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Abstract: This paper proposes a method of estimating the attitude of an underwater vehicle.
The proposed method uses two field measurements, namely, a gravitational field and a magnetic
field represented in terms of vectors in three-dimensional space. In many existing methods that
convert the measured field vectors into Euler angles, the yaw accuracy is affected by the uncertainty
of the gravitational measurement and by the uncertainty of the magnetic field measurement.
Additionally, previous methods have used the magnetic field measurement under the assumption
that the magnetic field has only a horizontal component. The proposed method utilizes all field
measurement components as they are, without converting them into Euler angles. The bias in
the measured magnetic field vector is estimated and compensated to take full advantage of all
measured field vector components. Because the proposed method deals with the measured field
independently, uncertainties in the measured vectors affect the attitude estimation separately without
adding up. The proposed method was tested by conducting navigation experiments with an
unmanned underwater vehicle inside test tanks. The results were compared with those obtained
by other methods, wherein the Euler angles converted from the measured field vectors were used
as measurements.

Keywords: field measurement; gravitational field; magnetic field; attitude estimation; underwater
vehicles; Kalman filter; Euler angles

1. Introduction

Navigation is one of the fundamental technologies for underwater vehicles and robots.
The attitude and velocity of a vehicle is required for the navigation and control of the vehicle [1,2].
This paper proposes a method that improves the accuracy of attitude estimation for which
measurements sensed by the Microelectromechanical Systems-Attitude and Heading Reference System
(MEMS-AHRS) are used. The MEMS-AHRS measures the acceleration, magnetic field, and angular
rate of the sensor in three directions. The measured acceleration is regarded as the measurement
of the gravitational field, and the measured magnetic field is regarded as the measurement of the
geomagnetic field specific to a geographic location. The MEMS-AHRS has a small volume and is an
inexpensive, lightweight, and convenient sensor for determining attitude. In this paper, MEMS-AHRS
will be referred to simply as attitude and heading reference system (AHRS).

Amongst the three measurements by an AHRS, the magnetic field measurement is highly
susceptible to distortion, owing to the hard-iron and soft-iron effects. Additionally, the scale factor error
and non-orthogonality of the sensor construction make the measurement less reliable. The uncertainty
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in the magnetic field measurement degrades the attitude determined by the quaternion estimator
(QUEST) [3,4]. In the QUEST algorithm, the magnetic field measurement affects not only the yaw
estimation, but also the estimation of roll and pitch. To reduce the effect of the magnetic field
measurement on the estimation of roll and pitch, a method that restricts the use of magnetic field
measurement only to the determination of rotation about the vertical axis has been proposed [4].

The calibration of a magnetometer measurement is one of the major research areas for improving
the attitude estimation based on AHRS measurement. A batch linear least squares method, which
determines the bias, scale factor error, and non-orthogonality, has been proposed for real-time
calibration [5]. Another method has applied Kalman filters (KFs) to the magnetic field measurement
and gravity vector, respectively, to enhance the reliability of field measurements. The outputs from
these KFs were fed to an extended Kalman filter (EKF) for attitude estimation [6].

Many AHRS based methods use partial field measurement information, and the inaccuracy of roll
and pitch deteriorates the yaw calculation [4,7]. Additionally, the yaw estimate is less reliable than the
estimate of the roll and pitch because the yaw estimate depends on the magnetic field measurement,
which is regarded as the measurement of geomagnetic field. The magnetic field measurement of the
AHRS is vulnerable to magnetic interference induced by the vehicle and its surrounding environment.
Although it is desirable to detect only the geomagnetic field, the hard iron and soft iron effects add a
magnetic field other than the geomagnetic field and also distort the geomagnetic field [2].

Various attitude estimation methods convert the acceleration and magnetic field measurements
into Euler angles, namely, the roll, pitch, and yaw angles. The converted Euler angles are used in the
measurement update stage of the estimation procedure [7]. The methods calculate the roll and pitch
from the vertical component of the acceleration measurement, and convert the magnetic field into
yaw, under the assumption that the horizontal component of the magnetic field points north with
some declination from true north. Because the calculation of yaw requires roll and pitch, which are
converted from acceleration, the uncertainty in the acceleration measurement propagates to the yaw
error through the roll and pitch error.

Many of the underwater navigation methods are based on Bayesian estimation approaches.
The EKF is one of the prevalent Bayesian estimation approaches toward estimating attitude. The EKF
predicts the attitude using an angular rate measurement and corrects the predicted attitude using
measurements. The measurements are the attitude calculated from the acceleration and magnetic field
measurements. The roll and pitch are calculated from the measured acceleration under the assumption
that the measured acceleration is attributed only to gravity. The yaw is calculated using the calculated
roll and pitch and the magnetic field measurement. Therefore, the accuracy of yaw is affected by
the accuracy of the roll, pitch, and magnetic field measurement [4]. In addition to the interference
in the magnetic field measurement, the uncertainty of the calculated roll and pitch deteriorates the
calculation of yaw [7].

The unscented Kalman filter (UKF) and particle filter (PF) are also the Bayesian approaches for
underwater navigation. As one of the variants of KF, UKF provides improved estimation accuracy
while keeping the computation load comparable with the EKF [8]. The feasibility of UKF is verified
by offline implementation using triangular navigation trajectory. The method utilized propulsion
system modelling, and the estimation results of the UKF are compared with those of EKF, where
an ultra-short base line (USBL) system provides ground truth for comparison. Another UKF based
method incorporated a dynamic model of the vehicle as well as the kinematic model into the process
model of the estimator. This method is tested through offline implementation using open-sea test
data [9]. Finally, the UKF is used for real-time estimation and the estimated results are used for control
of the underwater vehicle [10].

The PF, which is a sample based implementation of the Bayesian estimation approach, is also
used for underwater navigation. The PFs used landmarks or features of underwater environments
such as seabed terrain information [11] and gravity vector [12] specific for locations in the underwater
environments. PF is also used for localization of acoustic sensors in underwater environments [13].
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In these applications, PF outperforms other methods in dealing with highly nonlinear and complicated
measurement model where explicit mathematical description of the environment is impractical.

The complementary filter (CF) method fuses the complementary spectral characteristics of the field
measurements and angular rate measurement of the AHRS for attitude estimation [14,15]. Although
the angular rate measurement yields an attitude change that is accurate and useful for short-term
use, the attitude calculated from the change exhibits drift with time. Thus, its long-term reliability
is compromised. On the contrary, the roll and pitch calculated from the acceleration and magnetic
field measurement provide the absolute attitude, which is robust in the long term without drift.
However, the roll and pitch are not suitable for determining the relative change of attitude in the
short-term. Based on this complementary property, the attitude calculated from the angular rate is
passed through a high-pass filter, while the attitude calculated from the acceleration and magnetic field
is passed through a low-pass filter. Then, the filtered attitudes are combined by the CF, which is being
further developed to adjust the gains based on the measurement of acceleration for high acceleration
applications [16]. The nonlinear explicit complementary filter (NECF) is partially similar to the CF and
has been widely used with many modifications [2,17].

The NECF was derived as an observer in a special orthogonal group SO(3) by exploiting the
geometry of the SO(3) [15,17]. It uses the difference between the detected field measurements and
the presumably true field through the cross product of the measured field and the true field pair.
The method estimates the rotation matrix by reflecting the attitude error on the bias in the angular rate,
while the bias in the measured field is not explicitly addressed. The NECF uses only the horizontal
component of the magnetic field measurement. In the context of an invariant observer [18], it has been
demonstrated that a particular choice of gains reduces the invariant observer to NECF [19].

The problem of representing the attitude and rotation has been investigated extensively because
the attitude and rotation constitute SO(3), which is not a linear space. The methods of invariant EKF
(IEKF) systematically resolve the nonlinear system estimation problem by using a transformation
group based on Lie algebra [19–21]. The application of IEKF depends on the measurements available
to the specific problem. Therefore, it is still hard to apply IEKF to a general attitude estimation problem,
where the AHRS measurements and the additional field measurements are utilized.

The sine rotation vector (SRV) method has been proposed to relieve the problem arising from
the Euler angle representation of measurement innovation [22]. As a measurement innovation for the
KF application, the SRV method replaces the algebraic difference between the measured Euler angles
and the predicted Euler angles with the sine rotation vector. Although the SRV method improves the
estimation performance, it still requires the conversion of field measurements into Euler angles, and
also requires additional computation to calculate the SRV. The EKF, CF, and SRV basically use the Euler
angles converted from the acceleration and magnetic field measurement. Therefore, they all suffer
from a distorted magnetic field measurement and uncertainty in the yaw calculation.

This paper describes a method that overcomes the problem of distortion-prone magnetic field
measurement and accumulated error in yaw calculation. The proposed method fully utilizes the field
measurements and calculates yaw independently from the roll and pitch by using all components
of the measured acceleration and magnetic field directly in the measurement update stage without
converting them to Euler angles. Additionally, the proposed method estimates and compensates for
the magnetic field bias, and uses the magnetic field vector to estimate the roll and pitch as well as
the yaw. The proposed method uses the well-established EKF method, which is easily expandable
when additional field measurements other than gravity and magnetic field are available. For example,
if a landmark is recognized, then the vector directional to the landmark is regarded as the measured
field. Thus, a simple augmentation of the measurement variables and measurement model equations
is carried out by appending the additional field, and this completes the EKF adaptation to this
particular problem.

Section 2 formulates the problem in a manner suitable to the use of field measurements. Section 3
explains the proposed approach in the order of algorithm flow: prediction, bias estimation and
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compensation, application of measurement model to field measurement, and correction. This section
also discusses an optional alternative, which can be used when the vertical component of the magnetic
field bias is poorly compensated and the incorrect compensation degrades the estimation performance.
Section 4 describes the experiments using unmanned underwater vehicles (UUVs) navigating in test
tanks. The results compare the attitude estimation performance and trajectory estimation performance
for which the attitude estimated by the proposed method is used. Finally, Section 5 concludes this
paper along with suggestions for future work related to the proposed method.

2. Problem Formulation

2.1. Nomenclature

The notations used for the derivation of the method are as follows:

x(t) attitude of a robot at time t; x(t) = (φ(t), θ(t), ψ(t))T where φ(t), θ(t), and ψ(t)
indicate the roll, pitch, and yaw, respectively

x̂−(t) attitude predicted for time t, before being corrected using the measurements;

x̂−(t) =
(
φ̂−(t), θ̂−(t), ψ̂−(t)

)T

x̂(t) attitude estimated for time t through the prediction and correction procedure;

x̂(t) =
(
φ̂(t), θ̂(t), ψ̂(t)

)T

a(t) acceleration measured at time t in the instrument coordinate frame;
a(t) = (ax(t), ay(t), az(t))T

au(t) normalized acceleration measurement; au(t) = (au
x(t), au

y(t), au
z (t))T = a(t)

‖a(t)‖
m̃(t) magnetic field measured in the instrument coordinate frame;

m̃(t) = (m̃x(t), m̃y(t), m̃z(t))T

bm(t) bias in the magnetic field measurement m̃(t); bm(t) = (bmx (t), bmy (t), bmz (t))
T

m(t) magnetic field wherein the bias bm(t) is compensated from measurement m̃(t);
m(t) = (mx(t), my(t), mz(t))T = m̃(t)− bm(t)

mu(t) normalized magnetic field measurement; mu(t) = (mu
x(t), mu

y(t), mu
z (t))T = m(t)

‖m(t)‖
mg(t) geomagnetic field represented in the North-East-Down (NED) coordinate frame

appropriate for the geographical location; mg(t) = (mg,x(t), mg,y(t), mg,z(t))T

zu(t) normalized field measurement at time t; zu(t) = (au(t), mu(t))T

u(t) linear velocity measured by a Doppler velocity log (DVL) in the instrument coordinate
frame; u(t) = (u(t), v(t), w(t))T

ω(t) rotational (angular) velocity measured by a gyroscope in the instrument coordinate frame;
ω(t) = (p(t), q(t), r(t))T

f(·) motion function relating attitude x(t) and angular velocity ω(t) in the instrument
coordinate frame to the robot’s angular velocity ẋ(t); ẋ(t) = f (x(t), ω(t))

h(·) measurement function relating state x(t) to measurement zu(t); zu(t) = h(x(t))
tk the kth discretized sampling instant of time
∆tk time period between t = tk−1 and t = tk; ∆tk = tk − tk−1

In many studies, an underwater robot or vehicle is often referred to as a UUV. Thus, in the
following sections, the terms UUV, vehicle, and robot will be used interchangeably.

2.2. Problem Formulation

The problem being considered in this paper is described as follows.

Attitude Estimation Problem: Find the attitude x̂(t) of an underwater robot at time t = tk, given
the measurements a(tk) and m̃(tk), and attitude x̂(tk−1) estimated at time t = tk−1, linear velocity
u(tk), and angular velocity ω(tk).
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The state x(t) to be estimated consists of the Euler angles of a robot; namely, the roll φ(t), pitch
θ(t), and yaw ψ(t).

x(t) = (φ(t), θ(t), ψ(t))T . (1)

The acceleration measurement a(t) = (ax(t), ay(t), az(t))T is normalized to au(t) =

(au
x(t), au

y(t), au
z (t))T . The magnetic field measurement m̃(t) = (m̃x(t), m̃y(t), m̃z(t))T is calibrated

to m(t) by subtracting the bias from the measurement. Then, the bias calibrated magnetic field
measurement m(t) is normalized to mu(t) = (mu

x(t), mu
y(t), mu

z (t))T .
The normalized measurements au(t) and mu(t) are merged to form the measurement vector z(t),

as expressed by Equation (2):

z(t) = zu(t) = (au
x(t), au

y(t), au
z (t), mu

x(t), mu
y(t), mu

z (t))
T . (2)

The field vectors a(t) and m̃(t) are measured in the instrument coordinate frame. It is assumed
that the vehicle coordinate frame coincides with the instrument coordinate frame. In the development,
the reference coordinate frame, which is otherwise called the world coordinate frame, indicates the
North–East–Down (NED) coordinate frame [23].

A vehicle’s linear velocity u(t) = (u(t), v(t), w(t))T is detected by a DVL, and the detected
velocity is used to dead-reckon the vehicle location that will be used to verify the applicability and
performance of the proposed attitude estimation method. The rotational velocity of the vehicle
ω(t) = (p(t), q(t), r(t))T is detected by a gyroscope to provide the time update of the state. The linear
velocity u(t) and rotational velocity ω(t) are also measured in the vehicle coordinate frame, which is
adjusted to coincide with the instrument coordinate frame.

The procedure for attitude estimation consists of prediction, bias estimation, bias compensation,
and correction, and will be described in the following sections.

3. Attitude Estimation

The attitude estimation process consists of the prediction and correction of the attitude and attitude
covariance. The process uses a magnetic field measurement, whose bias is estimated and compensated.
This section explains the prediction stage (Section 3.1), procedure for the estimation and compensation
of the magnetic field bias (Section 3.2), derivation of measurement model (Section 3.3), and correction
stage (Section 3.4). Additionally, an optional method using only the horizontal component of the
magnetic field is applicable when the severe distortion of the vertical component of the magnetic field
measurement degrades the attitude estimation. This method is presented in Section 3.5.

3.1. Prediction of State and State Covariance

The time update, which is otherwise called the prediction or propagation step, predicts the state
for time tk as x̂−(tk) and the covariance P−(tk) of the predicted state x̂−(tk). The prediction step
updates the previous estimates x̂(tk−1) and the covariance P(tk−1) by using the differential equation
for attitude transition. The differential equation model of the attitude is expressed by the following
Equation (3): φ̇(t)

θ̇(t)
ψ̇(t)

 =

p(t) + q(t)S(φ(t))T(θ(t)) + r(t)C(φ(t))T(θ(t))
q(t)C(φ(t))− r(t)S(φ(t))

q(t)S(φ(t)) sec(θ(t)) + r(t)C(φ(t)) sec(θ(t))


︸ ︷︷ ︸

f(x(t),ω(t))

+

vφ(t)
vθ(t)
vψ(t)


︸ ︷︷ ︸

v(t)

, (3)

ẋ(t) = f(x(t), ω(t)) + v(t), v(t) ∼ N (0, Q(t)). (4)

The time derivative ẋ(t) of the state in Equation (4) is a function of the measured angular velocity
ω(t) = (p(t), q(t), r(t))T and state x(t) = (φ(t), θ(t), ψ(t))T . In these equations, S(·), C(·) and T(·)
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represent sin(·), cos(·), and tan(·), respectively. In this model, v(t), which is assumed to be an additive
and Gaussian with zero mean, is the noisy uncertainty involved in the state transition.

The prediction of the state is based on the derivative of x̂(t) as expressed by Equation (5):

˙̂x(t) = f(x̂(t), ω(t)). (5)

In Equation (6), the derivative Ṗ(t) is used to predict the state covariance P(t):

Ṗ(t) = F(t)P(t) + P(t)FT(t) + Q(t), (6)

where, F(t) ≡ ∂f(x(t), ω(t))
∂x(t)

∣∣∣∣
x(t)=x̂(t)

. (7)

The Jacobian matrix F(t) is expressed by Equation (8):

F(t) ≡ ∂f(x(t), ω(t))
∂x(t)

∣∣∣∣
x(t)=x̂(t)

=


(
qC(φ̂)− rS(φ̂)

)
T(θ̂)

(
qS(φ̂) + rC(φ̂)

)
sec2(θ̂) 0

−qS(φ̂)− rC(φ̂) 0 0(
qC(φ̂)− rS(φ̂)

)
sec(θ̂)

(
qS(φ̂) + rC(φ̂)

)
sec(θ̂)T(θ̂) 0

 , (8)

where the time variable (t) is deleted from p(t), q(t), r(t), φ̂(t), and θ̂(t), for notational simplicity.
Using Equations (5) and (6), the state and covariance are predicted for time tk from state x̂(tk−1)

and covariance P(tk−1), which are estimated at time tk−1. The predicted state x̂−(tk) and covariance
P−(tk) can be calculated by the numerical integration of (5) and (6) for time t ∈ [tk−1, tk). One of the
simplest methods to predict them is to use Equations (9) and (10):

x̂−(tk) = x̂(tk−1) + ˙̂x(tk−1)(tk − tk−1), (9)

P−(tk) = P(tk−1) + Ṗ(tk−1)(tk − tk−1). (10)

This method can be used under the provision that ∆tk = tk − tk−1 is small enough for derivatives
˙̂x(tk−1) and Ṗ(tk−1) to approximate the derivatives ˙̂x(t) and Ṗ(t), respectively, for the time period
t ∈ [tk−1, tk).

3.2. Bias Estimation and Compensation of Magnetic Field Measurement

After the prediction procedure described in Section 3.1, the predicted attitude and covariance will
be corrected by comparing the measurements with the predicted measurements which are calculated
based on the predicted state values. However, the magnetic field measurement is corrupted by noise
and bias. Therefore, before applying the measurement update procedure, the bias changing with time
and the location must be estimated and compensated for. The proposed method estimates the bias by
a Kalman filter (KF) using the angular rate measurement [24].

The measurement of the magnetic field m̃(t) includes bias bm(t) and Gaussian noise nm(t),
as modeled in Equation (11):

m̃(t) = v
r R(t) rmtr(t) + bm(t) + nm(t), nm(t) ∼ N (0, Qm(t)), (11)

where rmtr(t) is the true magnetic field in the reference coordinate frame, while m̃(t) represents the
measured magnetic field in the instrument coordinate frame. Ignoring the Gaussian noise nm(t) results
in the true magnetic field rmtr(t) in the fixed world coordinate frame of Equation (12):

rmtr(t) = v
r R−1(t) (m̃(t)− bm(t)) = r

vR(t) (m̃(t)− bm(t)) . (12)

In Equation (12), r
vR(t) is the rotation matrix that transforms a vector in the vehicle coordinate

frame to the vector in the fixed world coordinate frame, expressed by Equation (13):
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r
vR(t)=

C(θ)C(ψ) S(φ)S(θ)C(ψ)− C(φ)S(ψ) C(φ)S(θ)C(ψ) + S(φ)S(ψ)
C(θ)S(ψ) S(φ)S(θ)S(ψ) + C(φ)C(ψ) C(φ)S(θ)S(ψ)− S(φ)C(ψ)
−S(θ) S(φ)C(θ) C(φ)C(θ)


=
(

r
vRx(t) r

vRy(t) r
vRz(t)

)
. (13)

Differentiating Equation (12) results in Equation (14):

0 = r
vṘ(t) (m̃(t)− bm(t)) + r

vR(t) ˙̃m(t). (14)

When deriving Equation (14), it is assumed that the true magnetic field at a location does not
change rapidly. Thus, there is no substantial change in the magnetic field with time. Additionally,
the same assumption applies to the bias bm(t). Applying the relationship r

vṘ(t) = r
vR(t)S(ω(t)) to

Equation (14) gives the following equation:

r
vR(t) ˙̃m(t) = −r

vR(t)S(ω(t)) (m̃(t)− bm(t)) , (15)

where the skew-symmetric cross product matrix S(ω(t)) is defined as Equation (16):

S(ω(t)) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (16)

Multiplying r
vR−1(t) on both sides of Equation (15) yields the differential equation of the magnetic

field measurement m̃(t):

˙̃m(t) = −S(ω(t)) (m̃(t)− bm(t)) = −S(ω(t))m̃(t) + S(ω(t))bm(t). (17)

Equation (17) can be rearranged to form the state transition Equation (18) for the KF application
to estimate the bm(t) bias along with measurement m̃(t):(

˙̃m(t)
ḃm(t)

)
=

(
−S(ω(t)) S(ω(t))

0 0

)(
m̃(t)
bm(t)

)
. (18)

The measurement m̃(t) is obtained from (m̃(t) bm(t))T as Equation (19):

m̃(t) =
(

I 0
)( m̃(t)

bm(t)

)
. (19)

In the derivation of Equation (18), it is again assumed that bias bm(t) does not change substantially
with time, as assumed in the derivation of Equation (15). Equations (18) and (19) correspond to the
process and measurement model in the application of the KF to the estimation of the bias bm(t) [24].
Applying the typical KF procedure using the models represented by Equations (18) and (19) provides
an estimate of the bias in the magnetic field measurement [23]. The bias calibrated magnetic field
expressed by Equation (20) is used in the remainder of the attitude estimation procedure:

m(t) = m̃(t)− bm(t), (20)

where bm(t) is provided by the KF, which is implemented using Equations (18) and (19).

3.3. Measurement Model and Linearization of the Measurement Model

The proposed method uses the measured magnetic field and acceleration for the correction of the
predicted state x̂−(tk), and the state covariance P−(tk). The measurement model is the function which
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maps the state onto the magnetic field and acceleration measurements. The measurement model is
nonlinear and needs to be linearized to apply the EKF approach.

First, the measurement model function h(x(t)) is derived. For the attitude estimation, the normalized
measurement zu(t) is used as the measurement z(t):

z(t) ≡ zu(t) = (au(t), mu(t))T = h(x(t)) + w(t), w(t) ∼ N (0, R(t)). (21)

The derivation of the measurement function for the acceleration is based on the assumption
that the acceleration of the vehicle motion is negligible in comparison with gravity. The assumption
ascertains that the normalized acceleration vector au(t) = (au

x(t), au
y(t), au

z (t))T corresponds to the
unit vector in the upward direction, which is (0, 0,−1)T in the NED coordinate frame. Therefore, the
following Equation (22) describes the relationship between the unit acceleration vector and the attitude:

au(t) =

au
x(t)

au
y(t)

au
z (t)

 = v
r R(t)

 0
0
−1

 = r
vRT(t)

 0
0
−1

 =

 S(θ)
−S(φ)C(θ)
−C(φ)C(θ).

 (22)

Equation (22) describes the measurement model for the acceleration measurement.
The measurement model for the magnetic field measurement is based on the relationship

between the geomagnetic field and the measured magnetic field. The measured magnetic field
is the geomagnetic field in the sensor coordinate frame. The geomagnetic field vector mg consists of
the northerly intensity mg,x, easterly intensity mg,y, and vertical intensity mg,z (positive downwards) of
the geomagnetic field at a certain location on Earth:

mg = (mg,x, mg,y, mg,z)
T . (23)

The geomagnetic field value depends on the location and altitude on Earth. In this paper, the
latest model of the world magnetic model for 2015–2020 is used [25]. The magnetic field measurement
m(t) is determined by applying rotation to the geomagnetic field mg, as expressed by Equation (24):

m(t) =

mx(t)
my(t)
mz(t)

 = v
r R(t)

mg,x

mg,y

mg,z

 = r
vRT(t)

mg,x

mg,y

mg,z

 =

r
vRT

x (t)mg
r
vRT

y (t)mg
r
vRT

z (t)mg

 . (24)

The magnetic field m(t) of Equation (24) is normalized to mu(t) to constitute the measurement
vector z, as expressed by the following Equation (25):

mu(t) =

mu
x(t)

mu
y(t)

mu
z (t)

 =
1∥∥mg
∥∥
r

vRT
x mg

r
vRT

y mg
r
vRT

z mg

 =

r
vRT

x mu
g

r
vRT

y mu
g

r
vRT

z mu
g

 , (25)

where mu
g = (mu

g,x, mu
g,y, mu

g,z)
T =

mg∥∥mg
∥∥ =

mg√
mg,x2 + mg,y2 + mg,z2

.

In Equation (25), mg is normalized to mu
g . Using Equation (13), mu

x(t), mu
y(t), and mu

z (t) are
derived as follows:

mu
x(t) =

r
vRT

x (t)m
u
g = C(θ)C(ψ)mu

g,x + C(θ)S(ψ)mu
g,y − S(θ)mu

g,z, (26)

mu
y(t) = r

vRT
y (t)m

u
g = {S(φ)S(θ)C(ψ)− C(φ)S(ψ)}mu

g,x

+{S(φ)S(θ)S(ψ) + C(φ)C(ψ)}mu
g,y + S(φ)C(θ)mu

g,z, (27)
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mu
z (t) =

r
vRT

z (t)m
u
g = {C(φ)S(θ)C(ψ) + S(φ)S(ψ)}mu

g,x

+{C(φ)S(θ)S(ψ)− S(φ)C(ψ)}mu
g,y + C(φ)C(θ)mu

g,z. (28)

Using Equations (22) and (25), the measurement model is derived as the function h(x(t))
expressed by Equation (29):

z(t) =



au
x(t)

au
y(t)

au
z (t)

mu
x(t)

mu
y(t)

mu
z (t)


= h(x(t)) =



S(θ)
−S(φ)C(θ)
−C(φ)C(θ)

r
vRT

x mu
g

r
vRT

y mu
g

r
vRT

z mu
g


. (29)

The linearized measurement model H(tk) is derived from Equations (26)–(29):

H(tk) ≡
∂h(x)

∂x

∣∣∣
x=x̂−(tk)

=



∂au
x

∂φ
∂au

x
∂θ

∂au
x

∂ψ
∂au

y
∂φ

∂au
y

∂θ

∂au
y

∂ψ
∂au

z
∂φ

∂au
z

∂θ
∂au

z
∂ψ

∂mu
x

∂φ
∂mu

x
∂θ

∂mu
x

∂ψ
∂mu

y
∂φ

∂mu
y

∂θ

∂mu
y

∂ψ
∂mu

z
∂φ

∂mu
z

∂θ
∂mu

z
∂ψ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=x̂−(tk)

. (30)

In Equation (30), the time index (tk) is deleted for notational efficiency. The partial derivative
elements of matrix H(tk) are derived as follows:

∂au
x

∂φ
= 0

∂au
x

∂θ
= C(θ)

∂au
x

∂ψ
= 0, (31)

∂au
y

∂φ
= −C(φ)C(θ)

∂au
y

∂θ
= S(φ)S(θ)

∂au
y

∂ψ
= 0, (32)

∂au
z

∂φ
= S(φ)C(θ)

∂au
z

∂θ
= C(φ)S(θ)

∂au
z

∂ψ
= 0, (33)

∂mu
x

∂φ
= 0, (34)

∂mu
x

∂θ
= −S(θ)C(ψ)mu

g,x − S(θ)S(ψ)mu
g,y − C(θ)mu

g,z, (35)

∂mu
x

∂ψ
= −C(θ)S(ψ)mu

g,x + C(θ)C(ψ)mu
g,y, (36)

∂mu
y

∂φ
= {C(φ)S(θ)C(ψ) + S(φ)S(ψ)}mu

g,x + {C(φ)S(θ)S(ψ)− S(φ)C(ψ)}mu
g,y,

+C(φ)C(θ)mu
g,z, (37)

∂mu
y

∂θ
= S(φ)C(θ)C(ψ)mu

g,x + S(φ)C(θ)S(ψ)mu
g,y − S(φ)S(θ)mu

g,z, (38)

∂mu
y

∂ψ
= −{S(φ)S(θ)S(ψ) + C(φ)C(ψ)}mu

g,x + {S(φ)S(θ)C(ψ)− C(φ)S(ψ)}mu
g,y, (39)

∂mu
z

∂φ
= {−S(φ)S(θ)C(ψ) + C(φ)S(ψ)}mu

g,x − {S(φ)S(θ)S(ψ) + C(φ)C(ψ)}mu
g,y,

−S(φ)C(θ)mu
g,z, (40)

∂mu
z

∂θ
= C(φ)C(θ)C(ψ)mu

g,x + C(φ)C(θ)S(ψ)mu
g,y − C(φ)S(θ)mu

g,z, (41)
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∂mu
z

∂ψ
= {−C(φ)S(θ)S(ψ) + S(φ)C(ψ)}mu

g,x + {C(φ)S(θ)C(ψ) + S(φ)S(ψ)}mu
g,y. (42)

The linearized matrix H(tk) is used in the correction procedure described in Section 3.4.

3.4. Correction of Predicted State and State Covariance

The state representing the attitude is finally estimated as x̂(tk) by adjusting the predicted state
x̂−(tk) as expressed by the following Equation (43):

x̂(tk) = x̂−(tk) + K(tk){z(tk)− h
(
x̂−(tk)

)
}. (43)

The Kalman gain K(tk) in Equation (43) is determined from the linearized measurement model
H(tk) and the predicted covariance matrix P−(tk):

K(tk) = P−(tk)H(tk)
T{H(tk)P

−(tk)H(tk)
T + R(tk)}−1. (44)

The predicted covariance P−(tk) is also corrected to P(tk) by Equation (45):

P(tk) = P−(tk)−K(tk)H(tk)P
−(tk). (45)

Equations (43) and (45) complete the attitude estimation procedure. The estimated state x̂(tk)

and covariance P(tk) of Equations (43) and (45) are used in the next iteration of the EKF procedure to
predict x̂−(tk+1) and P−(tk+1) using Equations (9) and (10).

3.5. Use of Horizontal Component of Magnetic Field Measurement

In the proposed field measurement approach, the magnetic field measurement affects the roll
and pitch estimation, and the yaw estimation. The acceleration measurement plays a major role in
estimating the roll and pitch, and the estimated roll and pitch have enough accuracy and stability for
use in underwater navigation, where the acceleration of vehicle motion is negligible in comparison
with gravity. Because the magnetic field measurement is more vulnerable to environmental distortion
than the acceleration measurement, the use of magnetic field measurement occasionally deteriorates
the estimation of roll and pitch if the magnetic field measurement is not effectively calibrated to reduce
the distortion effect. This happens when the range of the roll and pitch motion is limited. Thus,
the estimation of the vertical bias component is not sufficiently accurate to calibrate the magnetic
field measurement.

In this paper, we propose that only the horizontal component of the magnetic field measurement
should be used to prevent the adverse effect of the magnetic field measurement on the estimation of
the roll and pitch, when the magnetic field is significantly distorted or the vertical bias component
cannot be calibrated, owing to the limited roll and pitch motion.

The horizontal component of the magnetic field is the magnetic field projected onto the North–East
plane (NE plane) in the NED coordinate frame. The proposed method extracts the horizontal
component hm(t) of the magnetic field measurement from the raw magnetic field measurement
m(t) by subtracting the vertical component of the magnetic field using Equation (46):

hm(t) = m(t)− m(t) · a(t)
a(t) · a(t) a(t). (46)

The last term of Equation (46) represents the projection of the magnetic field m(t) onto vector
a(t), which is assumed to be perpendicular to the NE plane, as assumed when the roll and pitch are
calculated from the acceleration measurement. The horizontal component hm(t) of the magnetic field
measurement m(t) is normalized to hmu(t), as expressed by Equation (47):
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hmu(t) =
hm(t)∥∥hm(t)

∥∥ = (hmu
x(t),

hmu
y(t),

hmu
z (t))

T . (47)

In this approach, the measurement consists of the normalized acceleration and normalized
horizontal magnetic field, as expressed by Equation (48):

z(t) = zu(t) = (au
x(t), au

y(t), au
z (t),

hmu
x(t),

hmu
y(t),

hmu
z (t))

T . (48)

Because the NE-plane magnetic field measurement is used in the measurement update procedure
of the EKF, the NE-plane geomagnetic field hmg should be used instead of the full geomagnetic field
mg, which is given by Equation (24). The NE-plane geomagnetic field hmg is simply the NE component
of mg, as expressed by Equation (49):

hmg = (mg,x, mg,y, 0)T . (49)

The use of hm(t) and hmg instead of m(t) and mg completes the approach where only the horizontal
component of the magnetic field measurement is used to remove the adverse effect originating from
the use of the full magnetic field measurement in the estimation of roll and pitch.

4. Experiments and Discussion

The proposed method was evaluated and compared with other methods through experiments
inside two test pools with different remotely operated vehicles (ROVs) and sensors. The compared
methods were NECF, SR, EKF, CF, and the method installed into the used AHRS by the manufacturer
(LORD MicroStrain, Williston, VT, USA). The internal method is a complementary filter (CF) and
provides the attitude in Euler angles [26]. In the two experiments, the attitude and location were
represented in the NED coordinate frame. The origin of the NED coordinate frame for the location
description is the initial location, where the UUV starts a predefined motion through a given trajectory
for each test. The method proposed in this paper is called the FM method, which stands for field
measurement method.

The first experiment uses an AHRS (LORD Microstrain 3DM-GX4 25) [26], a fibre optic gyroscope
(FOG, Advanced Navigation, Spatial Fog, Sydney, NSW, Australia) [27], and a DVL (Teledyne RD
Instruments, Navigator Doppler Velocity Log, Poway, CA, USA) [28]. The attitude provided by the FOG
is used as a reference with which the attitude estimated by the abovementioned methods are compared.
Figure 1 shows the installation of the AHRS and FOG in water-proof housing. The performance
of the FOG is shown in Table 1. Table 2 describes the performance of the AHRS. Figure 2 shows
the UUV used for the experiment along with the test pool. The test pool is located in the city of
Gwangju, Korea, and has a length and depth of 5.5 m, 5.0 m, respectively. According to the world
magnetic model for 2015–2020 at the location of the test pool, the geomagnetic field was set to
mg = (0.307198G,−0.041355G, 0.390659G)T [25]. The UUV was controlled remotely to navigate
through the predefined trajectories in the pool. The UUV had five degrees of freedom in motion with
six thrusters: four horizontal thrusters for surge, sway, and yaw motion, and two vertical thrusters for
roll and heave motion. Figure 3 shows the trajectory through which the UUV navigated within the
test pool. The UUV moved in a circular trajectory from its initial location. Every time it reached back
to its initial location at the end of one circular motion, it turned around in place to follow the reverse
direction and trace back to the circular trajectory. The travel distance and time were 264 m, and 34 min
and 20 s, with an average speed of 0.21 m/s when the UUV was moving, excluding the rotation at the
end of each circulation.



Sensors 2019, 19, 330 12 of 20

Table 1. Specification of fibre optic gyroscope (FOG) used in experiment 1 to provide reference attitude
for comparison.

Parameter Value

Roll and pitch accuracy 0.01◦

Heading accuracy (global navigation satellite system (GNSS) aided) 0.05◦

Heading accuracy (north seeking only) 0.25◦ secant latitude
Output data rate Up to 1000 Hz

Table 2. Specification of AHRS used in experiment 1.

Parameter Value

Gyroscope bias instability 10◦/h
Accuracy of CF attitude estimation (static) ±0.5◦

Accuracy of CF attitude estimation (dynamic) ±2.0◦

(a) (b)

Figure 1. Installation of FOG and AHRS in experiment 1. (a) FOG and AHRS in the waterproof hull;
(b) cover of the waterproof hull.

(a) (b)

Figure 2. UUV and test tank used in experiment 1. (a) UUV front view; (b) launching UUV into
test tank.

Figure 4 compares the yaw estimation of the considered methods. The errors in the roll and pitch
are not displayed because the errors of all considered methods are comparable. The reference to the
error is the attitude provided by the FOG. For the attitude error, Table 3 shows the average (Mn),
average absolute error (MnA), standard deviation (Std), and maximum peak to peak (PtP) of the error.
In Table 3, the AHRS CF indicates the CF method implemented internally in the AHRS, while CF
represents the CF implemented in this study. Figure 5 depicts the error statistics graphically to make
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the comparison easier. The mean, average absolute error, standard deviation, and peak to peak of the
error are shown.

Figure 3. Experiment 1 trajectory shown in test pool.

Although the roll and pitch estimation errors for all methods are comparable, a difference in
the yaw estimation error is noticeable. Therefore, the discussion regarding the results is focused on
the statistical comparison of the yaw estimation error. Figure 5 shows a graphical representation
of the mean, average absolute error, standard deviation, and peak to peak of the error. As shown
in Table 3 and Figure 5, the proposed FM method achieves the best performance in peak to peak,
and the second best performance with regard to the mean and average absolute error. The standard
deviation performance of the FM ranks third. Although the performance of SR in the mean error and
average absolute error are better than the performance of the proposed method, the performance of
the standard deviation and peak to peak of the error for SR are inferior in comparison with the same
performance of the proposed FM method. In comparison with the other methods, it can be generally
considered that the FM method outperforms the other methods.
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Figure 4. Error of estimated yaw with respect to the yaw provided by FOG is compared. (a) bias
estimation is used; (b) bias estimation is not used.
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Table 3. Average of error, average of absolute error, standard deviation, and peak to peak of attitude
estimation error in experiment 1 (dimension in degrees).

Method Bias Compensation
Mn (unit: deg) MnA (Unit: deg)

Roll Pitch Yaw Roll Pitch yaw

FM compensated −0.5693 0.1239 6.5286 0.5709 0.2604 6.5286
not compensated −0.5692 0.1238 6.9146 0.5709 0.2604 6.9146

SR compensated −0.8603 0.1497 5.5848 0.8615 0.6181 5.9690
not compensated −0.8692 0.1658 5.7003 0.8701 0.5965 5.8336

NECF compensated −0.3960 0.0924 8.3195 0.3961 0.1682 8.3200
not compensated −0.3951 0.0849 8.6126 0.3952 0.1600 8.6132

EKF compensated −0.7011 0.1697 11.1049 0.7075 0.2772 10.6770
not compensated −0.7011 0.1697 11.1049 0.7075 0.2772 11.1049

CF compensated −0.4251 0.0749 −0.8583 0.4857 0.2551 10.1000
not compensated −0.4251 0.0749 −0.8583 0.4857 0.2551 10.1000

AHRS CF not known −0.6779 0.1340 9.8494 0.6825 0.2670 11.7897

Std (unit: deg) PtP (Unit: deg)

Roll Pitch Yaw Roll Pitch Yaw

FM compensated 0.3426 0.2857 4.1599 1.4407 1.2710 18.8553
not compensated 0.3431 0.2862 3.7747 1.4422 1.2721 18.8933

SR compensated 0.4425 0.7037 6.2573 2.1397 3.3442 22.8592
not compensated 0.3511 0.6671 5.8768 2.0830 3.2952 22.1971

NECF compensated 0.1891 0.1829 3.5384 0.9844 1.5147 23.6874
not compensated 0.2056 0.1741 3.3417 1.0316 1.4915 24.0799

EKF compensated 0.3658 0.3072 3.3592 1.7996 1.4153 20.0542
not compensated 0.3658 0.3072 2.7169 1.7996 1.4153 17.9347

CF compensated 0.3952 0.3016 11.5041 1.9221 1.4122 39.5673
not compensated 0.3952 0.3016 11.5038 1.9221 1.4122 39.5673

AHRS CF not known 0.3588 0.3047 10.3116 1.5245 1.3126 54.4047

Mn: Average error; MnA: Average absolute error; Std: Standard deviation of error; PtP: Peak to peak of error.
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Figure 5. Average, average absolute error, standard deviation, and peak to peak of attitude error
obtained with considered methods in experiment 1. (a) bias compensated; (b) bias not compensated.



Sensors 2019, 19, 330 15 of 20

The second experiment used an AHRS (LORD Microstrain 3DM-GX3 25, LORD MicroStrain,
Williston, VT, USA) [29] and a DVL (LinkQuest NavQuest 600 Micro, San Diego, CA, USA) [30]
installed onto the UUV. The test pool was located in the city of Daejeon, Korea, and the geomagnetic
field was set to mg = (0.300684G,−0.042526G, 0.401987G)T [25], in accordance with the 2015–2020
world magnetic model with regard to the specific location. The test pool and the UUV are shown
in Figure 6. The UUV navigated through the two different trajectories shown in Figure 7—namely,
a circular trajectory and a rectangular trajectory. For each trajectory, once the robot circulated and
reached its initial location, it turned back and traced the trajectory to the initial location by following
the reverse direction. Then, it turned back and traced the previous path, and moved again toward
the initial location. The robot repeated this back and forth navigation, and finally returned to its
initial location such that the destination of the navigation was the robot’s initial location. The total
travel distance of the circular motion was 282.7 m, and the total distance of the rectangular motion
was 100.8 m [22]. Because the second experiment did not use a high-end attitude sensor, the attitude
estimation performance was analyzed indirectly by comparing the accuracy of the dead-reckoned
localization, which depends on the estimated attitude.

Figure 8 shows the trajectories dead-reckoned using the estimated attitude and velocity measured
by the DVL. Because the DVL measures the velocity in the sensor coordinate frame, the velocity
is transformed to the velocity in the NED coordinate frame by using the attitude estimated by the
considered methods. The NED velocity was dead-reckoned to produce the trajectory in the NED
coordinate frame. Therefore, the accuracy of the calculated trajectory in the NED coordinate frame
partially indicates the performance of attitude estimation. The UUV began moving from the origin
(0, 0, 0) of the coordinate system, and ended its motion at the same location after circulating the
trajectory. The errors in the estimated attitude and measured velocity cause the calculated UUV
location to drift with time. The drift of the calculated final destination from the true destination (0, 0, 0)
is regarded as a measure of accuracy for the estimated attitude.

Table 4 describes the distance error of the estimated location at the final destination. Although the
drift in the z-direction is not shown in Figure 8, the z-directional error adds to the distance error on the
xy plane shown in Figure 8. Thus, it results in the distance error presented in Table 4. The distance
error for the FM is shorter than the errors of the other methods. Although the distance error is not the
exact measure of accuracy for the estimated attitude, the result proves that the calculated trajectory
based on the proposed method is better than that of the other methods, and indirectly indicates that
the proposed attitude estimation method is the most probable one amongst all methods compared in
this study.

Table 4. Calculated location and distance error at destination. The location was dead-reckoned based
on the attitude estimated by the considered methods.

Method
Calculated Location (Unit: m) Distance Error (Unit: m)

Circular Traj. Rectangular Traj. Circular Traj. Rectangular traj.

FM (−4.7123, 3.2019, −1.8038) (−0.0358, 0.6696, −0.7202) 5.9759 0.9840
EKF (−4.3445, 5.2280, −1.7294) (−0.1855, 0.8266, −0.6372) 7.0141 1.0600
CF (−4.3212, 5.5269, −2.1790) (−0.1524, 0.9068, −0.7710) 7.3462 1.2000
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Reduction of computational expenses are critical for the practical use of the algorithm since
the computational capability is constrained by the limitations in space, weight, power consumption,
and price available within the underwater vehicles. Table 5 compares the computation time for
the five methods. The table lists the time required for one iteration of each estimation algorithm.
All the algorithms are tested using Matlab version R2018a (MathWorks Inc., Natick, MA, USA) under
Windows 10 Pro(x64) system (Microsoft Corp., Redmond, WA, USA) on the desktop computer with
CPU Intel Core i7-7700K (Intel Corp., Santa Clara, CA, USA), 4.20 GHz, 16 GB of memory.

Table 5. Computation time for the considered methods.

Method FM SR NECF EKF CF

Computation Time (unit: ms) 0.165 0.156 0.142 0.151 0.135

Table 5 indicates that the proposed method takes the longest computation time. However, all the
algorithms run in comparable computation time, which is less than 0.20 ms. The proposed method
can run over 5.0 KHz, and it is enough for real-time implementation. The NECF and EKFs have
been widely used for underwater navigation. As the computation time for NECF and EKFs are
acceptable for practical underwater navigations, it is expected that the computation time for the
proposed method is also allowable for real-time application. Memory usage is another important factor
for implementation of the algorithms for practical use. For the Matlab implementation, the proposed
method uses 3864 bytes of variables, which is considered reasonable because the other methods also
require comparable amount of variables with the proposed method.

In order to use the method for navigation in open water environment, the following aspects
should be taken into account besides the computation expenses: (1) periodic position and attitude
fixing is needed; and (2) geomagnetic field reference should be updated as the vehicle navigates from
one place to another. Underwater navigation which depends on DVL and inertia measurement unit
(IMU) inevitably suffer from accumulation of error in location and heading as shown in Figure 8.
Therefore, periodic correction of the location and attitude is required. In some applications, the vehicle
periodically surfaces and corrects the location and heading using the GPS data. In some other cases
where the vehicle navigates in a limited navigation space, acoustic baseline system such as USBL, short
baseline (SBL), or long baseline (LBL) can be used for the correction.

The proposed method requires geomagnetic field reference data, which depends on geographic
location of the underwater vehicle. Table 6 shows the geomagnetic field values of two locations which
are 9.1 km apart from each other. The geomagnetic field values are for the date of 9 January 2019,
which are calculated using the world magnetic model (WMM) 2015, version 2, updated in September
2018 [31]. The distance between the two places are calculated using the Universal Transverse Mercator
(UTM) coordinates with world geodetic system (WGS)-84 ellipsoid data. Table 6 indicates that the
variation of geomagnetic field values is small enough to be ignored for application of the proposed
method when the locations are within 9.1 km range.

Table 6. Comparison of geomagnetic field of two locations 9.1 km apart, for the date of 9 January 2019.

Latitude (deg.) Longitude (deg.) Altitude (m)
Geomagnetic Field (Unit: nT)

X (North) Y (East) Z (Down)

Location 1 35.0 130.0 0.0 30,776 −4306 37,892
Location 2 35.0 130.1 0.0 30,773 −4307 37,859
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(a)

(b)

Figure 6. Test pool and UUV used in experiment 2. (a) test pool; (b) UUV.

The geomagnetic field could be considered constant if the vehicle’s workspace is within
several kilometers of bound. However, if the vehicle navigates around significantly large range,
the geomagnetic field should be updated. For the update, the geomagnetic model should be installed
into the vehicle control processor system. Alternatively, the geomagnetic field value can be updated
through wireless communication when the vehicle surfaces. Because the estimation error of location
by the proposed method accumulates with time and travel distance, the geomagnetic field calculated
based on the estimated location also deviates from the true value. Therefore, periodic fix of location is
needed using either GPS reception at the surfacing period or using acoustic baseline systems.

Figure 7. Two trajectories in navigation experiment 2 [22].
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Figure 8. Trajectories calculated in experiment 2. (a) circular trajectory; (b) rectangular trajectory.

5. Conclusions

This paper proposes a method of estimating the attitude of an underwater robot using
measurement by an AHRS. The proposed method uses a magnetic field and acceleration measurement
at the correction stage of the filtering. Unlike existing EKF based methods, the proposed method uses
the field measurement as is, by directly comparing the measured field with the known field strength
specific to the geographic locations where the UUV operates. The proposed method was compared
with five other methods using measurement data sampled through two experiments in test tanks.
The statistical analysis for the attitude error revealed that the proposed method performed better than,
or at least comparably, with the other considered methods.

The proposed formulation uses Euler angles for the state transition and measurement model. It is
expected that the use of an alternative representation for the attitude, such as a quaternion or rotation
matrix, will result in a different state transition model and measurement model. In future work, an
invariant observer which uses field measurement will be adopted [20] to further develop this study.
It is thought that the incorporation of the field measurement approach with an alternative attitude
representation utilizing the invariance property could improve the convergence performance and
accuracy of attitude estimation.
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