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Abstract: Structural damage is inevitable due to the structural aging and disastrous external excitation.
The auto-regressive (AR) based method is one of the most widely used methods for structural damage
identification. In this regard, the classical least-squares algorithm is often utilized to solve the AR
model. However, this algorithm generally could not take all the observed noises into account. In this
study, a partial errors-in-variables (EIV) model is used so that both the current and prior observation
errors are considered. Accordingly, a total least-squares (TLSE) solution is introduced to solve the
partial EIV model. The solution estimates and accounts for the correlations between the current
observed data and the design matrix. An effective damage indicator is chosen to count for damage
levels of the structures. Both mathematical and finite element simulation results show that the
proposed TLSE method yields better accuracy than the classical LS method and the AR model. Finally,
the response data of a high-rise building shaking table test is used for demonstrating the effectiveness
of the proposed method in identifying the location and damage degree of a model structure.

Keywords: damage identification; auto-regressive model; total least-squares method

1. Introduction

Civil structures are subject to many adverse factors [1–4] such as corrosion, aging, over-capacity
loads, and may occasionally experience natural disasters such as earthquakes and hurricanes, and even
extreme manmade events including vehicle-structure collision and explosion, causing structural damage
to different degrees. In recent years, structural damage detection and identification have received
much attention and different approaches have been developed [5,6]. For example, the sensor-based
approaches can offer detailed information about local damage [7]. Vision and thermal-image based
methods can present structural surface damage [8]. Vibration-based approaches are effective in
detecting the damage in the entire structures [9].

Vibration-based approaches have been widely applied to identify various types of damage in
real and laboratory structures owing to their noninvasive characteristics [10]. For example, Gul [11]
investigated the different damage detection methods for global condition assessment of structures
based on vibration data. Morita et al. Datteo et al. [12] identified the vibration responses of a real
structure in Italy under operational conditions. Though various vibration-based methods, such as
time-series analysis, wavelet analysis, and neural network, [10], the statistical time-series methods
form an important, rapidly evolving category. Fassois and Sakellariou [13] summarized the principles
and techniques of time-series methods for fault detection, identification, and estimation in vibrating
structures. The time-series methods are originated in statistics and refer to a time-ordered sequence of
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random (stochastic) scalar or vector observations. These methods appear promising as they tend to be
more accessible and less expensive than many other alternatives. The process of time-series methods
involves the observation of a structure over time using periodical measurements, the extraction of
damage sensitive quantities (features) from these measurements, and the statistical analysis of these
quantities in order to determine the current structural state [14].

A widely used time series method is the Auto-Regressive (AR) model [15]. The AR model tries to
account for the correlations between the current time parameter with the predecessors in time series,
where the output variable depends linearly on its previous values and a stochastic term [16]. From the
perspective of a structural engineer, a structure can be assumed as a system that contains segments
such as mass, damping, and stiffness. Therefore, the AR model parameters of a structure always stay
the same. When the structure is damaged, the AR parameters of these models change accordingly
and become different from those in the undamaged stage. Hence the changes of AR parameters can
reflect the structural inner damage. Among all the possible strategies for AR modeling, the use of
classical AR models is widespread. Basically, this model assumes that there are only errors in the
current observations, and the noise variance is assumed as known, for example, the Gaussian white
noise. The AR parameters are most commonly estimated by the least-squares (LS) method, and have
been investigated in a number of studies [15]. Methods such as Mahalanobis Squared Distance [17],
Yule-Walker equations [18] and the maximum-likelihood method [19] have also been adopted to solve
the AR model.

Since the AR data are determined from measurements, there may be noises not only in the current
observations but also in the predecessors. Hence, the classical AR model would be, inaccurately [20].
The biases of the classical AR model are proved in some researches [21,22]. For example, one of
the methods compensates for the LS estimation by computing its asymptotic bias to obtain a
consistent identification procedure [23]. If the AR model takes the errors of the previous data
into consideration, it can be represented as the errors-in-variance (EIV) model [24]. In the field of
geodetic survey, this model has already received extensive attention. The algorithms are used to
numerically obtain the total least-square (TLS) solution and the applications of EIV model have been
actively investigated [25]. Therefore, the existed studies of the EIV model can be applied in the field of
structural damage identification.

This paper is aiming at introducing an AR model which contains additive white noises,
and applying a new identification method based on the theory of the partial EIV model to solve the AR
model with additive noises. This method allows the consideration of both errors in the current and
past observations. The identification method is also applied in a real case. The rest of the paper is
structured as follows. In Section 2, the AR models and EIV model are briefly introduced, and then an
AR model with additive noises is developed. In Section 3, the theories of LS and TLS are introduced;
a TLS solution proposed by Yun et al. [26] for solving the partial EIV model is firstly used to solve the
AR model with additive noises; and a more common solution for the partial EIV model considering
the possible correlations between the observed vector and design matrix is also proposed. A damage
indicator is developed to represent the severity of the damage through a mathematical simulation.
In Section 4, the performance of three methods are studied by identifying the damage of a finite element
simulation case. Results show that the extended solution considering the possible correlations between
the observed vector and design matrix can not only identify the structural damage and degrees but
also perform better than the TLS solution proposed by Yun et al. [26] and the LS solution for classical
AR model. In the application of the proposed method in the real case, the experimental data of a
shaking table test are used to identify the damage of the model of different seismic levels in Section 5.

2. AR Model with Additive Noises

The classical AR model is introduced in this section followed by the introduction of the LS solution
for the typical AR model. Due to the disadvantages of the LS solution, the AR model with additive
noise is developed.
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A classical AR model of order m is described by

xt = β1xt−1 + β2xt−2 + . . .+ βmxt−m + ext, (1)

where xt is the discrete-time signal of acceleration responses in this paper; ext is random noise of xt; m is
the unknown order of this model and varies from 0 to (t− 1); and βi(i = 1, 2, · · · , m) is the unknown AR
coefficient to be estimated. In a real case, where a civil structure works under operational conditions,
noise is usually assumed as Gaussian white noise with a zero-mean and unknown variance, hence the
random noise ext is assumed as the Gaussian white noise in this paper.

In fact, the left term xt of the model can be regarded as the sum of two terms in the right.
The first term is contributed by xt−1 to xt−m with unknown coefficients respectively, while the
second term represents the noise affection. Denoting y = [xt, xt−1, · · · , xt−m+1]

T, β = [β1, β2, · · · , βm]
T,

and ey = [ext, ex(t−1), · · · , ex(t−m+1)]
T, the AR model can be represented as:

y = Aβ+ ey, (2)

where ey is the error corresponding to y. As mentioned before, all of the x are observed. Therefore,
both the y and matrix A contain errors in real cases. However, the corresponding errors to A are omitted
unreasonably in the general AR model. Thus, errors should be added to A in Equation (2). Meanwhile,
taking current observed values and all the errors of previously observed values in consideration,
the AR model can be rewritten as,

xt

xt−1
...

xt−n+1

 =



xt−1, xt−2, · · · , xt−m

xt−2, xt−3, · · · , xt−m−1
...

xt−n, xt−n−1, · · · , xt−n+1−m

−


et−1, et−2, · · · , et−m

et−2, et−3, · · · , et−m−1
...

et−n, et−n−1, · · · , et−n+1−m




β1

β2
...
βm

+


eyt

ey(t−1)
...

ey(t−n+1)

. (3)

That is,
y = (A−EA)β + ey, (4)

where EA is also assumed as Gaussian white noise. Equation (4) is subject to

E(e) = 0, D(e) = σ2
0W−1, (5)

W =
[

Wy WyA
WAy ω

]
, (6)

where Wy andω are diagonal weight matrices of y and a. a = vec(A), which is the vector of putting
the elements of A into a vector one column after another. e = [ey, eA]

T, eA = vec (EA). In a special
case where the matrix A contains no errors (EA = 0), the model becomes the classical AR model with
only noises ey. By solving the parameter β of Equation (4), the AR coefficients can be obtained.

Actually, Equation (4) is the EIV model. As mentioned in the introduction, finding out the solution
of the EIV model is quite popular in the field of geodetic survey and various methods have already
been developed. Hence the parameters of this AR model with additive noises can be estimated based
on the comprehensive literature studies of the EIV model in the next section.

3. TLS Adjustment for the AR Model with Additive Noises

After introducing the AR model with additive noises in Section 2, this section introduces the
solutions to the EIV model. Furthermore, the algorithm to estimate the parameters in the AR model
with additive noises is presented.
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3.1. LS and TLS Method for EIV Model

The simplest approximate approach to estimate unknown vector β is the LS method. The LS
method is processed by Lagrange Extremum Method. The estimation results are shown as:

β̂ =
(
ATWA

)−1
ATWy. (7)

Estimated residual and scalar are:
ey = y−Aβ̂, (8)

σ̂2
0 =

ey
TWey

n−m
. (9)

However, as noted previously, this method ignores the errors in the design matrix A as if it is
deterministic, which may lead bias to the results. To solve this problem, TLS method is proposed to
handle both the random observational vector and the random elements in A. The TLS method takes
the EA in Equation (4) into consideration, which is surely more rigorous than the LS method. After the
first invention of TLS, it is widely used in various fields, and many algorithms such as ordinary TLS
and weighted TLS, are used to estimate parameters in the EIV model. Golub and van [27] solved the
EIV model by minimizing the Frobenius norm of the corrections of both A and y in 1980, named SVD
method. Then, a lot of researches after the SVD method are proposed [28]. The method is shown
as follows.

Firstly, given the estimation criterion function of TLS:

S = ‖D
[
EA, ey

]
T‖

F
. (10)

D = diag(d1, d2, . . . dn)
T; T = diag(t1, t2, . . . , tm)

T; and both di and ti are positive. ‖B‖F donates the
Frobenius norm of B. Then the minimization object can be solved by computing the singular value
decomposition of C:

C = D[A,y]T = UΣV. (11)

where
U
n,n

= [U1, · · · , Un] ∈ Rn×n, (12)

V
m+1,m+1

= [V1, · · · , Vm+1] ∈ R(m+1)×(m+1), (13)∑
n,m+1

= diag(σ1, · · · σm+1). (14)

∑
is the positive diagonal matrix arranged in decreasing order; and σ1 ≥ σ2 ≥ . . . σm+1.

When Vm+1,m+1 , 0, there is a unique solution:

βTLS = Vm+1/Vm+1,m+1. (15)

However, Xu et al. [28] pointed out that Pearson’s solution is still a kind of LS method. Furthermore,
the SVD method was just a TLS solution based on numerical approximation and was not a real TLS.
Therefore, the application of the SVD method is limited even though it is easy.

3.2. TLS Solution for the Partial EIV Model

Xu et al. [28,29] extended the EIV model to a more general one named partial EIV model and
proposed an algorithm to solve it. In this model, not all the elements of A are random. The partial EIV
model is shown as follows:

y =
(
βT
⊗ In

)
(h + Ba) + ey, (16)
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a = a + ea, (17)

where (h + Ba) = vec(A− EA); h is a nm × 1 deterministic constant vector whose elements consist
of non-random elements of vec(A−EA); ⊗ stands for the Kronecker Product. a is a t× 1 vector with
entries of independent random elements in the design matrix, and it is the true value of a; B is a given
nt×m matrix that depends on the number of random elements in A; Ba is a vector representing the
random part. The solution for this partial EIV model has also been proposed.

Firstly, assume that EA and ey are stochastically independent,

cov(ey, EA) = 0, (18)

W =
[

Wy WyA
WAy ω

]
=

[
Wy 0
0 ω

]
. (19)

Then the TLS solution to the partial EIV model is proposed as [28],

â =
(
ω+ ST

βWSβ
)−1

ωa− ST
βW

 m∑
i=1

hiβ̂i

+ ST
βWy

, (20)

(Nh + NB + NBh + NhB)β̂ = µh + µB, (21)

where µh = γhWy, µB = γBWy. And

h = [h1, h2, . . . , hm]
T, (22)

B = [B1, B2, · · · , Bm]
T. (23)

Sβ =
m∑

i=1

Biβ̂i =
(
β̂⊗ In

)
B, (24)

γB =
[
â

T
BT

1 , â
T

BT
2 , · · · , â

T
BT

m

]T
, (25)

γh =
[
hT

1 , hT
2 , · · ·hT

m

]T
. (26)

Nh, NB, NBh, NhB are m×m matrices, for i, j = 1, 2, · · · , m, and they are be respectively given by

Nh(i, j) = hTWh j, (27)

NB(i, j) = â
T

BT
i WB jâ, (28)

NBh(i, j) = â
T

BT
i Wh j, (29)

NhB(i, j) = h j
TWB jâ. (30)

Furthermore, Yun et al. [26] proposed an alternative solution to the partial EIV model. The solution
is shown as follows:

β̂ =

(
Â

T
WÂ

)−1

Â
T

Wy. (31)

â = a +ω−1ST
βE−1

(
y−Aβ̂

)
. (32)

where E = W−1 + Sβω−1ST
β . The final solution can be obtained by iteration. Yun et al. [26] illustrated

that the new one could be more compact and direct than the formula proposed by Xu [28], which is
easier and can be processed much more quickly if the number of independent random elements of the
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design matrix A is significantly larger than that of the measurements. It is clear that the EIV model in
Equations (16) and (17) and the solutions in Equations (31) and (32) are more general.

However, in the AR model with additive noises, there should be the same elements in y and A,
leading to the same elements existed in EA and ey. Therefore, EA and ey may be not stochastically
independent. It cannot be simply assumed that cov(ey, ea) = 0, which means the TLS above cannot
be used. Here the errors of xi in the ey are not regarded as the same with the errors of xi in the EA,
i = (t− n + 1), · · · t. That is, eyi is not always the same with ei, then the method proposed by Yun et
al. [26] can be applied to solve the AR model with noises. Even though eyi should be equal to ei in real
cases, the real values of the errors in xi are always unknown. Therefore, both eyi and ei have chances to
be closer to real errors. Based on this uncertainty, it is more compatible to suppose that eyi and ei are
not the same and estimate them independently, than ignoring the errors in matrix A immediately.

As mentioned before, Equation (4) is a special case of the partial EIV model. When t = nm, h = 0,
Equation (16) turns to Equation (4), which is,

y =
(
βT
⊗ In

)
·Ba + ey= (A− EA)β+ ey. (33)

Considering that all the observations in AR model are obtained in the same condition and by the
same measuring instrument, the weight of each obtained output time-series signal can be assumed to
be the same. Therefore, the diagonal weight matrix W can be simplified as a unit matrix in the AR
model in this paper. The TLS parameter estimation steps of the AR model with additive noises are
shown as follows [26,28]:

1. Given A and y, W = I(n+1)m, h = 0;

2. Initialize â = a
3. Compute β̂ by Equation (31);

4. Compute â by Equation (32) based on the obtained β̂ in step 3.

5. Give a predetermined tolerable errors value. Terminate the process if errors between â and β̂ are
within the given value. Otherwise, go to Step 3.

3.3. TLS Solution for the AR Model with Additive Noises

As mentioned above, cov(ey, ea) may be not equal to zero, thus the TLS solution for the partial
EIV model can be extended to a more general one which does not care about the correlations between
ey and ea. Firstly, rewrite the EIV model as,[

y
a

]
=

 (
βT
⊗ In

)
(h + Ba)

a

−C1·e (34)

where C1·e = [−ey,−ea]
T, and e is a s× 1 vector which consists of all the real random elements in the

vector y and design matrix A. In is an unit matrix with size of n × n. The objective function is then
modeled as,

Φ = eTWe + 2λT(y−
(
βT
⊗ In

)
(h + Ba) + C2e) (35)

where C2 =
[
In −

(
βT
⊗ In

)
B
]
·C1, and W is the weight matrix of e. By differentiating Φ in Equation (26)

with respect to e, β, and λ, and setting all these partial derivatives to zero, we can obtain the
following equations:

1
2
∂Φ
∂e

= We + C2λ = 0 (36)

1
2
∂Φ
∂β

= −Âλ = 0 (37)

1
2
∂Φ
∂λ

= y−
(
βT
⊗ In

)
(h + Ba) + C2e = 0 (38)
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Finally, the general solution can be obtained as,

e = −(W)
−1

CT
2λ (39)

λ =
(
C2(W)

−1
CT

2

)−1(
y−

(
βT
⊗ In

)
(h + Ba)

)
(40)

β̂ =

[
Â
(
C2(W)

−1
CT

2

)−1
A
]−1

Â
T(

C2(W)
−1

CT
2

)−1
y (41)

The steps of this TLS algorithm for the partial EIV model are shown as follows:

1. Given A and y, denote W = I(n+1)m and h = 0

2. Calculate C1

3. Compute the LS solution β̂0 =
(
ATWyA

)−1
ATWyy

4. Initialize C2 =
[
In −

(
β̂

T
0 ⊗ In

)
B
]
·C1

5. Obtain β̂i using Equations (30)–(32) and renew C2

6. Provide a predetermined tolerable error value. Terminate the process, if the errors between β̂i
and β̂i−1 are within the given value. Otherwise, go to Step 3 and repeat.

The AIC criterion for the AR model is used in this paper to find out the optimal order m of the AR
model, formulated as [30]:

AIC(n) = ln σ̂2
a(n) + 2n/N, (42)

where σ̂2
a is the estimated variance of residual errors of order n.

The following step concentrates on proving the effectiveness of the TLS method proposed by Yun
et al. [26] in the parameter estimation of AR model with additive noises.

3.4. Performance Analysis

In this section, a numerical simulation is conducted to study the performance of the two estimating
method proposed by Yun et al. [26] in Section 3.2 and extended method in Section 3.3. The estimation
results of these two methods under different noises conditions are analyzed carefully, and the
comparisons between classical AR model and these two solutions are demonstrated.

Consider the following 4th-order AR model [21],

xt = 2.4xt−1 − 3.03xt−2 + 1.986xt−3 − 0.6586xt−4 + et. (43)

where et is the white noise with the unknown variance, and E
[
e2(t)

]
= 1, e(t) = [et, et−1, · · · ]T.

The number of samples is limited to 300, and the signal-to-noise ratio (SNR) is different when applying
the noises to the AR model [20].

For each run, the Gaussian white noise is added by the function awgn in the MATLAB to all of the
output data x. Six conditions of the SNR, 60 dB, 50 dB, 40 dB, 30 dB, 20 dB, and 10 dB, are respectively
added to the true value, and the noise series are the same in the same noise condition. The TLSp

represents the solution in Section 3.2, and the TLSE represents the solution in Section 3.3.
When n = 4, the AIC meets its minimum value. When the AR model is noise-free, all the

identification results are equal to the real values βT = [2.4−3.031.986−0.6586]. Other results are
summarized in Table 1. It can be seen that when the SNR = 60 dB, the solutions of the LS, the TLSp and
the TLSE estimation are nearly the same and quite close to the real value, indicating all the methods
perform well in this condition. However, the SNR rises as the differences between these two methods
increasing. When the SNR is 30 dB, the results of the TLSE method approximate the true value,
while both the LS and the TLSp method differ much. When the SNR is 10 dB, the same performances
can be found. It is argued that the TLSE solution for the AR model with additive noises can be more
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accurate. Hence, it may be concluded that even though all the three methods can be used for parameter
estimation of the AR model with additive noises, the TLSE estimation method can perform better
than the other two. This advantage can be obtained especially in the presence of strong noise in the
AR model.

Table 1. Values of parameter estimation.

SNR/dB NO 60 50 40 30 20 10

LS

β1 2.4 2.4001 2.3966 2.4067 2.3714 2.3357 2.6494
β2 −3.03 −3.0310 −3.0233 −3.0441 −2.9820 −2.9456 −3.5409
β3 1.986 1.9862 1.9793 1.9998 1.9452 1.8973 2.4657
β4 −0.6586 −0.6587 −0.6557 −0.6624 −0.6486 −0.6162 −0.9030

TLSp

β1 2.4 2.4001 2.3966 2.4070 2.3736 2.3563 2.6931
β2 −3.03 −3.0311 −3.0234 −3.0445 −2.9860 −2.9840 −3.6220
β3 1.986 1.9861 1.9793 2.0003 1.9491 1.9340 2.5435
β4 −0.6586 −0.6588 −0.6557 −0.6626 −0.6500 −0.6301 −1.0326

TLSE

β1 2.4 2.4001 2.3998 2.4010 2.3927 2.3708 2.4715
β2 −3.03 −3.0302 −3.0244 −3.0332 −3.0160 −3.0091 −3.1298
β3 1.986 1.9861 1.9858 1.9886 1.9742 1.9632 2.1011
β4 −0.6586 −0.6587 −0.6566 −0.6600 −0.6521 −0.6433 −0.6757

3.5. Damage Indicator

After the unknown parameter β of the AR model is obtained, a damage indicator needs to be
defined to assess the damage level of the structure. The difference between β in the healthy conditions
and that in damage conditions cannot be measured just by visual inspection simply, especially when
there is a lot of elements in β. In this paper, the ratio between Euclidean distance of the undamaged β
and the damaged β is used to indicate the structural damage. Steps are clarified as follows.

1. Divide the obtained response acceleration data before damage into two parts, i.e., part A0 and
part B0, where A0 serves as the baseline data while B0 serves as the unknown inspection data to
be estimated in the healthy state of the structure.

2. Estimate βA0= [βA0,1, βA0,2, · · · , βA0,m]
T and βB0= [βB0,1, βB0,2, · · · , βB0,m]

T. The square of Euclidean
distance between βA0 and βB0 is determined as,

D0 =
m∑

j=1

[(αB0, j − αA0, j)]
2. (44)

3. Estimate the βi= [αi1,αi2, · · · ,αim]
T of the i-th response acceleration data after damage.

The Euclidean distance between βi and βB0 is calculated as,

Di =
m∑

j=1

[(αi, j − αA0, j)]
2. (45)

4. Finally, the damage indicator is calculated as the ratio of Di and D0,

IF =
Di
D0

. (46)

It is clear that if the data to be estimated are associated with the undamaged structure, the IF
is close to 1. Otherwise, the changes of the AR parameters are increasing while the damage rising.
Therefore, the IF values are rising as the damage level of the structure is increasing.
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Assuming that each β are obtained due to structural damage instead of errors, each estimation
result represents a condition of the system. For example, assuming that when SNR = 20 dB, the TLSp

solution βT= [2.3563−2.98401.9340−0.6301] in Table 2 is estimated by the output signals of damaged
structures in one of the six different conditions by the TLSp method. Then the damage levels of
structures should be increasing with the increase of the SNR. The IFs of the example in Table 1 are
shown in Table 2.

Table 2. IFs of different conditions.

SNR/dB 60 50 40 30 20 10

LS 2.20 2.20 × 10 1.91 × 102 9.80 × 102 4.18 × 103 2.62 × 105

TLSp 2.60 2.18 × 10 2.08 × 102 8.20 × 102 1.50 × 103 3.86 × 105

TLSE 1.06 7.00 1.99 × 101 8.27 × 101 3.40 × 102 2.86 × 103

It can be seen that the IFs are rising as the SNR is increasing, reflecting both the effectiveness of
the damage indicator and all the three damage identification methods. As for the same SNR, the IFs
based on the TLSE solution for the AR model with additive noises are always smaller than those on
TLSE solution for the AR model with additive noises and the LS solution for the classical AR model.
For example, when the SNR = 10 dB, the IFs of the LS solution are about 90 times and 134 times
as large as the IFs of the TLSE solution. However, when comparing the TLSp solution with the LS
solution, in some cases the TLSp solution may be better while in other cases worse than the LS solution.
Therefore, both the LS solution, TLSp solution and the TLSE solution for the AR model with additive
noises can be effective in this mathematical simulation. However, the former one is not stable enough,
and the TLSE solution not only performs the best but also can always obtain accurate results, even in
the presence of high amounts of noise.

4. Finite Element Simulation

The performance of the TLSE solution for the AR model with additive noises is studied by a finite
element simulation in this part. The acceleration observations in different damage conditions are used
as the time-series signal in the AR model. A simply supported beam with constant cross-section is
modeled by the finite element software SAP2000. The size of the model is shown in Figure 1, with a
density of 7850 kg/m3 and elastic modulus of 2.1× 1011 pa. The Gaussian white noise is applied to
the beam, and the obtained accelerations of each testing point serve as the response signals in the AR
model. Assume that element 4 is damaged into different degrees in four conditions, which are listed in
Table 3. The damage of the beam is simulated by reducing the bending stiffness of specific elements in
different degrees.
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The accelerations of the testing points before damage are used as the undamaged condition.
Table 4 lists the first to the fourth structural frequencies under different conditions. It can be seen that
when a damage degree of 10% occurs in the element 1, the first order frequency is 9.32 Hz, which is
larger than the other conditions, but smaller than the undamaged condition 9.36 Hz. It may be inferred
that as for the first-order frequency, the damage of the beam becomes larger as the testing conditions
number increasing.

Table 4. Structural frequency under different conditions.

Test Condition Undamaged 1 2 3 4

1st 9.36 9.32 9.27 9.20 8.88
2nd 37.22 37.09 36.94 36.77 35.92
3rd 82.91 82.86 82.79 81.71 80.30
4th 129.30 128.94 128.52 128.04 125.52

The first order of the frequency in the undamaged stage is also calculated by frequency calculation
formula in Ref. [31]. Firstly, the first order circular frequency can be calculated as,

ω1 =
n2π2

l2

√
EI
m

=
(3.14)2

(10m)2

√
2.1× 1011N/m2 × 1.6× 10−3m4

7850kg/m3
× 0.4m× 0.3m

= 58.88 rad/s,

where m is mass; E is the elastic modulus; I is the inertia moment. Hence, the engineering frequency is,

f = ω1/2π = 9.37 Hz

The f and ω1 are nearly the same with the simulation results. Since 9.36 Hz is quite close to 9.37 Hz,
so the FEM outputs can be assumed to be reasonable and can be used for further study. According to
the sampling theorem, sampling frequency is set as 500 Hz, and the total testing time 25 s, respectively.
Figure 2 shows the power spectral density (PSD) of the output accelerations of testing point 5. It can
be seen that the first order frequency falls into 9–10 Hz in Figure 2a while in Figure 2b the peak is
located between 8–9 Hz. The third order frequency of the model beam is about 80 Hz, which can also
be inferred in Figure 2a,b. Since the testing point 5 is located in the middle of the beam, there should
be no bulges appeared near the second order frequency, which can also be found in the figures.
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After the accelerations of measuring points under different conditions are obtained, the damage
indicator presented in Section 3 will be calculated through MATLAB.
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4.1. Identification Results in the Condition of No Noises

Parts of the damage identification results are shown in Figure 3. It can be concluded in Figure 3a
that as the damage of element 4 is increasing, the IFs are rising, indicating that the proposed damage
detection method can identify the damage degrees in the beam. It can be concluded in Figure 3b
that the IFs of point 3 and point 4 are larger than other parts, which means that there is damage
in element4. Therefore, the proposed method can also be used for detecting damage locations in
structures. However, as for testing points near the undamaged elements, such as point 2, point 3,
the IFs are not equal to one. Due to the limited mesh in SAP2000, the damage of element 4 influences
its adjacent elements, causing the IFs dropping from testing point 4 to 9. Furthermore, it is clear that
the IFs of point 3 and 4, 2and 5, 1 and 7 are not the same, and the points on the left part of element 4
are always larger than the points on the right in the beam, reflecting that the influences of the damage
of element 4 may be larger on the left.
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In conclusion, the damage identification method based on the TLSE solution and AR model with
additive noises can not only detect damage degrees but also damage locations.

4.2. Identification Results in the Condition of Noises

In order to study the anti-noises ability of the proposed damage identification method, noises are
added to the output signal to simulate the observation errors. Firstly, the accelerations with no noises
are identified by the classical AR model and LS solution, which are regarded as the relative standard
solution. Then, the accelerations with 30dB noises are identified by the TLSE solution and AR model
with additive noises. At last, the accelerations with 30dB noises are also identified by the classical AR
model and LS solution for comparing the performances of these two methods. The property density
function (PDF) diagrams for the output signal with noises of point 3 is shown in Figure 4.
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After analyzing all the identification results, it can be concluded that the IF values obtained by
the TLSE solution are increasing as the damage of element 4 increasing, reflecting that the damage
identification method based on TLSE solution can detect damage degrees. What’s more, IFs obtained
by TLSE solution are always closer to the LS solutions in the no noises condition, reflecting that the
TLSE solution can identify the damage of structures more accurate when the noises level is 30dB. Parts
of results of the testing points are shown in Figure 5. The damage identification results along the beam
in condition 4 are shown in Figure 6. IFs of point 3 and 4 obtained by TLSE solution are much bigger
than others, reflecting its effectiveness in detecting damage locations even when the observations have
noises. However, results obtained by LS are quite different from that of no noises. And the damage
location is not quite remarkable, for instance, IFs of point 3 and 4 are not much bigger than the IFs of
others, and IF of point 6 is even larger than the IF of point 5. It can be concluded that the LS solution
contains bias while the observations have unneglectable noises.
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In conclusion, this finite element simulation can prove that: (1) The IF values obtained by the
proposed method are always rising while the damage degrees of the simulated elements are rising.
(2) The IFs near the damaged elements are much larger than other IFs. (3) Compared with classical AR
model and its LS solution, the IFs obtained by the proposed method in the noisy conditions are always
closer to the IFs obtained in the no-noises condition. Therefore, damage identification method based
on TLSE solution and AR model with additive noises can detect both structural damage levels and the
structural damage distribution, and this proposed method can behave better than the method based
on the classical AR model and LS solution.
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5. Experimental Investigation

In this section, damage levels of a high-rise residential building model due to seismic excitation with
increasing intensities are identified using the proposed method qualitatively. Pertinent identification
factors (IF) calculated by the proposed and the classical LS method are compared [32].

5.1. Experimental Techniques and Results

Shaking table test is one of the most widely used techniques to assess the seismic performance
of structures, including the elastic/inelastic dynamic response of structures [33]. A shaking table test
with a 1/30th scale model of a 56-story high-rise building is conducted to investigate the seismic
performance. The building is a reinforced concrete structure [34] with a non-regular T-type plane and
a height of 179.6 m, which is out of the restrictions specified by the China Technical Specification for
Concrete Structures of Tall Building (JGJ3-2010) [35]. Therefore, shaking table is required to assess its
seismic performance. The photo of the completed model is shown in Figure 7.
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In this experiment, accelerations and displacements are measured by the dynamic signal acquisition
and analysis system DASP2003, developed by Orient Institute of Noise and Vibration. The dynamic
strain is obtained by the dynamic and static testing instrument DH3817.

Seismic excitations, including two natural earthquake records and one artificial record,
with increasing intensities adopted in this shaking table test, are shown in Table 5. White noise
swiping technique is utilized after each group of seismic excitations to capture the frequency shift due
to damage. According to the Chinese Seismic Design Code (2010) [36], “Frequency 6” means ground
motion with peak ground acceleration (PGA) 0.018g, “Moderate 6” means ground motion with the PGA
0.05g, whereas “Rare 6” means ground motion with PGA 0.1g. To investigate the hysteresis behavior of
the model building, “Rare 7” ground motion with PGA 0.22g is applied. Some dynamic characteristics
of the model before and after the earthquake excitation are shown in Table 6. It can be seen that the
natural frequency of the model after Frequent 6 and Moderate 6 almost stayed the same, indicating that
the damage of the model may be small. While after Rare 6 excitations, the natural frequency reduced
3.9%, reflecting that damage may be increased. After the Rare 7, the nature frequency decreased
apparently, possibly due to the significant damage of the model structure.
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Table 5. Sequence of the shaking table test.

Test Condition Sequence Number Input Seismic Wave

Frequent 6 1 White noise
2 El-Centro wave, Taft wave, Artificial seismic wave

Moderate 6
3 White noise
4 El-Centro wave, Taft wave, Artificial seismic wave

Rare 6
5 White noise
6 El-Centro wave, Taft wave, Artificial seismic wave
7 White noise

Rare 7 8
El-Centro wave, Taft wave

White noise

Table 6. Dynamic characteristics of the model before and after the test.

Intensity Test Items
Y Torsion X

1st 2nd 3rd 1st 2nd 1st

Before
Frequency (Hz) 2.54 12.11 29.41 7.62 21.30 3.71

Period (s) 0.3937 0.0826 0.0340 0.1312 0.0469 0.2695
Damping ratio (%) 3.25 2.61 2.12 – – 2.36

Frequent 6
Frequency (Hz) 2.54 12.11 29.21 7.62 21.10 –

Period (s) 0.3937 0.0826 0.0342 0.1312 0.0474 –
Damping ratio (%) 4.41 2.71 2.83 – – –

Moderate 6
Frequency (Hz) 2.54 11.92 28.72 7.52 20.91 –

Period (s) 0.3937 0.0839 0.0348 0.1330 0.0478 –
Damping ratio (%) 4.20 3.04 3.37 – – –

Rare 6
Frequency (Hz) 2.44 11.33 27.75 7.30 19.93 –

Period (s) 0.4098 0.0883 0.0360 0.1370 0.0502 –
Damping ratio (%) 4.01 3.11 3.35 – – –

Rare 7
Frequency (Hz) 2.34 10.75 – 6.84 18.66 –

Period (s) 0.4274 0.0930 – 0.1462 0.0536 –
Damping ratio (%) 3.87 3.80 – – – –

It is seen from pertinent results in Ref. [32] that damage level of the building increases significantly
with earthquake intensities. Specifically, first, almost no damage occurred after applying the Frequent
6 excitations, indicating the structure remained in the elastic stage. Furthermore, limited damage was
captured after the Moderate 6 excitations, showing the structure was repairable. Next, some obvious
damage could be observed after applying the Rare 6 excitations. Finally, the model was significantly
damaged after severe earthquakes with intensity 7. The behavior of the model building under the
considered intensities indicates the structural design satisfies the different levels of seismic performances
specified in the codes. However, extensive concrete crakes as well as spalling were observed, especially
in the stories higher than the 50th floor, reflecting the whiplash effect is strong. Some remarkable
photos of the damaged structure after the test of 52nd floor are shown in Figure 8. It can be seen that
there are penetrating cracks and spalling, indicating that the top part of the structure may be damaged
significantly after Rare earthquakes of intensity 7. Finite element (FE) simulation [34] of the prototype
building is also conducted to validate quantitatively the data obtained by the sensors.



Sensors 2019, 19, 4341 15 of 20

Sensors 2019, 19, x FOR PEER REVIEW 14 of 20 

 

 

Figure 8. Damage after the test (52nd floor). 

In this experiment, accelerations and displacements are measured by the dynamic signal 
acquisition and analysis system DASP2003, developed by Orient Institute of Noise and Vibration. 
The dynamic strain is obtained by the dynamic and static testing instrument DH3817.  

Table 5. Sequence of the shaking table test. 

Test Condition Sequence Number Input Seismic Wave 

Frequent 6 
1 White noise 

2 
El-Centro wave, Taft wave, Artificial seismic 

wave 

Moderate 6 
3 White noise 

4 El-Centro wave, Taft wave, Artificial seismic 
wave 

Rare 6 

5 White noise 

6 
El-Centro wave, Taft wave, Artificial seismic 

wave 
7 White noise 

Rare 7 8 
El-Centro wave, Taft wave 

White noise 

Seismic excitations, including two natural earthquake records and one artificial record, with 
increasing intensities adopted in this shaking table test, are shown in Table 5. White noise swiping 
technique is utilized after each group of seismic excitations to capture the frequency shift due to 
damage. According to the Chinese Seismic Design Code (2010) [36], “Frequency 6” means ground 
motion with peak ground acceleration (PGA) 0.018g, “Moderate 6” means ground motion with the 
PGA 0.05g, whereas “Rare 6” means ground motion with PGA 0.1g. To investigate the hysteresis 
behavior of the model building, “Rare 7” ground motion with PGA 0.22g is applied. Some dynamic 
characteristics of the model before and after the earthquake excitation are shown in Table 6. It can be 
seen that the natural frequency of the model after Frequent 6 and Moderate 6 almost stayed the 
same, indicating that the damage of the model may be small. While after Rare 6 excitations, the 
natural frequency reduced 3.9%, reflecting that damage may be increased. After the Rare 7, the 
nature frequency decreased apparently, possibly due to the significant damage of the model 
structure.  

Figure 8. Damage after the test (52nd floor).

For simplicity, the experimental results are not introduced here; see Ref. [32] for more details.
The acceleration responses of the white noise excitations are used for damage identification in the
next section.

5.2. Damage Identification

The acceleration sampling frequency of the test is 500 Hz, and 2048 time-series values for each
testing point are used in this study. Two of the PSD figures for acceleration outputs of the top floor
before and after the earthquake excitations are shown in Figure 9. It can be seen that the PSD of the
top floor changes significantly before and after seismic excitations. In Figure 9a there are three peaks,
and the first order frequency falls into 2–3 Hz, which can also be seen in Table 6. In Figure 6b there are
also three peaks and all the frequencies corresponding to the peak values are relatively smaller than
those of Figure 6a, which may be due to structural damages after seismic intensity of Rare 7.
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Figure 10 lists the IFs of representative floors calculated by the proposed method in the case of
white noise excitations. It can be concluded from Figure 10a–d that for all the stories, the IFs become
larger as the intensity of earthquake increasing, meaning the damage of the test model increases with
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intensity. Furthermore, the comparison between Figure 10a–d shows that the IFs of the top story is
larger than that of other stories because of the whiplash effect.
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To further illustrate the distribution of damage levels along with stories, IFs of different floors
obtained by the proposed method based on the response acceleration records are shown in Figure 11a,b.
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It can be concluded that after applying the Frequent 6 excitation sequence, all the IFs range from
1 to 60, whereas after applying the Rare 7, the IFs increase dramatically. Since the values of IFs are
directly associated with damage degree quantitatively, one may argue that the damage degree of the
Rare 7 is much larger than that of the Frequency 6. Besides, the damage degrees of 50th, 52nd, and top
floors are more substantial than those of the other floors. The damage of 14th, 28th and 8th story is
quite significant as well, while the damage of the first story is the smallest. The IFs of the 41st floor is
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not so large but the IFs of the stories above this floor increase rapidly, indicating that the 41st floor is
not seriously damaged compared to the above floors. The preceding damage distribution along with
stories are not only limited to the cases shown in Figure 11a,b, but also the same conclusion can be
drawn after analyzing all the white noise response data.

The comparisons of the classical AR model solved by LS and the modified AR model solved by the
TLS are shown in Figures 12 and 13. Figure 12a,b show the comparisons of the IFs in the 8th floor and
the 50th floor after different earthquake intensities. Figure 13 is the comparison of the IFs along with
stories after the Moderate 6 excitations. It can be seen from these figures that the results obtained by
the two methods do not agree with each other quantitatively. For instance, in Figure 12b, the proposed
method gives a higher IF than the LS solution in the case Rare 7, whereas provides a lower IF in the
case of Moderate 6. Further, the IFs in Figure 13 of the proposed method demonstrate more visible
whiplash effect while the IFs of the traditional AR model are milder. It may argue that the differences
between the proposed method and the LS solution shown in Figures 12 and 13 contribute to the later
method ignoring errors in the previous time step, which is, illustrated in the preceding sections.
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To summarize, the identification results indicate the usefulness of the proposed method for
structural damage detection in real cases. Comparison with the results obtained by the LS solution
shows the proposed method is reasonable, at least from a qualitative sense. Besides, the damage
degrees and their distribution obtained by the proposed method match well with the corresponding
results in Ref. [32], based on analysis of frequency shift and peak displacement/acceleration peak.

6. Conclusions

An Auto-Regressive (AR) model with consideration of additive noises as well as its total least
square solution has been presented for structural damage identification in this paper. The total least
square method is based on the partial errors-in-variance (EIV) model. The AR model with additive



Sensors 2019, 19, 4341 18 of 20

noises takes the errors of all the observed data into consideration. After comparing the proposed
method with the classical AR model and least square (LS) solution in a mathematical simulation and a
finite element simulation, the advantages of the new identification method have been demonstrated.
A damage identification indicator has also been presented to measure the AR parameter differences
between healthy stage and the damaged stage, reflecting the damage degrees. Finally, the proposed
method has been applied to the acceleration responses of a shaking table test. The proposed method can
estimate both the damage level and damage distribution of structures. Hence, the damage estimation
method exhibits its usefulness in engineering applications.

This study makes contributes significantly to the literature because the proposed method can
reduce the identification errors, and behave well even in high amount of noises, which is more practical
than classical identification methods based on the AR models. Furthermore, the achievements in the
field of the geodetic surveys are first systematically introduced to the field of vibration-based structural
damage identification, which could promote the combination of these two fields to benefit further
studies in the field of structural health monitoring.

The simulated beam in Section 4 may be improved to a more real one. Future works may focus
on the development of more efficient de-noise methods for structural damage identification. A more
general solution of the TLSp for the AR model with additive noises can be studied when considering
cov(ey, ea) , 0, especially the weighted TLS solution for putting different kinds of observations together
to reduce errors. Other estimation methods and criterion such as BIC, FPF for the EIV model can be
introduced into the field of structural health monitoring.
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