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Abstract: The use of different spectral bands in the inspection of artworks is highly recommended
to identify the maximum number of defects/anomalies (i.e., the targets), whose presence ought to
be known before any possible restoration action. Although an artwork cannot be considered as a
composite material in which the zero-defect theory is usually followed by scientists, it is possible to
state that the preservation of a multi-layered structure fabricated by the artist’s hands is based on a
methodological analysis, where the use of non-destructive testing methods is highly desirable. In
this paper, the infrared thermography and hyperspectral imaging methods were applied to identify
both fabricated and non-fabricated targets in a canvas painting mocking up the famous character
“Venus” by Botticelli. The pulse-compression thermography technique was used to retrieve info about
the inner structure of the sample and low power light-emitting diode (LED) chips, whose emission
was modulated via a pseudo-noise sequence, were exploited as the heat source for minimizing
the heat radiated on the sample surface. Hyper-spectral imaging was employed to detect surface
and subsurface features such as pentimenti and facial contours. The results demonstrate how the
application of statistical algorithms (i.e., principal component and independent component analyses)
maximized the number of targets retrieved during the post-acquisition steps for both the employed
techniques. Finally, the best results obtained by both techniques and post-processing methods were
fused together, resulting in a clear targets map, in which both the surface, subsurface and deeper
information are all shown at a glance.

Keywords: pulse-compression thermography; hyperspectral imaging; defects; cultural heritage;
image processing; information fusion; painting on canvas; NDT; principal component analysis;
independent component analysis

1. Introduction

The art of restoration is the final step of a serious conservation approach that should be based
on two pillars: the knowledge of art history and the diagnostic of the work of art. Sometimes, the
latter is not taken into account by restorers during their work as it is considered expensive and the
obtained results are not easy to be interpreted for non-experts in the Nondestructive Testing (NDT)
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field. However, a constructive and easy interaction between restorers and NDT operators is desired, as
it would be beneficial both for the restoration and conservation of cultural heritage goods.

In order to favour the aforementioned interaction, a key role would be played by an exhaustive
and “easy-to-be-interpreted” report provided by the scientists to the restorers. This would be highly
beneficial, for instance, in interpreting the data coming from ultrasonic testing (UT), wherein echograms
are usually preferred to visual images [1,2], or from Ground penetrating (or probing) radar (GPR),
which is another NDT method that uses transmitter and receiver antennas for imaging subsurface
features. Since the electromagnetic radiation in the microwave band of the radio spectrum is the basis
of GPR operation [3–5], its use in the cultural heritage field falls into the inspection of thick objects
(e.g., ancient floors, mural paintings, historical bridges, etc.). Unfortunately, the interpretation of
radargrams is generally non-intuitive to the novice. However, a two-dimensional (2-D) output in the
form of an image is usually preferred and desired, as restorers and non-scientific experts may find
“defect” positions via the beneficial overlapping of information coming from image fusion [6]. Please
note that here the term “defect” may be easily replaced with “covered target”.

Thanks to their thin nature, paintings on canvas allow different types of approaches and methods
to be employed. Reflection and transmission modes are both suitable to unveiling information not
detectable to the naked eye [7,8]. When working with NDT techniques relying on the use of infrared
(IR) radiation, precious quantitative and qualitative information concerning the pictorial, preparatory,
and support layers may be retrieved [9].

From the authors’ point-of-view, information coming from the use of active thermography (AT)
in the middle-wave IR (MWIR) and hyper-spectral imaging (HSI) in the near IR (NIR) can be fused
together in a constructive way. AT is suitable to inspect the whole 3-D structure by analyzing the
painting thermal response recorded as time elapses via a thermal camera [10], allowing the detection
of splittings, cracks and voids within the multi-layer structure. HSI is able to provide information
concerning both the composition of the painting layer in terms of pigments, bindings, etc., and the
nature of the preparatory drawing. This is done by exploiting the partial transparency of most of the
pigments into the SWIR/NIR [11,12].

The usual question posed by restorers concerning the use of high-power flash lamps
(pulsed-thermography—PT) to ensure the necessary signal-to-noise ratio (SNR) is related to the
temperature increment (∆T) of the surface after the end of the heating phase, and to the speed of
temperature variation. This is because it is important to avoid any thermal stress onto the painting
surface and, therefore, the occurrence of possible thermochromism effects. With the aim to avoid
those problems, the use of coded excitations to modulate the emission of a low-power light emitting
diode (LED) chips system (110 W), in combination with the pulse-compression technique for painting
inspection to gently spread the heat stimulus over time was introduced in 2018 by Laureti et al. [13].
This technique is referred as pulse-compression thermography (PuCT), and it was proven to be capable
of assuring the inspection capability of PT, while not reducing (and perhaps increasing) the final
SNR [14].

With the aim to merge the unique yet complementary capabilities of both the above-mentioned
techniques, an integrated use of PuCT and HSI techniques is applied in the present manuscript for the
inspection of a painting on canvas sample embedding “covered targets”, such as splittings, cracks, and
the so-called pentimenti.

Three novelties are presented here: (i) the use of principal component analysis (PCA) [15–21] and
(ii) independent component analysis (ICA) [22] applied to PuCT output, and (iii) the image fusion
of results from (i–ii) and HSI. Points (i) and (ii) may be considered as a further contribution to the
scientific knowledge with respect to the works published in [13,23], respectively.

Results obtained via PuCT in the MWIR show clear evidence of fabricated defects at different
depths, whilst pentimenti are visible in HSI data working around 1480 nm. As shown in the following,
PCA and ICA are implemented directly on the combined PuCT–HSI data to further optimize the
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information extraction process and, therefore, provide fundamental help to the restorers interested in
the combined approach.

The manuscript is organized as follows: the sample object of the study is described in-depth in
Section 2; Sections 3 and 4 provide the main information concerning HSI and PuCT, with details on
both the employed setups; in Section 5, the integration between PuCT–HSI and PCA–ICA is given;
then, the main obtained results are discussed. Finally, a conclusions section summarizes the main
novelties brought to the light for the scientific community.

2. Sample Description

For the realization of the sample, the authors chosen a detail of a famous painting by Sandro
Botticelli, named “The Birth of Venus” (Figure 1) [24].
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Figure 1. Birth of Venus by Sandro Botticelli. The face of Venus—the red-colored rectangle—is the
detail of the painting chosen for the representation in the sample.

The painting is currently preserved at the Uffizi Gallery in Florence (Italy), and dated back to
1482–1485. It was commissioned by the Medici family for the Villa di Castello. It is recognized as being
one of the first examples of painting on canvas in fifteenth-century Florence. During the construction
of this work, Botticelli preferred a support in linen cloth instead of the typical support consisting of a
wooden panel, thus creating a preparation based on plaster on which he executed a tempera painting.

The mock-up investigated here is a pictorial surface realized on a textile support; it was prepared
according to techniques of execution in force of an intermediate period in which the passage from
painting on wooden supports and textile supports occurred. This era still involves the use of techniques
for painting on wooden supports made by gypsum and animal glue, on which a decorative layer
realized by tempera is performed. In particular, the tempera layer can be:

• lean: in case glues (animal or vegetal forms) or eggs are used as binders of the pigments.
• fat: in case an emulsion based on egg and oils or resins is used as a binder.

The reason for realising the test sample by employing the methodology described above was
to cover a quite extended transition period, so as to make the obtained results potentially valid for
different paintings where a combination of painting techniques has been employed.

The mock-up sample was fabricated as per the following 20 steps, which are described in detail
here below:
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(a) The realization of the frame: a wooden frame (20 cm × 30 cm × 2 cm), as shown in Figure 2, was
selected and the canvas was tensioned onto it.

(b) Preliminary preparation of the canvas: a rough linen was chosen, and it was cut larger than the
wooden frame, frayed along the edges, washed in hot water, dried and ironed. The support was
about 1 mm thick and had a regular weft-warp weave in a 1:1 ratio.

(c) Realization of Defect A: as first defect, a diagonal cut of 3 cm long was produced in the canvas
and, subsequently, it was stitched to simulate the repair of a torn canvas (Figure 3a).

(d) Tensioning of the canvas: the canvas was tensioned on the frame by means of metal clips applied
with a staple gun, fixing one side at a time. Firstly, one side was fixed with a central paper clip,
then the same process has been repeated for the opposite side and, finally, this was done also for
the remaining two sides; all the sides were pinned using twenty-one staples. Note that the canvas
was tensioned with care as the remaining steps influence the final tension itself (Figure 3b).

(e) Dressing of the canvas: since the rough linen does not appear as a surface ready to receive the
pictorial layer, a preparation step was required for this purpose. The first step followed the
ancient technique, i.e., the canvas was waterproofed with a laying of rabbit glue dissolved in
water at a ratio of 1:7 (Figure 4). The glue was left swelling for an entire night in cold water and
then heated in a bain-marie to get it completely dissolved. The application of hot glue onto the
canvas’s surfaces was carried out using a soft bristle brush. The so-obtained layer was left to dry
for 48 h.

(f) Inclusion of Defect B: a Teflon insert with dimensions equal to 1.1 cm × 1.5 cm was placed onto
the dried rabbit glue layer and folded up three times, so as to simulate a detachment between the
canvas and the next layer of glue and plaster (Figure 5a,b). Defect B is located at about 2 mm
depth from the final upper layer, i.e., the inspected surface.

(g) Spreading of the first preparation layer: a layer of about 1 mm of thickness made of Bologna
plaster mixed with rabbit glue was applied (Figure 6a,b). The plaster was added to the glue until
saturation, i.e., once the desired density was obtained. The laying was done using a soft bristle
brush. This layer was left to dry for 48 h.

(h) Realization of Defect C: a network of cracks was crafted onto the previously realized layer with
a maximum depth of about 1 mm. This was realized on the fresh plaster layer by means of
engravings produced using small plastic chisels (Figure 7).

(i) Realization of Defect D: as for Defect C, a second net of cracks was fabricated on the still fresh
plaster layer, this time within a different area of the mock-up (Figure 7).

(j) Sanding of the surface: after a complete drying, the surface was smoothed with a fine-grained
abrasive paper.

(k) Isolation of Defect D: an amount of animal glue was injected into the crack network, so as to
physically separate the cracks from the next preparation layer (Figure 8).

(l) Insertion of Defect E: as for Defect B, once both the plaster and glue layers were completely dried,
a second Teflon insert (dimensions: 1.1 cm × 2.5 cm) was applied on the new surface—it was
folded only once on itself (Figure 9a,b).

(m) Spreading of the second preparation layer: above the first preparation layer, a second layer (1 mm
thick) of Bologna plaster mixed with rabbit glue was applied in the same way that the first layer was
realized (Figure 10a,b), thus completely covering Defect E and all the previously-realized steps.

(n) Sanding of the surface: as for the first layer, the second layer was worked with fine-grained
abrasive paper once dried properly; in this way, a surface finishing suitable for receiving the
pictorial layer was obtained (Figure 11).

(o) Defect F: a crack with a length of about 15.5 cm was accidentally produced near Defect E; it was
deliberately decided to preserve such natural defect and then cover it with the pictorial layer
(Figure 12).
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(p) Insertion of defect G: the last Teflon insert (dimensions: 1.1 cm × 3.5 cm) was added onto the
surface, this time without being folded. It is located between the last preparation layer and the
primer for pictorial drawing (see Figure 13a).

(q) Realization of the drawing: once the sample preparation was finalized (i.e., the surface suitable
for the pictorial layer was realized), the representation of the selected character was reproduced
by drawing the main lines. This was done using charcoal (Figure 13a). As mentioned, the selected
detail of Botticelli’s painting is the face of Venus (Figure 1). In addition, a signature of the restorer
who fabricated the sample (Figure 13a,b), along with two pentimenti (Figure 13a—see the part
around the chin to understand the position of the first pentimento) were added to the sample
using charcoal. The second pentimento is in the form of a wrongly positioned eyebrow over the
right eye.

(r) Priming: first, a basic colored pattern was obtained for the pictorial layers, which was lighter for
the sky and darker for the areas relative to the locks of hair of Venus (Figure 14).
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The employed primer was a mixture of powdered pigments and an emulsion of egg yolk and
linseed oil. Note that Defect G (Figure 14) was completely covered after the primer was coated.

(s) Pictorial drawing: for this step, a greasy tempera for painting was used. In addition, powder
pigments were added as a binder, together with an emulsion consisting of an egg yolk, a teaspoon
of linseed oil and two drops of vinegar. It should be noted that a greasy tempera based on egg
and oil was commonly employed in the fifteenth century, especially in a transitional phase from
painting on panel to oil painting on canvas. However, it was chosen to add vinegar to guarantee
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the preservation of the tempera. The mock-up was finally completed by a series of overlapping
pictorial backgrounds realized by means of brushes of marten hair (Figure 15), and then by mixing
the right amount of pigment diluted in water along with the binder each time.

Inorganic pigments of Winsor and Newton, and Ferrario were used. The colors were obtained
from a range of ten pigments: white zinc, lemon cadmium yellow, golden ocher, natural sienna, scarlet
red, dark sienna, chrome oxide green, cyan blue, natural umber and ivory black.Sensors 2019, 19, x FOR PEER REVIEW 10 of 25 
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(t) Finishing: a coat of a natural resin-based paint was spread on the paint layer using a brush
(Figure 16).
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Figure 16. Final sample including the finishing layer.

In this case, a ready-to-be-used product by Maimeri was applied onto the painting layer. To
summarize the main information concerning the fabricated defects and thicknesses, the reader can
refer to Figure 17a,b. For the sake of simplicity, the first pentimento will be named hereinafter Defect
H, the second pentimento will be Defect I, while the covered signature is Defect L (Figure 17a).

In the next section, a brief description of the HSI and PuCT techniques is given. Interested readers
may refer to the provided References in order to deepen the main concepts.
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3. Hyper-Spectral Imaging

A good way to characterize materials, i.e., identify them or define their properties, is to study
their interaction with impinging electromagnetic radiation, and in particular the way in which they
reflect it back. When the sensor is sensitive over the back-scattered IR spectrum, this process is
referred as IR spectroscopy. In IR spectroscopy, the constituent chemical elements of a given target
can be differentiated and classified based on their different spectral signatures, which can be seen like
“fingerprints” univocally related to a given constituent. Please note that the identification of complex
chemical compounds—as in the case of pictorial layers—requires further classification and processing
with respect to the analysis of pure chemical elements. This is because the resulting spectral signature
shows a more complex spectrum due to the combination of many elements’ “fingerprints”. In this
framework, measuring the reflected radiation and performing point-by-point (i.e., pixelwise) Fourier
analysis of it is the most common way to extract useful information about the target sample surface
and subsurface features. Such analysis can be implemented by means of a hyper-spectral camera that,
thanks to the use of a diffraction grating or of a monochromator combined with an IR camera, produces
images of a sample in which for each pixel of the image, a discrete spectrum is associated and defined
by a certain number of “bins” over the sensor’s sensitivity [25].

It must be noted that most of the HSI systems are designed to perform line-scanning of the sample
under test with each frame of the IR camera having N ×M pixels, whereby N × 1 is the number of
pixels that subdivide the imaged part and M is the number of bins in which the sensor spectrum is
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subdivided. Since cultural heritage objects may have a large surface area, tiling techniques are required
to capture the detail of these surfaces [26]. As mentioned previously, HSI cameras usually acquire a
single row of pixels at time, and the camera used in this paper does too. Thus, to form various 2-D
images of the sample (one for each of the M different wavelengths), the sample or the camera must
be moved.

In this work, a Specim NIR hyper-spectral camera (working in the 900–1700 nm spectral range and
having 256 spectral bins and an acquisition frame rate of 100 fps) was used along with a commercial
100 W halogen lamp. The light source was placed 2 m from the surface of the sample under test (SUT)
and the glass protection was removed to maximize its emission in the NIR range. The SUT was placed
on a precision three-axis moving stage (model “Blu8 Jewel” by Delta Macchine Cnc SRL, Rieti, Italy)
and moved along his vertical main axis at a constant speed during the acquisition. A labelled picture
of the setup is shown in Figure 18. Note that the results shown in Section 6 have been normalized
(IM(N, M)norm) to consider the camera sensitivity, which varies both with pixels and wavelength.
Equation (1) shows this process for a single acquired line through the hyperspectral camera IM(N, M):

IM(N, M)norm =
IM(N, M) − IMblack(N, M)

IMwhite(N, M) − IMblack(N, M)
, (1)

where IMblack(N, M) is a reference spectrum obtained by clogging the camera lens, and IMwhite(N, M)

is a reference spectrum obtained by illuminating a uniform white reflector placed at the top of the
scanned sample. The process described in Equation (1) has been repeated for all acquired lines.
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4. Pulse-Compression Thermography

Among the most valuable non-destructive evaluation methods for the inspection of cultural
heritage (CH) objects, InfraRed Thermography (IRT) currently holds an important place of prominence.
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Both IR and thermal methods for NDE are based on the principle that the heat flow in a material
is perturbed by the presence of anomalies, a good example being detachments. The imaging or the
visualization of such thermal imprints is known as IRT [1]. A theoretical definition can be found in the
NDE Handbook centered on IRT [27] and adapted as follows: “IRT is a nondestructive, nonintrusive,
noncontact technique that allows the mapping of thermal patterns, i.e., thermograms, on the surface of
the objects, bodies or systems via an IR imaging instrument, such as a thermal camera”.

IRT popularity has grown in the recent years due to spatial resolution and acquisition rate
improvements in thermal cameras; IR cameras are quickly becoming more handy, affordable, and
accurate at the same time. Further, by using suitable lenses, IRT allows fast inspections and real-time
measurements over either a quite large or a small detection area. At the same time, the development
of IRT theory and of advanced image processing techniques focused on the acquired thermograms
has enabled the assessment of more and more detailed information in cultural heritage objects [28].
In the active approach, an external heat source is used to stimulate the material being inspected in
order to provoke a thermal contrast between defective and non-defective (i.e., the background) areas.
This approach is usually adopted in laboratory inspections because the object is assumed to be at
thermal equilibrium [29], and routinely high-powered flash head lamps (some kJ’s of energy) are used
as the heat source. For non-expert users, there is a high chance to provoke the thermochromism effect
on the painting surface, as well as the deposition of too-high thermal stresses, especially using the
pulsed thermography scheme [30]. This risk must be avoided or at least highly mitigated because,
as an imaging method, IRT allows the conservation analysis [31], the first judgment of constitutive
materials and painting technique (whether present) [32], as well as the comparison with additional
imaging data [33]. Hence, the challenge is to reduce the power of the heating system without losing the
penetration depth and the inspection capability with respect to employing high-powered flash lamps.

In this framework, the use of coded modulated heating stimuli in combination with the
pulse-compression technique, also known as PuCT or thermal wave radar imaging [34], has proved
to be a beneficial and robust NDT method in which a given heat amount is delivered to the SUT by
spreading it over an arbitrarily long time period so as to limit the heat peak power below a certain
value [35]. Thanks to the pulse-compression technique, almost the same information of an equivalent
pulsed thermography test of the same delivered energy is retrieved and, at the same time, a high
flexibility in the heating process is obtained. This feature is extremely attractive when dealing with
painting inspection and cultural heritage goods in general, since it allows tuning of the PuCT scheme to
cope with the characteristics of the SUT and to avoid any possible thermal stress or thermochromism.
To fully exploit this flexibility, a set of LED chips were used as the heat source, as reported in [13,14].

It must be noted that, in both the PuCT and the PT techniques, the heat propagation is usually
approximated as a 1-D phenomenon having a negligible contribution to lateral diffusion [36]. Further,
concerning the heat transfer in materials related to a pulsed thermal excitation, readers can refer to [37]
and [1], respectively.

Taking into account these References, it is possible to understand how an optimal measurement
of the impulse response in PuCT (which should be as close as possible to the output of the same test
carried out with PT) is not only important for a useful defect detection, but for defect classification
purposes too. Indeed, if the excitation pulse is too long, the signal of a single pixel (jx, jy) cannot
be considered as an impulse response. It should instead be considered as the signal inherent to the
convolution of the impulse response with the excitation waveform. This incorrect procedure makes
interpretation of the data more difficult, even if it increases the SNR for some defects [38].

For the sake of clarity, a graphic comparison between PT and PuCT is reported in Figure 19.
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Figure 19. Comparison between (a) pulsed thermography (PT), and (b) pulse-compression
thermography (PuCT).

Figure 19a shows that in PT, the excitation is considered instantaneous and the sample impulse
thermal response (h(t)) is measured for time Th, which is the expected duration of the impulse response
of interest, i.e., the time necessary for the diffusion of the heat.

Instead, in PuCT (Figure 19b), the sample is excited with a coded excitation of duration T, while
the thermograms are collected for an overall time of T + Th [39–42]. After the application of the PuC
algorithm, an estimated impulse thermal response of duration Th is retrieved.

The PuC technique relies on the assumption that the SUT can be considered as a linear
time-invariant (LTI) system. In the mentioned case, the PuC output is an estimate of the impulse
response h(t), but with the advantage to be retrieved even in a noisy environment, or in the presence of
very low power peak values. In Figure 19b, a coded excitation s(t) is provided along with another signal
(t) (i.e., the matched filter); their convolution (denoted by “*”) approximates the Dirac’s delta function
δ(t). The impulse response h(t) estimate, h̃(t), is retrieved by exciting the LTI system via the s(t) signal
as a first step, and by convolving the system output y(t)—the recorded series of thermograms—with
Ψ(t) as a second step. This is mathematically shown in Equation (2), where e(t) is the additive white
Gaussian noise contribution:

h̃(t) = y(t) ∗Ψ(t) = h(t) ∗ s(t) ∗Ψ(t)︸      ︷︷      ︸
=δ̃(t)

+ e(t) ∗Ψ(t)︸      ︷︷      ︸
=ẽ(t)

= h(t) ∗ δ̃(t) + ẽ(t) ≈ h(t) + ẽ(t). (2)

Concerning the maximization of the achievable SNR, the best choice for the matched filter Ψ(t) is
simply given by the expression Ψ(t) = s(−t) [43]. It is now important to underline the main steps to
be followed to correctly implement the PuCT procedure, which are represented in Figure 20. Firstly,
the sample should be excited with a coded excitation modulated heating stimulus of duration T. The
coded excitation s(t) chosen here is a pseudo-noise binary code [44–49]. Secondly, thermograms are
collected for a time T + Th, where Th is the expected duration of the impulse response of interest (i.e.,
the duration of the equivalent PT analysis). Thirdly, taking into account that unipolar heat sources
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are exploited in the form of low power LED chips, a step heating response contribution must be
suppressed in the recorded thermograms before the application of Ψ(t). An efficient fitting procedure
based on non-linear polynomial fitting can be implemented to remove this undesired term [39]. The
result of the mentioned de-trend procedure is shown in the middle plot of Figure 19, wherein an
Alternate-Current “AC” recorded sequence (almost unaffected by a Direct-Current “DC” component)
is obtained corresponding to the theoretical response of the SUT to a true bipolar pseudo-noise heat
excitation. This signal is now ready for the PuC. The PuC algorithm is finally applied by convolving
the pseudo-noise contribution with the Ψ(t) pixel-by-pixel. Thus, an estimation of the pixel impulse
response with a duration of Th is finally obtained. It should be noted that the finite duration of the
coded heating stimulus leads to an unavoidable additional mathematical error in the form of side-lobes
affecting the retrieved impulse response. This error becomes negligible when Th is significantly shorter
than T, although this is not typical in the PuCT method. The spreading of the energy at very low
thermal frequencies (from tens to hundreds of mHz) is also required in materials having low thermal
diffusivity values. This point limits the SNR achievable by PuCT and, in addition, it is in contrast
with the design of the optimal code [47]. On the one hand, it should be noted that it is unsuitable to
impose to the code to last a few minutes in order to guarantee high Time-Bandwidth (TB) product
of the waveform - a good TB would be >100 - in case the bandwidth is limited to fractions of Hz. —
On the other hand, as the SNR gain provided by PuC is proportional to the parameter TB, a trade-off

between SNR, side-lobe levels and measurement time must be found [39].
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Concerning the exploited PuCT setup, Figure 21 shows a sketch of the employed equipment: 
 

Figure 20. Pseudo-noise pulse-compression thermography (PuCT). Top: hyper-raw thermograms for
both a defected and sound pixel. Middle: the same signal as for Top, but after the de-trend procedure,
thus ready for the pulse-compression step. Bottom: signals obtained after PuCT. From the series
of thermograms showed as time lapses, it is possible to note how the signal-to-noise ratio (SNR) is
enhanced from the raw acquired signal to the PuC output.

Concerning the exploited PuCT setup, Figure 21 shows a sketch of the employed equipment:
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The signal generation/acquisition was managed by LabviewTM software. A Xenics Onca-MWIR
(3.6–4.9 µm)-InSb IR 320 × 240 pixels camera was used to record the thermograms. As mentioned
previously, eight LED chips were used in reflection mode at a chosen total electrical absorbed power
of 110 W. In this way, a low heating rate was assured to the SUT surface. The distance between the
painting and the camera was about 50 cm. The main parts of the equipment were synchronously
driven by the signals provided by a National Instrument(NI) PCI-6711 Arbitrary Waveform Generation
(AWG) board. The AWG was also connected to a NI1433 Camera Link Frame Grabber. Both the
AWG board and the grabber were connected to a central PC/Digital Signal Processing unit. The coded
excitation was input into a power amplifier consisting of a TDK Lambda GEN 750 W power supply. To
understand in-depth how the experimental setup works, readers may refer to [13,39,47].

5. Integration Among PuCT, HSI and Post-Processing Analyses

The idea at the base of the integration among PuCT and HSI reflects different motivations. Firstly,
it ensures sensitivity to a wide range of painting “defects”; secondly, it allows for exploiting image
processing to overcome the limits of each single technique and, lastly, it is useful as a procedure for the
in situ inspection in reflection mode. In particular, HSI is strictly related to the pictorial and drawing
layers because there is a direct imaging of the IR radiation reflected by the painting (NIR/short-wave
IR), while AT in the mid-infrared/long-wave infrared spectrum is linked to preparation, support and
intra-layer defects and it is able to image the IR emitted due to thermal excitation too.

The goals, i.e., technical objectives, are as follows: a) developing and exploiting pseudo-noise
PuCT to increase SNR while using a low power heating source (LED); b) testing various time-domain
processing approaches on thermal data; c) applying multivariate analyses in order to both improve
sensitivity and optimally fuse the different information. In fact, a single thermal image is seldom not
enough to be shown alone in complex inspection tasks and it is often not self-explanatory; for instance,
in scenarios where temperature gradients are small or when dealing with objects that have a high
emissivity variation. Thus, additional data such as reflectograms and/or visible and/or hyper-spectral
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images are required for documentation and in decision-making for artwork restoration/conservation
purposes. For instance, visual images can be used for enhancing thermograms since they provide a
different representation of the scene (complementary information) [50].

Thermal imaging can also be used as complementary information when the main findings come
from another NDT method, and vice versa. Taking this into account, the fusion of thermal and
non-thermal information is considered in this work by using the above-mentioned NDT methods. Even
by using PuCT, single thermograms obtained by imaging the retrieved impulse responses were not
able to show up all the main defects described in Section 2. To increase the defect detection capability,
the sequence of the thermograms was further analyzed by applying PCA and ICA, as reported in
the literature. For instance, see [15–21] for the use of PCA in thermography and [51] for the use of
ICA, respectively.

In particular, in [51], it is shown how the captured thermal images can be regarded as a set of mixed
signals from multiple sources, e.g., materials, defects, uneven heating effects, and noise from different
sources. Therefore, there is little dependency among these sources; the signals composing them can be
initially separated by ICA and, subsequently, the defect information may be shown in a small number
of component images. The influence of inhomogeneous backgrounds and noise can be largely relieved,
while the targets are highlighted. ICA was used in the active thermography configuration for analyzing
panel paintings [52] and impacted composite materials made by natural fibres [53], both subjected to
a preliminary long-pulse radiation. The use of PCA and ICA in combination with PuCT, with both
coded or frequency-modulated excitation, was addressed instead by Mulavesaala and co-workers
in [54,55], and by some of the present authors in [35].

Compared to other methods, ICA is preferred because it achieves dimensionality reduction,
background elimination, and defect feature extraction simultaneously. For the same reasons, ICA and
PCA have also been applied to hyper-spectral images and have obtained interesting results, which are
shown in the following section.

Please note that the spatial resolution of the IR camera was much lower than that of the
hyper-spectral camera. For this reason, the PuCT thermograms were resized with a linear interpolation
to match the resolution of the hyper-spectral ones before performing any image fusion.

6. Results and Discussion

Inspections started with the HSI system. From Figure 22, it is possible to see how the longer the
wavelength, the higher the pigment transmission. The drawing and primer layer are more visible; in
fact, pentimenti (Defects H and I) both start becoming readable at 1400 nm (Figure 22c) without any
post-analysis applied to the captured raw HSI images.
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By working between 1400 nm and 1650 nm, the results in Figure 23 show the ability to detect 
different details. The first pentimento is visible in both the first and third PCA, as well as in the first 
ICA. Pentimento H is also detectable in the first ICA. Crack F appears with great evidence both in the 
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Figure 22. Raw hyper-spectral images acquired at: (a) 1100 nm; (b) 1200 nm, (c) 1400 nm, and (d)
1650 nm.

However, pentimenti are more visible at 1650 nm. Although their positions are marked with
dotted red arrows, readers may refer to Figure 17a for an overall view.

The defect/hidden target detection can be further improved by applying PC or IC analyses to raw
hyper-spectral images. Figure 23 shows the first, second and third PC, along with the first IC. The
latter is located at the bottom right hand corner of Figure 23.
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Figure 23. First, second and third PCA applied to hyper-spectral images, and the first ICA applied to
the same set (between 1400 nm and 1650 nm).

By working between 1400 nm and 1650 nm, the results in Figure 23 show the ability to detect
different details. The first pentimento is visible in both the first and third PCA, as well as in the first
ICA. Pentimento H is also detectable in the first ICA. Crack F appears with great evidence both in the
first and third PCA, as well as in the first ICA. The second PCA is able to show the brush strokes of the
artist that realised the sample.

Concerning PuCT, the most interesting results have been obtained via time fusion by applying the
false color technique after having performed the Hilbert transform (H{·}) over the impulse response.
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This is referred to as a “time-phase” algorithm and is shown in Figure 24 as time elapses. The real
(amplitude), imaginary and phase part of theH

{
h(t)

}
have been used and displayed as red, green and

blue colors, respectively, in Figure 25 (false color). In addition, Figure 25 shows “time-fusion” images at
different times. These have been obtained by normalizing each image depicted in “time-emissivity” and
“time-phase” subplots to their respective maxima, so as to obtain image levels bounded within a range
from 0 to 1. The so-obtained images are then multiplied pixelwise leading to the “time fusion” feature.
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Deeper detachments become visible as time elapses from Defect G (shallower) to Defect B (deeper)
(Figure 17) and (Figure 25a–d).

Readers may compare the results obtained in Figure 25a–d with the position of the defects shown
in Figure 17. The benefit provided by the false-color technique in retrieving the defect positions is
evident. In particular, Defects E and G appear easily detectable and evident.

On the one hand, pentimenti (H and I) cannot be visualized by applying the PuCT method, but
also deeper defects cannot be retrieved by means of HSI. Therefore, by integrating the results obtained
with the two methods (PuCT and HSI) and, above all, by applying PC (Figure 26a) and IC (Figure 26b)
analyses on PuCT images, it is possible to obtain a satisfactory integration between them.Sensors 2019, 19, x FOR PEER REVIEW 22 of 25 
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Figure 26. Integration between PC and IC analyses on PuCT images, plus hyper-spectral imaging
(HSI).

The results have been drawn from a database composed of twelve amplitude images at different
times from PuCT output and 140 HSI images from 1200 nm to 1650 nm. Note that the choice of the
mentioned set of wavelengths for HSI images was based on the fact that pentimenti appeared clearly
within this range (see Figure 22), whilst the selected twelve PuCT images were the same as shown in
the bottom part of Figure 24, i.e., thermal images showed the defects the best. The image processing
has been focused on a small part of the sample in order to minimize the high computational cost
required, but an at-a-glance depiction of most of the defects is achieved.

The remaining parts of the sample will be inspected in the future in order to test additional methods.

7. Conclusions

From the results shown in the manuscript, it is possible to say that pseudo-noise pulse-compression
thermography allows the impulse response to be reconstructed with high fidelity and with low-power
sources, i.e., 100 W power LEDs (see Figure 20). In addition, defects in the inner layers can be detected
in reflection mode by means of PuCT, while multivariate analysis improves defect detection by allowing
automatic integration of multi-sensor data.
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To obtain an exhaustive map of pentimenti and defects, an image fusion between PC and IC
analyses on PuCT images plus HSI results was implemented and revealed its good potentialities.

Since the at-a-glance display is very important for restorers to make decisions on the restoration
process, time fusion via false color technique has shown promise in this direction; in particular, real,
imaginary parts and phase of the Hilbert-transformed impulse responses have been used as red, green
and blue channels, respectively. Finally, a fusion of HSI and PuCT was presented for the first time,
applying also ICA and PCA analysis.

However, further optimizations are possible. Among these, it is possible to cite: (a) handy-setup
for PuCT thermography; (b) source optimization (e.g., VIS plus NIR/SWIR LED)’ (c) better integration
(alignment and processing); and (d) full automatic data fusion, analysis and defect detection (through
integration of visible pictures. The latter will be the prospect of future works.
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