
sensors

Article

Pose Estimation for Straight Wing Aircraft Based on
Consistent Line Clustering and Planes Intersection

Xichao Teng 1,*, Qifeng Yu 1, Jing Luo 2, Xiaohu Zhang 1,3 and Gang Wang 1

1 College of Aerospace Science and Engineering, National University of Defense Technology,
Changsha 410073, China; yuqifeng@vip.sina.com (Q.Y.); zhangxiaohu@nudt.edu.cn (X.Z.);
wanggang_nudt@163.com (G.W.)

2 High-Tech Institute, Qing Zhou 262500, China; luoj11@tsinghua.org.cn
3 School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510000, China
* Correspondence: tengari@buaa.edu.cn; Tel.: +86-159-7317-5049

Received: 27 December 2018; Accepted: 11 January 2019; Published: 16 January 2019
����������
�������

Abstract: Aircraft pose estimation is a necessary technology in aerospace applications, and accurate
pose parameters are the foundation for many aerospace tasks. In this paper, we propose a novel pose
estimation method for straight wing aircraft without relying on 3D models or other datasets, and two
widely separated cameras are used to acquire the pose information. Because of the large baseline and
long-distance imaging, feature point matching is difficult and inaccurate in this configuration. In our
method, line features are extracted to describe the structure of straight wing aircraft in images, and
pose estimation is performed based on the common geometry constraints of straight wing aircraft.
The spatial and length consistency of the line features is used to exclude irrelevant line segments
belonging to the background or other parts of the aircraft, and density-based parallel line clustering
is utilized to extract the aircraft’s main structure. After identifying the orientation of the fuselage and
wings in images, planes intersection is used to estimate the 3D localization and attitude of the aircraft.
Experimental results show that our method estimates the aircraft pose accurately and robustly.

Keywords: pose estimation; straight wing aircraft; structure extraction; consistent line clustering;
parallel line; planes intersection

1. Introduction

Since the 3D pose parameters of aircraft could provide a lot of valuable information about the
aircraft’s flight status, effective and accurate pose estimation is a key technique in many aerospace
applications, such as autonomous navigation [1], auxiliary landing [2], collision avoidance [3], accident
analysis, and testing of a flight control system [4,5]. In recent years, with the development of imaging
technology and computer vision, vision-based pose estimation has become a research hotspot, and a
lot of methods have been proposed in the literature to estimate the pose of an aircraft using visual
sensors. Visual sensors could be successfully applied in aircraft pose estimation since vision-based
methods have the advantages of strong anti-interference ability, low cost, and high precision [6].

Vision-based pose estimation methods can be divided into two categories—on-board vision and
external vision—depending on the mounting position of the visual sensors. On-board monocular,
depth, or stereo cameras can be used in on-board vision methods to estimate the relative pose between
the aircraft and a particular target or marker, while external vision methods utilize external cameras to
acquire the pose of an aircraft from its 2D projected images.

Among the on-board vision methods, a binocular stereovision model established by Chen et al. [7]
used stereo vision and the RANSAC (RANdom SAmple Consensus) algorithm to measure the pose
of a non-cooperative target. Li et al. [8] used parallel binocular cameras to estimate the pose of a
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non-cooperative target based on stereo matching and 3D restructuring. Zhang et al. [9,10] proposed
optimization-based methods to estimate the relative pose using stereo cameras, and the geometric
structure of the non-cooperative target was exploited to improve the accuracy. Deng et al. [11]
implemented an on-board binocular vision-based system to estimate the pose of Unmanned Aerial
Vehicles (UAVs) for autonomous aerial refueling. Zhuang et al. [12] used the line features of the
airport and the monocular camera on board to provide pose information for UAV autonomous landing.
Benini et al. [13] estimated the pose of a UAV by detecting a marker composed of known circles for
autonomous takeoff and landing. For scenes without known landmarks, the structure from motion
(SFM) [14–16] method or the simultaneous localization and mapping (SLAM) [17,18] method can be
leveraged to estimate the relative pose for aircraft navigation. A sequence of images is processed in
these techniques, and a Kalman filter [19,20] is often used to reduce the pose error.

For external vision methods, the aircraft’s pose is often estimated using its 2D projected images
captured by external imaging devices. Monocular cameras are widely used in external vison systems
because the distance between aircraft and cameras is usually large. It is hard to estimate a 3D pose
from a single 2D image without prior information such as 3D models of aircraft, synthetic aircraft
image datasets, or acquired image sequences. Considering that pose estimation using complete
aircraft models viewed from all aspects is storage- and time-consuming, feature extraction and pattern
matching methods are proposed to reduce the dimension of pose estimation.

Hmam et al. [21] recognized aircraft based on a geometry-based reasoning system, and a generic
model description of the aircraft was used for pose estimation. Wang et al. [22] combined a mathematical
morphological algorithm and the Radon transform to extract the aircraft’s structure and used the
average value of ordinary aircraft as a reference to calculate 3D pose parameters from 2D images.
The use of a generic model of aircraft makes these algorithms more efficient and flexible, but this also
leads to a reduction in the accuracy and robustness of pose estimation.

Breuers and Reus [23] used a Fourier-descriptor-based algorithm to estimate aircraft pose
information. The method computes a Fourier descriptor to characterize the aircraft contour, and the
pose information is estimated by comparing this Fourier descriptor to a reference database. Fu et al. [24]
estimated the relative pose parameters of aircraft based on a contour model. The method first acquires
2D projections of a 3D model from different views and establishes a database; then, contour matching
is employed to derive relative pose parameters. Wang et al. [25] estimated the pose of commercial
aircraft in a runway end safety area using geometry structure features. This image-based method
obtains aircraft pose information using the central moments of extracted geometry structure features
and identifies an aircraft’s particular pose by a two-step feature matching strategy. Yuan et al. [26]
proposed an aircraft pose recognition method based on locally linear embedding (LLE). In this method,
LLE is applied for feature extraction and dimension reduction, and aircraft pose is recognized by
propagation neural networks and nearest-neighbor algorithms. Although these methods reduce the
complexity of the problem by feature extraction and pattern matching, 3D models of different aircraft
are still needed, and a large amount of high-quality training data is necessary for pattern recognition
to achieve accurate pose estimation, which reduces the flexibility and efficiency.

While there are a lot of features related to geometric structure to describe the pose information
of aircraft, many of them were proposed for swept wing aircraft. Methods for straight wing aircraft
structure extraction [27] and pose estimation are seldom addressed, despite the fact that the straight
wing and its variants are the most common wing planform for low-speed aircraft [28]. With the rapid
development of high-altitude long-endurance (HALE) UAVs, which often adopt a large-aspect-ratio
straight wing design in order to increase lift [29,30], pose estimation of straight wing aircraft is of
great importance.

In this article, we use a vision system located on the ground to estimate the pose of model-unknown
straight wing aircraft. The vision system needs at least two monocular cameras to estimate the 3D
pose. There are usually multiple cameras distributed in the flight test site or airport area, which allows
our method’s requirements to be easily met. Compared to methods which rely on the use of 3D
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models and/or classifiers, only two 2D images obtained at the same time and some prior assumptions
are explored in our approach to achieve accurate pose estimation for straight wing aircraft. We first
identify the orientation of the fuselage and wings in an image pair using consistent line clustering;
then, the planes intersection method is used to calculate the 3D pose information of the aircraft.

In the application scenario of this article, the dual-station photoelectric theodolite at a flight
test site was used to estimate the absolute pose of an aircraft. The photoelectric theodolite tracks
the aircraft, captures a sequence of images, and records the camera pose for every image frame.
The image pair captured by the dual-station photoelectric theodolite was used to estimate the pose
of the aircraft. To improve the measurement range and accuracy, two photoelectric theodolites with
large baseline were selected and distributed on both sides of aircraft trajectory. Because of the large
baseline and long-distance measurement, it is very difficult to obtain corresponding invariant features,
and self-occlusion at certain angles would make feature matching more unreliable. In order to identify
the main structure (fuselage and wings) of the aircraft in image pairs efficiently and robustly, the general
geometry features of straight wing aircraft were analyzed.

In our method, line features extracted by the line segment detector (LSD) algorithm are used to
describe the structure of the aircraft. The spatial and length consistency of line features is exploited
to eliminate the disturbance of the background and unrelated parts of the aircraft, and parallel line
segments are grouped into orientation-consistent clusters which represent the structure of the straight
wing aircraft. To extract the aircraft’s structure accurately and robustly, a density-based clustering
method is adopted according to the characteristics of the data. Mean shift and image moment methods
are also used to improve the localization accuracy of the aircraft’s center in images. After recognizing
the main structure of the straight wing aircraft in 2D images, the planes intersection method is used
to determine the 3D pose. Our algorithm provides a universal framework to estimate the 3D pose of
straight wing aircraft without relying on 3D models, cooperative markers, or other datasets.

The remainder of the paper is organized as follows: Section 2 introduces the coordinate system
definition. Our pose estimation algorithm is explained in detail in Section 3. In Section 4, the experimental
results of structure extraction and pose estimation are presented to validate our algorithm. Finally,
Section 5 concludes this article.

2. Coordinate System Definition

In this section, we define several coordinate systems related to pose estimation. There are three
major coordinate systems which are shown in Figure 1.

The world coordinate system (see Figure 1a) helps us track the aircraft and determine its position
and attitude. We used the East-North-Up (ENU) coordinate system as the world frame.

The camera coordinate system, shown in Figure 1b, is attached to a camera which tracks the
aircraft in the image plane. The origin of the camera frame is located at the optical center of the camera;
the x axis is parallel to the horizontal axis of the image plane in the right direction, and the z axis is
the optical axis of the camera in the right-handed coordinate system. Two cameras are used in our
algorithm and are calibrated with respect to the world coordinate system; their poses are known for
each image frame they record.

For the body coordinate system of straight wing aircraft shown in Figure 1c, the origin is located at
the center of the aircraft. The x axis points along the fuselage reference line; the y axis is perpendicular
to the fuselage plane of symmetry, directed to the right; and the z axis is perpendicular to the plane
where the fuselage and wings are located in the right-handed coordinate system. For a straight wing or
its variants, the wing edge lines are approximately parallel to each other, while line segments along the
fuselage are approximately parallel to the fuselage reference line. Based on these geometry structure
features, our pose estimation algorithm extracts the orientation of the fuselage reference line and
the wing axis from which we can determine the orientation of the body coordinate axes of straight
wing aircraft.
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Figure 1. Coordinate systems: (a) World frame; (b) Camera frame; (c) Body frame.

3. Pose Estimation Algorithm

The pose of an aircraft is represented by the transformation using a rotation matrix and translation
vector which transform points in the body coordinate frame into points in the world coordinate frame.
Our algorithm acquires the 3D pose information of an aircraft by determining the orientation of the
body coordinate axes and the position of the body coordinate frame origin with respect to the world
coordinate frame.

Our pose estimation algorithm first extracts the orientation of the fuselage and the wings in 2D
image pairs, then uses plane–plane intersection to determine the 3D pose of the straight wing aircraft.
The 2D pose information acquired by the structure extraction method is used as input to the planes
intersection method to acquire the 3D pose of the aircraft. In the process of pose estimation, the initial
pose information of the aircraft is needed to avoid ambiguity. In the following sections, the structure
extraction and planes intersection methods will be explained in detail.

3.1. Structure Extraction Method

We propose a novel structure extraction method to identify the orientation of the fuselage and
wings of straight wing aircraft in a 2D image without needing 3D models or other datasets. Due to the
long-range imaging of the aircraft, reliable feature point correspondence is difficult to obtain, especially
with ambiguities, extreme poses, or self-occlusions. To obtain the 2D pose information accurately and
robustly, we use line features to describe the structure of the aircraft; line features are usually more
accurate and robust than feature points in our application scenarios and also adapt to self-occlusions
to some extent.

The geometric relations between line features are exploited to recognize the main structure of the
aircraft. The most important geometric constraints used in our algorithm are the parallel constraints:

1. Line features distributed along the wing axis are approximately parallel to each other;
2. Line features along the fuselage reference line are approximately parallel to each other.
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In addition, line features are concentrated in the area of the aircraft, and the lengths of line features
on the main structure (fuselage and wings) of the aircraft are often larger than those on other parts of
the aircraft. The main idea of our structure extraction method is to cluster line features based on these
geometry constraints to acquire an accurate and robust estimation of the orientation of the aircraft’s
main structure.

3.1.1. Line Feature Extraction

The state-of-the-art line segment detector (LSD) algorithm is utilized here to extract line features.
The LSD algorithm, introduced by Gioi et al. [31], is a linear-time line segment detector giving results
to subpixel accuracy, and a comparative study of line extraction methods by Zhang et al. [32] revealed
that LSD is an optimal algorithm at different scales, blur degrees, and illumination. We detected 2D
line segments using the LSD algorithm in an image to describe the structure of a straight wing aircraft.
The result of the line feature extraction is shown in Figure 2a, where red line segments represent the
detected line features. We denote the set of detected line segments as SL.
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3.1.2. Spatially Consistent Line Clustering

Our algorithm is performed under the condition that the photographic image only contain one
aircraft, which is common in actual application scenarios such as flight test, landing, or taking off.
As the aircraft is a salient object in the image, detected line segments will be concentrated in the
region of the aircraft and close to each other compared to irrelevant line segments, i.e., the density of
line segments in the aircraft’s region is very high. Based on the location constraint of line segments,
we performed spatially consistent line clustering to identify the center of the aircraft and rule out
irrelevant line segments caused by the background.

We used the mean shift [33] algorithm to identify the center of the aircraft. Mean shift is a
procedure for locating the maxima of a density function given discrete data sampled from that function.
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It is useful for detecting the modes of this density, which indicate the spatial consistency of line
segments. The set of detected line segments SL was used as the input of the mean shift algorithm,
and a Gaussian kernel K on the distance was used to determine the weight for re-estimation of the
center. An image pixel x on a line segment which belongs to SL is represented by (x, y) where x and y
are the horizontal and vertical coordinates of the pixel, respectively. The clustering center obtained by
the mean shift algorithm is considered the aircraft’s center. The kernel function K and the weighted
mean m(x) of the density can be represented as follows:

K(xi − x) = e−c‖xi−x‖2

m(x) = (∑xi∈n(x) K(xi − x) · xi) · (∑xi∈n(x) K(xi − x))−1 (1)

where c is the weight of the kernel function and n(x) represents the neighborhood of point x.
After determining the center of the aircraft, line segments within a certain distance of the clustering
center are considered to belong to the aircraft, and other line segments are removed. Figure 2b shows
the result of spatially consistent line clustering. The green cross in Figure 2b represents the cluster
centroid of the mean shift, and red line segments indicate the reserved line features which are close to
the estimated aircraft’s center. As we can see, many line segments which do not belong to the aircraft
are rejected by spatially consistent line clustering.

The centroid of the aircraft can also be calculated via image moments, which is given by

x̃m =

N
∑

i=1
xi

N
ỹm =

N
∑

i=1
yi

N
. (2)

Here, (x̃m, ỹm) is the image coordinates of the aircraft’s center obtained by the image moment
method, and N represents the number of pixels on the line segments. Although the image moment
method can identify the centroid of SL without iteration, it is difficult to obtain the actual center of the
aircraft robustly against a cluttered background. Figure 3 shows a comparison of the results of the
image moment method and the mean shift algorithm, in which the estimated centroids of the aircraft
are indicated by green crosses. The extracted 2D line features (red line segments in Figure 3) were used
as the input of both methods. As we can see from Figure 3a, the result of the image moment method
deviates from the actual center of the aircraft because of disturbance from the background, while the
mean shift algorithm obtained a more accurate aircraft center and is partly resistant to a cluttered
background. In the case of a cluttered background, the mean shift algorithm will be used to identify
the center of the aircraft, and spatially consistent clustering provides an initial position estimation of
the aircraft’s center which is then updated in the parallel line clustering.
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3.1.3. Length-Consistent Line Clustering

Although many noisy line segments are removed by spatially consistent line clustering, there are
still some irrelevant line segments, as shown in Figure 2b. In this section, we use a length consistency
criterion to further rule out irrelevant line segments. As the aircraft’s main structure (fuselage and
wings) is usually larger than other parts such as tail or nose, line segments shorter than a certain
threshold can be removed from the set of line segments. As the length of a line segment decreases,
the uncertainty of its direction increases, i.e., a small position error of the endpoint causes greater
direction error for shorter line segments. Excluding shorter line segments would improve the accuracy
of 2D pose estimation in the following parallel line clustering.

The result of length-consistent line clustering is shown in Figure 2c. Compared to Figure 2b,
the irrelevant line segments are excluded further, which is of benefit for the following clustering.

3.1.4. Parallel Line Clustering

Parallel line clustering is the key step in the structure extraction algorithm and can acquire the
directions of the fuselage and wings without relying on 3D models, other datasets, or cooperative
markers. Line segments with similar directions are divided into one orientation-consistent line cluster.
In the parallel line clustering process, the direction of a line segment is represented by the angle
θi between the straight line that it belongs to and the horizontal axis of the image plane. The set
of directions of line segments Θ = {θ1, θ2, . . . , θN} is used as input to the parallel line clustering.
The directions of the fuselage and the wings are denoted θ f and θw respectively.

Weak perspective projection (scaled orthographic projection) is employed in parallel line
clustering. As the size of the aircraft is small compared with its distance to the optical center along
the optical axis, weak perspective approximation is valid. If line segments on the aircraft are parallel
to each other in 3D space (the world frame), then this geometry feature of the corresponding line
segments projected into the image plane remains unchanged under weak perspective projection.

For straight wing aircraft, line segments distributed along the wings are roughly parallel to each
other, and angle values of these line segments are tightly concentrated around θw (small standard
deviation), while angle values of line segments along the fuselage are concentrated around θ f .
The directions of the fuselage and the wings can be extracted by clustering the high-density regions
of Θ. According to the orientation feature of the line segments, a density-based clustering algorithm,
density-based spatial clustering of application with noise (DBSCAN) [34], was used to group the
parallel line segments into one orientation-consistent cluster containing the orientation information of
the fuselage or the wings.

The data points used in DBSCAN clustering are the directions of line segments θi. There are two
parameters required to be specified in the DBSCAN algorithm, both of which are used to measure
the density of data points. The first parameter is a distance threshold ε within which two data points
close to each other will be grouped into one cluster. The distance threshold is the absolute difference
between angle values in our algorithm. The second parameter is the minimum number of data points
minPts needed to form an orientation-consistent cluster. Based on these two parameters, the data
points are classified into three types, as shown in Figure 4:

• Core points: If a data point’s ε neighborhood contains at least minPts points, it is a core point (red
points in Figure 4);

• Border points: If a data point’s ε neighborhood contains fewer than minPts points, but it is
reachable from a certain core point (as indicated by one-way arrows in Figure 4), it is a border
point (yellow points in Figure 4, the edge of a cluster);

• Noise points: If a data point is neither a core point nor a border point, it is a noise point (blue
points in Figure 4).
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algorithm: the red points represent the core points, the yellow points represent the border points,
and the blue points represent the noise points. The radius of the circle represents the distance threshold.

The steps of the DBSCAN algorithm used for parallel line clustering are briefly described
as follows:

1. For every data point θi, search points in its ε neighborhood and use minPts to determine the core
points in the set Θ.

2. Ignore all non-core points and group core points into parallel line clusters based on the connected
components on the neighborhood graph (as indicated by two-way arrows in Figure 4).

3. For every non-core point, if it is in the ε neighborhood of a cluster, it is the border point of the
cluster; otherwise, it is a noise point.

In contrast to traditional clustering methods such as k-means++ [35], the DBSCAN algorithm
does not need to specify the number of clusters in advance and is robust to outliers. It forms clusters
based solely on the spatial density of the data. The two orientation-consistent clusters with minimum
interclass variance represent the structure of the fuselage and the wings which contain the orientation
information of the aircraft in the image. The directions of the fuselage and the wings are obtained by
extracting the centers of the parallel line clusters.

In our method, the directions of the fuselage and the wings are distinguished based on an initial
pose constraint. The approximate orientation of the aircraft needs to be specified in the initial frame of
the image sequence to avoid ambiguity and to help identify the actual pose of the aircraft. With this
condition, the directions of the fuselage and the wings can be distinguished in the initial frame, and the
orientation information of the current frame will be used in the next frame. In the application scenarios
of our algorithm, such as take-off, landing, or flight testing, this condition is easily met. In practice,
the pitch angle (or the yaw angle) and the roll angle of the aircraft are provided, or the approximate
positions of the nose and one wing tip are marked in one image of the initial image pair.

After obtaining the orientation-consistent clusters, irrelevant line segments are removed from the
set SL, and the position of the aircraft’s center is then re-estimated from the set SL based on the image
moment method. Since only line segments on the main structure of the aircraft are left, it is possible to
identify the center of the aircraft with higher precision.

The results of parallel line clustering are shown in Figure 5. As shown in Figure 5a, the red
straight lines indicate the directions of the fuselage and the wings, and the green cross indicates the
estimated centroid of the aircraft. The directions of the fuselage and the wings were correctly extracted
by parallel line clustering. However, in Figure 5b, there is only one cluster with enough parallel line
segments for this extreme pose. In this case, the direction of only the fuselage or the wings can be
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acquired by parallel line clustering, and the unknown direction needed for pose estimation is replaced
by the corresponding orientation information of the previous frame.
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3.2. Planes Intersection Method

After the structure extraction method determines the pixel coordinates of the aircraft’s center and
the directions of the fuselage and the wings in an image pair, the planes intersection method is used to
estimate the 3D pose of the aircraft.

Two cameras were used in the intersection measurement and are indicated by their projection
matrices P1 and P2. The camera projection matrices are of the form

P1 = K1[R1|t1] P2 = K2[R2|t2] (3)

where Ki (i = 1, 2) is the camera intrinsic matrix of the camera, and Ri and ti represent the rotation
and translation, respectively, of the corresponding camera with respect to the world frame. We assume
that the cameras are calibrated with respect to the world frame and that the Pi are known.

The camera model is represented as
zx = PiX (4)

where X = (X, Y, Z, 1)T is the world coordinates and x = (u, v, 1)T is the image coordinates of X.
As weak perspective projection is employed, z is a positive constant.

The image pair captured by the two cameras at the same time is denoted 〈I1, I2〉. The center
of the aircraft obtained by the structure extraction method in the image Ii (i = 1, 2) is represented
as ACi = (xi, yi) where xi and yi are the horizontal and vertical coordinates of the image, and the
directions of the fuselage and the wings are represented as θ

f
i and θw

i , respectively.
Figure 6 explains the geometric constraint of the planes intersection method. As shown in Figure 6,

the two cameras are indicated by their optical centers C1 and C2 and by image planes. The 3D line in
the world coordinate system is represented as L, which is the line of intersection of the two planes π1

and π2; li (i = 1, 2) is the projected line of L in the image plane; and the plane πi is determined by the
line L and the optical center Ci. Let the normalized vector V of L represent the direction of the fuselage
or the wings; the planes intersection method estimates the 3D attitude of the aircraft by obtaining the
solution of V.
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Figure 6. Geometric constraint of plane–plane intersection.

The projected line li in the image plane is identified by ACi and θ
f
i (or θw

i ); an analytical expression
of li is

aiu + biv + ci = 0. (5)

Equation (5) can be represented in vector form as the following:[
ai bi ci

]
x = 0. (6)

By substituting Equation (6) into Equation (4) for each camera, we obtain

z
[

ai bi ci

]
x =

[
ai bi ci

]
PiX = 0, (7)

and the plane πi can be expressed as

[ Ai Bi Ci D i]X = 0
⇀
n i =

[
Ai Bi Ci

] (8)

where
⇀
n i is the normalized vector of the plane πi. Note that Equations (7) and (8) have the same form,

and
[

ai bi ci

]
Pi is already known; the normalized vector

⇀
n i is derived from Equations (7) and (8).

After we obtain the normalized vectors
⇀
n1 and

⇀
n2, the normalized vector V which contains the

orientation information of the aircraft is solved as follows:

V =
⇀
n1 ×

⇀
n2. (9)

As the 3D line L can be parametrized in the world coordinate frame by the two planes π1 and
π2 as a 2 × 4 matrix, let L f be the 3D line parallel to the fuselage reference line and Lw be the 3D
line parallel to the wing edge lines. The point of intersection of L f and Lw is the center of the aircraft.
By calculating the respective normalized vectors of L f and Lw using Equation (9), we can obtain the 3D
attitude of the straight wing aircraft. The rotation matrix is calculated by singular value decomposition,
and the initial pose constraint is used to avoid reflective ambiguity. In order to obtain the world
coordinates of the point of intersection of L f and Lw, which determine the 3D position of the aircraft,
overdetermined equations are established as follows.

AX = 0

A =

[
L f
Lw

]
(10)
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Here, A is a 4 × 4 matrix and X represents the point of intersection of the two lines (the translation
vector). The overdetermined equations AX = 0 can be solved by singular value decomposition, and the
solution is the singular vector corresponding to the smallest singular value of A. Before solving the
overdetermined equations, an optimal estimator for the center point based on the epipolar constraint
can be used to reduce the geometric error [36].

The 3D attitude of the aircraft is determined by the normalized vectors of L f and Lw, and the 3D
position of the aircraft is determined by the point of intersection X of the two lines. As we assume
that L f and Lw are coplanar in our pose estimation algorithm, the ambiguity will occur during the
process of pose estimation, and the initial pose constraint will be used to determine the unique solution.
Based on the results of the structure extraction method, the planes intersection method can acquire the
3D pose of the straight wing aircraft. Moreover, our pose estimation algorithm can easily be extended
to multiple camera views.

3.3. Algorithm Summary

In this section, we summarize the whole pose estimation algorithm as is shown in Algorithm 1.

Algorithm 1: Pose estimation based on consistent line clustering and planes intersection

Input: The image pair 〈I1, I2〉, the two camera matrices P1, P2, and the initial pose constraint.
Output: The 3D position and 3D attitude of the straight wing aircraft.
Step 1 Extract line features in image pairs using the LSD algorithm;
Step 2 Locate the center of the aircraft in the 2D images and cluster spatially consistent line segments;
Step 3 Rule out line segments shorter than a certain threshold;

Step 4
Classify line segments into orientation-consistent clusters, extract the directions of the fuselage
and the wings in the image pair, and re-estimate the center of the aircraft;

Step 5 Calculate the 3D attitude and 3D location using the plane–plane intersection method.

The flowchart of the algorithm is shown in Figure 7.
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4. Experiments and Results

Experiments were performed to validate the effectiveness and accuracy of the proposed structure
extraction and pose estimation methods. Real images of different straight wing aircraft downloaded
from the Internet were used to demonstrate the effectiveness and universality of the structure extraction
method, and simulated images of straight wing aircraft were exploited to evaluate the accuracy of our
pose estimation algorithm. Our method was implemented using MATLAB on a laptop equipped with
an Intel Core i7 CPU with a 2.80 GHz processor and 8.00 GB of RAM.
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4.1. Experimental Results of Structure Extraction

The qualitative evaluation of our structure extraction method was performed using real images
downloaded from the Internet. A total of 60 images of different sizes were downloaded and used in
the experiment. Each image contains one aircraft whose planform is the straight wing or its variant,
and the structure extraction method was used to identify the orientation of the aircraft’s main structure
in a single 2D image. Among these images, some are challenging for structure extraction since they
contain a cluttered background, other objects, random noise, or perspective effects.

In the experiment, the directions of the fuselage and the wings in 51 of the 60 images were correctly
identified. Figure 8 shows some of the results of structure extraction. As we can see, our structure
extraction algorithm can be applied flexibly to different types of straight wing aircraft without needing
3D models of aircraft or other datasets, and it can also deal with different aircraft poses effectively
and robustly extract the main structure under self-occlusion or a cluttered background. Moreover,
the parallel assumption does not need to hold strictly. Even if perspective effects exist or the line
segments are not strictly parallel to each other, our algorithm can still recognize the main structure of
the aircraft.
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Figure 8. Results of the structure extraction method.

While the algorithm achieved good results in most downloaded images, Figure 9 shows some
cases in which our structure extraction method obtained incorrect results. There are two main reasons
for these incorrect results:

1. The structure of the aircraft (fuselage or wings) does not satisfy the assumption of parallel line
clustering, i.e., the line segments distributed along this structure are not parallel to each other in
the image (see row 1, Figure 9).

2. Some parts of the aircraft (tail or external mounts) or the background affect the consistent line
clustering (see row 2, Figure 9).

Changing weather or light conditions may also affect the success rate of our algorithm. When the
weather condition or brightness/darkness level changes, the edges of the aircraft’s main structure may
be blurred during image acquisition, and unreliable line features will be detected. Changing weather
or light conditions may affect the accuracy and robustness of the line feature detection, which in
turn disturbs the consistent line clustering results and reduces the accuracy and success rate of our
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algorithm. In our method, the LSD algorithm used to detect line features can adapt to optical blur and
illumination changes to some extent.Sensors 2019, 19, x FOR PEER REVIEW 13 of 20 
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Figure 9. Some incorrect results from our structure extraction algorithm.

The situations shown in Figure 9 are uncommon in our application scenarios, and despite the
fact that our algorithm is mainly for estimating the pose of a straight wing aircraft at long distance,
the experimental results show that the proposed algorithm is able to recognize the aircraft’s main
structure robustly even at close range.

4.2. Experimental Results of Pose Estimation

Simulated image pairs were used to test our pose estimation algorithm. Two models were used
in our experiment to simulate straight wing aircraft, as shown in Figure 10. These two models were
created using Autodesk 3ds Max [37], which is a professional 3D computer graphics program for
making 3D animations, models, and images. Model 1 (see Figure 10a) represents a general commercial
UAV with standard straight wings while Model 2 (see Figure 10b) is a full-size simulation of the
MQ-9 unmanned aircraft which has straight tapered wings (a variant of the standard straight wing).
The size of Model 1 is 3.4 m × 5.0 m × 0.7 m (length, width, height), and the size of Model 2 is
10.4 m × 24.8 m × 3.1 m (length, width, height).
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Two cameras in 3ds Max were used to simulate the dual-station photoelectric theodolite at the
flight test site. The internal parameters and spatial layouts of the cameras for aircraft pose estimation
are shown in Table 1. As we can see from Table 1, flight simulation scenarios were established for
Model 1 (Scene 1, see Table 1) and Model 2 (Scene 1, see Table 1).

Table 1. The internal parameters and spatial layouts of the cameras in Scene 1 and Scene 2.

Camera Focal Length Field of View Image Resolution Location (x,y,z)

Scene 1
1 70 mm 28.842◦ × 21.832◦ 1280× 960 (−15 m,−25 m, 0)
2 75 mm 26.991◦ × 20.408◦ 1280× 960 (−20 m, 30 m, 0)

Scene 2
1 300 mm 6.867◦ × 5.153◦ 1280× 960 (350 m, 550 m, 30 m)
2 275 mm 7.49◦ × 5.621◦ 1280× 960 (170 m,−390 m, 0)

In our simulation experiments, cameras with different internal parameters and spatial layouts
were used to test the performance of our algorithm, and the two cameras in the scene were located on
both sides of the aircraft trajectory. The location coordinates of the cameras were in the East-North-Up
(ENU) coordinate system. In Scene 1, the baseline between the two cameras was 55.23 m, while the
two cameras in Scene 2 had a baseline of 957.55 m. The image pairs were generated by the two
cameras in the scenes, and it is very difficult to obtain reliable feature correspondences in these
wide-baseline images.

In order to test the performance of our pose estimation algorithm on different poses in simulation
image pairs, we rotated Model 1 around the x, y, and z axes to simulate changes in the roll angle γ,
pitch angle ψ, and yaw angle ϕ, respectively. Table 2 shows the selected rotation angles (θx, θy, θz) of
Model 1, where θx represents the roll angle, θy represents the pitch angle, and θz represents the yaw
angle. As detailed in Table 2, 13 image pairs were generated for Model 1, and the selected angle range
was reasonable considering actual flight situations. The translation vector of Model 1 in Scene 1 was
Ttrue = (0, 0, 20 m).

Table 2. The selected rotation angles of Model 1 in Scene 1.

1 2 3 4 5 6 7 8 9 10 11 12 13

θx 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ −15◦ 15◦

θy 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ −30◦ 30◦ −15◦ 15◦ 0◦ 0◦

θz 0◦ −30◦ 30◦ −60◦ 60◦ −90◦ 90◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦

For Model 2 in Scene 2, an aircraft trajectory was designed to simulate the flight. During the flight
simulation, the pitch angle of Model 2 varied from −15◦ to 15◦, the roll angle varied from −10◦ to 10◦,
and the translation vector was Ttrue = (x, 0, 200 m), where x ranged from 0 to 600 m. The simulated
flight path was rendered into 13 image pairs in steps of 50 m in Scene 2, and the rotation angles of each
step are shown in Table 3.

Table 3. The rotation angles of Model 2 in Scene 2.

1 2 3 4 5 6 7 8 9 10 11 12 13

θx 0◦ 0◦ 0◦ −10◦ −5◦ −5◦ 10◦ 0◦ 5◦ 5◦ 0◦ 0◦ 0◦

θy 0◦ 0◦ 0◦ 0◦ 15◦ 10◦ −5◦ 5◦ −5◦ 0◦ −15◦ −10◦ 0◦

θz 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦

We used the 3ds Max rendering engine to generate the simulated image pairs of these two models;
these are shown in Figure 11a,b. In Figure 11a, the top row and the bottom row represent the simulated
images of Model 1 captured by Camera 1 and Camera 2, respectively, in Scene 1, and every column
represents an image pair captured at the same time. In Figure 11b, the top row and the bottom
row represent the simulated images of Model 2 captured by Camera 1 and Camera 2, respectively,
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in Scene 2, and every column represents an image pair captured at the same time. The rotation angles
(θx, θy, θz) of the aircraft in each shot are also displayed in Figure 11.

In order to make the simulation scenes more realistic, a sky background with clouds and different
types of natural light was also simulated (see Figure 11). As shown in Figure 11, the wide-baseline
image pairs contain aircraft with different scales, poses, and self-occlusion, and optical blur exists due
to long-range imaging. Under these challenging circumstances, a robust algorithm is needed to obtain
accurate pose information from a single image pair.
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Figure 12 presents the results of our structure extraction method on the simulated image pairs
shown in Figure 11. The directions of the fuselage and the wings are indicated by the red lines in
Figure 12. As we can see, the main structure of the aircraft was correctly extracted by our structure
extraction method, and the results further validate the performance of our method. The 3D pose of the
aircraft can be obtained effectively only when the 2D pose information in the image pair is extracted
robustly and accurately.

We compared our pose estimation algorithm with Li’s method [8] and pose estimation errors were
used to evaluate the algorithms. In Li’s method, the 3D pose of a non-cooperative target is estimated
by a stereo camera based on a triangulation method, and the feature points obtained by the line feature
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extraction are used for stereo matching and 3D reconstruction. The triangulation method is typically
applied to estimate 3D position in computer vision, and the pose estimation pipeline of Li’s method is
also widely used, so it was selected for comparison to validate our proposed method.
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image pairs; (b) Results on Model 2’s simulated image pairs.

For the ground truth pose of the aircraft (Rtrue and Ttrue) and corresponding estimated pose (R̂
and T̂), the rotation error is calculated by errorrot = ‖θ̂− θtrue‖ where θ̂ and θtrue are the Euler angles
of R̂ and Rtrue, respectively, and the translation error is calculated by errortrans = ‖T̂− Ttrue‖.

Since Li’s method can hardly obtain reliable feature matching results across these wide-baseline
views in our experiments, we manually removed mismatched features, selected correct matches in the
image pairs, and confirmed that there were enough corresponding feature points for pose estimation.
The 3D models are also used in Li’s method to obtain the absolute pose of the aircraft, while our
algorithm is model free and acquires the 3D pose information automatically.

Figure 13 shows the pose estimation errors of our algorithm and Li’s method for the simulated
images of Model 1. In Figure 13a, the rotation errors are presented, and the translation errors are
shown in Figure 13b. As we can see from Figure 13, the translation accuracy of our method is similar to
that of Li’s method, and our pose estimation method performs consistently better than the compared
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method in the estimation of the rotation angle. The rotation angle errors of our method are within 1◦,
the average rotation error is 0.47◦, and the average translation error is 177.91 mm.Sensors 2019, 19, x FOR PEER REVIEW 17 of 20 
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Figure 13. Pose estimation errors for the simulated images of Model 1: (a) Rotation errors;
(b) Translation errors.

Figure 14 shows the pose estimation errors of our algorithm and the compared method for the
simulated images of Model 2. In Figure 14a, the rotation errors are presented, and the translation
errors are shown in Figure 14b. Model 2 is more complex than Model 1 and there is a greater imaging
distance in Scene 2, while our algorithm still achieves accurate and stable pose estimation results
compared to the results for Model 1. In Figure 14, the proposed method outperforms the compared
method in the estimation of the rotation angle and translation vector, which is due to the accuracy
and robustness of our structure extraction and planes intersection methods. The large fluctuations
in the result curves indicate that the triangulation process used in Li’s method is sensitive to various
errors. The triangulation method uses the intersection of two lines to estimate the 3D position;
with the measure distance increasing, the uncertainty increases, making the results more sensitive
to noise. The average rotation error of our method is 1.21◦, and the average translation error is
336.49 mm. The experimental results indicate that our method can extract the structure and estimate
the pose accurately.
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In addition, our method is also efficient. We ran our method 1000 times and recorded the
execution time. The average execution time was 30.74 ms (including the structure extraction and
planes intersection methods), which means that our algorithm can estimate the 3D pose efficiently.

The simulation experiment results show that our algorithm estimates the pose of the straight
wing aircraft more accurately and robustly than does the compared method. Meanwhile, our method
is efficient and flexible and can be applied to different types of straight wing aircraft.

5. Conclusions

An accurate and robust pose estimation method for straight wing aircraft was proposed in this
paper. The geometry structure features of straight wing aircraft were utilized for structure extraction
and the pose information was acquired by the planes intersection method. Our method establishes
a universal framework for pose estimation of straight wing aircraft without relying on 3D models
or other datasets, unlike other existing methods, and can be extended to other targets with similar
geometric constraints. For an aircraft without similar geometric constraints to straight wing aircraft,
our proposed method is unable to extract its main structure robustly and accurately. In the case of
a swept wing aircraft, only the fuselage contains enough parallel lines can be detected effectively,
while the wings cannot be extracted accurately. Extending our algorithm to aircraft with different wing
planforms will be the focus of our future research.

Our method can also provide initial pose information for algorithms with higher precision
efficiently. For an image sequence captured during flight, our future work will also focus on using an
extended Kalman filter or particle filter to improve the accuracy of our algorithm.
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