0.57, which means that it takes
about 0.19 µs to complete a comparison. According to Equation (18), the maximum value of p is

p = dlog2(Nu/2) + 1e = ns = 12 (19)

and the computation time corresponding to this p value is 2.80 µs, which is also the maximum
computation time (MCT). Since the computation time varies with the number of turning points, it is
important to estimate the MCT of the trajectory construction method. Furthermore, we can see from
Equation (19) that the MCT is related to ns, which is the resolution of the DAC.
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3.2. Experiments

In this subsection, we will show how to predict the output of PEAs. The experimental system is
set up as shown in Figure 9, where the micro positioner 20VS12 actuated by PEA is from Tomorrow
Core Company. The positioner has an integrated resistance strain-gauge transducer. The high voltage
amplifier XE-650.CA is also from the same company. The data acquisition system consists of the
above used DSP28335 development board and an AD/DA board with 12-bit analog-to-digital and
digital-to-analog converters. The running frequency of the DSP28335 is set to 150 MHz. The algorithm
is compiled on the host computer and then downloaded into the DSP28335.
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Figure 9. Experimental system.

First, a triangular wave with constant amplitude 40 V as shown in Figure 10 is used to excite the
positioner system to identify the function f0(x). The input–output data are collected and stored in
X_data and Y_data, respectively. Figure 11 depicts the plot of Y_data versus X_data.
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Figure 11. Input and output data used for parameter identification.

Setting n = 3 and applying the parameter identification algorithm, we derive the function f0(x)
as follows:

f0(x) = −6.1876× 10−6x3 + 1.1949× 10−3x2 + 8.6444× 10−2x + 5.8517× 10−1 (20)

The function f0(x) is also plotted in Figure 11, where we can see that the measured data can be
well described by f0(x). Next, a test signal is used to validate the effectiveness of the proposed method,
as shown in Figure 12. When t ∈ [0, 13.4], the test signal is a triangular wave with a decreasing
amplitude, which begins to increase at t = 13.4 s. The position prediction results are shown in
Figure 13, where the maximum error is 0.12 µm.
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Figure 12. Test signal.

Figure 14 depicts the number of turning points in the above hysteretic movement. The number of
turning points increases one at a time and decreases in pairs (an LTP and an RTP, respectively). In the
beginning, there is only one turning point, which is the starting point. When the input signal leads
back to 0 V at t = 3 s, the number of turning points becomes to zero. At t ∈ [3, 13.4], the number of
turning points is monotonically increased. When t > 13.4 s, the amplitude of the test signal increases
with time. The number of turning points is decreased to zero finally when the test signal arrives at 0 V.
As shown in Figure 14, the maximum number of turning points is 14, and more precisely, there are
7 LTPs and 7 RTPs. Thus, we have m = 7 and p = 4. As shown in Figure 8, the computation time
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corresponding to p = 4 is 1.23 µs. As a matter of fact, the computation time in the whole movement is
no greater than 1.23 µs, which is much smaller than the MCT.
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3.3. Discussions

As shown in Equation (9), there are n + 1 parameters if the degree of the polynomial function
f0(x) is n. In the experiments, a third order polynomial function (see Equation (20)) is used to describe
the major ascending curve. Thus, only four parameters need to be identified. For comparison, if
the PI model with ten backlash operators is used, we have to identify twenty parameters. Therefore,
the proposed method is superior to the PI model in parameter identification.

However, since the turning points have to be recorded in the proposed method, the worst case
has to be considered. From the above analysis, we know that the maximum number of turning points
is related to the number of different input values. In other words, a certain amount of memory is
needed. However, it is worth pointing out that the demand for memory resources is affordable to most
of industrial computers, as shown in Table 2.

Table 2. Demand of memory size.

Resolution 12-bit 16-bit 18-bit 24-bit

Memory Size 16 KB 256 KB 1.5 MB 96 MB
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Different from traditional operator-based method, the trajectory construction method uses the
observed rules for hysteresis (Madelung’s rules) and a measured curve (the major ascending curve) to
simulate the symmetric hysteresis. As we have known that hysteresis is a kind of nonlinearity with
memory. The concept of turning point is important in the proposed method since turning point is
the recorder of movement history. In other words, the turning point is the memory of the hysteretic
movement. The proposed method is an intuitive and easy-to-use hysteresis modeling method, and it
is also beneficial to the in-depth understanding of the hysteresis phenomenon.

4. Conclusions

In this paper, a symmetric hysteresis modeling method has been proposed based on Madelung’s
rules. The turning points are recorded and eliminated according to the input value. The key point of
the proposed method is to determine the CTP. Then the current can be determined, and the output can
be computed by Equation (5). Furthermore, the relationship between our method and the PI model
has also been investigated. It is found out that the outputs of both methods are equivalent to each
other when f0(x) is replaced with fPI(x). It should be noted that the proposed method has a relatively
high demand for memory resources. Fortunately, the memory consumption is affordable to most
of industrial computers. Even embedded processors can be used with low resolution requirements.
Simulation and experiment results have shown the effectiveness of the proposed algorithm. In the
future work, we will focus on how to reduce the memory usage of the trajectory construction method.

Author Contributions: K.C. and R.L. proposed the theoretical analysis, and designed the experiments; K.C.
conducted the simulations and wrote the paper.

Funding: This research was funded by National Natural Science Foundation of China under grant No. 61503096
and Heilongjiang Post Doctorial Foundation under grant No. LBH-Z14101.

Acknowledgments: The authors would like to thank to the anonymous reviewers for their insightful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mayergoyz, I.D. Mathematical models of hysteresis. Phys. Rev. Lett. 1986, 56, 1518–1521. [CrossRef]
2. Zirka, S.E.; Moroz, Y.I. Hysteresis modeling based on similarity. IEEE Trans. Magn. 1999, 35, 2090–2096.

[CrossRef]
3. Hassani, V.; Tjahjowidodo, T.; Do, T.N. A survey on hysteresis modeling, identification and control.

Mech. Syst. Signal Process. 2014, 49, 209–233. [CrossRef]
4. Goldfarb, M.; Celanovic, N. Modeling piezoelectric stack actuators for control of micromanipulation.

IEEE Control Syst. 1997, 17, 69–79.
5. Chen, H.Y.; Liang, J.W. Model-Free adaptive sensing and control for a piezoelectrically actuated system.

Sensors 2010, 10, 10545–10559. [CrossRef]
6. Liu, C.; Guo, Y.L. Modeling and positioning of a PZT precision drive system. Sensors 2017, 17, 2577.

[CrossRef]
7. Tan, X.; Baras, J.S. Modeling and control of hysteresis in magnetostrictive actuators. Automatica 2004, 40,

1469–1480. [CrossRef]
8. Zhang, J.; Iyer, K.; Simeonov, A.; Yip, M.C. Modeling and inverse compensation of hysteresis in supercoiled

polymer artificial muscles. IEEE Robot. Autom. Lett. 2017, 2, 773–780. [CrossRef]
9. Xu, Q. Identification and compensation of piezoelectric hysteresis without modeling hysteresis inverse.

IEEE Trans. Ind. Electron. 2013, 60, 3927–3937. [CrossRef]
10. Rakotondrabe, M. Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis

nonlinearity in piezoelectric actuators. IEEE Trans. Autom. Sci. Eng. 2011, 8, 428–431. [CrossRef]
11. Xu, Q.; Tan, K.K. Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems; Springer: Cham, Switzerland,

2016; pp. 36–67.

http://dx.doi.org/10.1103/PhysRevLett.56.1518
http://dx.doi.org/10.1109/20.774177
http://dx.doi.org/10.1016/j.ymssp.2014.04.012
http://dx.doi.org/10.3390/s101210545
http://dx.doi.org/10.3390/s17112577
http://dx.doi.org/10.1016/j.automatica.2004.04.006
http://dx.doi.org/10.1109/LRA.2017.2651401
http://dx.doi.org/10.1109/TIE.2012.2206339
http://dx.doi.org/10.1109/TASE.2010.2081979


Sensors 2019, 19, 352 15 of 15

12. Xiao, S.; Li, Y. Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric
actuators via a novel modified inverse Preisach model. IEEE Trans. Control Syst. Technol. 2013, 21, 1549–1557.
[CrossRef]

13. Kuhnen, K. Modeling, identification and compensation of complex hysteretic nonlinearities: A modified
Prandtl-Ishlinskii approach. Eur. J. Control 2003, 9, 407–418. [CrossRef]

14. Li, Z.; Su, C.; Chai, T. Compensation of hysteresis nonlinearity in magnetostrictive actuators with inverse
multiplicative structure for Preisach model. IEEE Trans. Autom. Sci. Eng. 2014, 11, 613–619. [CrossRef]

15. Nguyen, P.; Choi, S.; Song, B. A new approach to hysteresis modeling for a piezoelectric actuator
using Preisach model and recursive method with an application to open-loop position tracking control.
Sens. Actuators A Phys. 2018, 270, 136–152. [CrossRef]

16. Oliveri, A.; Stellino, F.; Caluori, G.; Parodi, M.; Storace, M. Open-loop compensation of hysteresis and creep
through a power-law circuit model. IEEE Trans. Circuits Syst. I Reg. Papers 2016, 63, 413–422. [CrossRef]
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