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Abstract: Automatic detection and analysis of human activities captured by various sensors
(e.g., sequences of images captured by RGB camera) play an essential role in various research fields
in order to understand the semantic content of a captured scene. The main focus of the earlier studies
has been widely on supervised classification problem, where a label is assigned to a given short clip.
Nevertheless, in real-world scenarios, such as in Activities of Daily Living (ADL), the challenge is
to automatically browse long-term (days and weeks) stream of videos to identify segments with
semantics corresponding to the model activities and their temporal boundaries. This paper proposes
an unsupervised solution to address this problem by generating hierarchical models that combine
global trajectory information with local dynamics of the human body. Global information helps in
modeling the spatiotemporal evolution of long-term activities, hence, their spatial and temporal
localization. Moreover, the local dynamic information incorporates complex local motion patterns of
daily activities into the models. Our proposed method is evaluated using realistic datasets captured
from observation rooms in hospitals and nursing homes. The experimental data on a variety of
monitoring scenarios in hospital settings reveals how this framework can be exploited to provide
timely diagnose and medical interventions for cognitive disorders, such as Alzheimer’s disease. The
obtained results show that our framework is a promising attempt capable of generating activity
models without any supervision.

Keywords: activity recognition; activity of daily living; assisted living; hierarchical activity models;
unsupervised modeling

1. Introduction

Activity detection has been considered as one of the major challenges in computer vision due to
its utter importance in various applications including video perception, healthcare, surveillance, etc.
For example, if a system could monitor human activities, it could prevent the elderly from missing
their medication doses by learning their habitual patterns and daily routines. Unlike regular activities
that usually occur in a closely controlled background (e.g., playing soccer), Activities of Daily Living
(ADL) usually happen in uncontrolled and disarranged household or office environments, where the
background is not a strong cue for recognition. In addition, ADLs are more challenging to detect and
recognize, because of their unstructured and complex nature that create visually perplexing dynamics.
Moreover, each person has his/her own ways to perform various daily tasks resulted in infinite
variations of speed and style of performance which accordingly add extra complexity to detection and
recognition tasks.
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From the temporal aspect, detecting ADLs in untrimmed videos is a difficult task since they are
temporally unconstrained and can occur at any time and in an arbitrarily long video (e.g., recordings
of patients in a nursing home for days and weeks). Therefore, in activity detection, we are not only
interested in knowing the types of the activities happening, but also we want to precisely know the
temporal delineation of the activities in a given video (temporal activity localization).

Most of the available state-of-the-art approaches deal with this problem through detection by
classification task [1-3]. These methods classify the generated temporal segments either in the form
of sliding windows in multiple scales [4-6] or another external proposal mechanism [7,8]. These
methods infer the occurring activity by exhaustively applying trained activity classifiers at each time
segment. Although they achieve encouraging performances in short actions and small-scale datasets,
these computationally expensive methods can not be applied conveniently to large-scale datasets
and complex activities, such as ADLs. These methods are not capable of precisely predicting flexible
activity boundaries. Temporal scale variability of the activities can be dealt with by using multiple-scale
sliding window approaches, however, such methods are computationally expensive. To compensate
the high computational cost of these methods, a class of methods [4,8,9] influenced by advancements
in the field of object detection [10-12] have been developed in which instead of exhaustive scanning,
perform a quick scan to single out candidate activity segments. The sought after activities are more
likely to occur in these segments. In the second step, the activity classifiers are only applied to the
candidate segments, therefore, remarkably reduce the operational cost. Although these methods have
shown good results on activity recognition tasks [13-15], they rarely use context priors in their models.
Another drawback is that instead of learning an end-to-end deep representation, they use off-the-shelf
hand-crafted [16] or deep [17,18] representations independently learned from images. This will result
in a poor detection performance as these representations are not intended and are not optimal for
localization.

Most of the above-mentioned methods are single-layered supervised approaches. In the training
phase of the activities, the labels are fully (supervised) [16,19,20] or partially (weakly supervised) [21,22]
given. In other studies [23,24], the location of the person or the interacted object is known. Usually
the discovery of temporal structure of activities is done by a linear dynamic system [25], a Hidden
Markov Model [26], hierarchical grammars [27-29], or by spatiotemporal representation [30,31]. These
methods have shown satisfying performances on well-clipped videos, however, ADLs consist of many
simple actions forming a complex activity. Therefore, representation in supervised approaches is
insufficient to model these activities and a training set of clipped videos for ADL cannot cover all
the variations. In addition, since these methods require manually clipped videos, they can mostly
follow an offline recognition scheme. There also exist unsupervised approaches [32,33] which are
strong in finding meaningful spatiotemporal patterns of motion. Nevertheless, global motion patterns
are not enough to obtain a precise classification of ADL. For long-term activities, many unsupervised
approaches model global motion patterns and detect abnormal events by finding the trajectories
that do not fit in the pattern [34,35]. Other methods have been applied to traffic surveillance videos
to learn the regular traffic dynamics (e.g., cars passing a crossroad) and detect abnormal patterns
(e.g., a pedestrian crossing the road) [36]. However, modeling only the global motion pattern in
a single-layered architecture cannot capture the complex structure of long-term human activities.
Moreover, a flat architecture focuses on one activity at a time and intrinsically ignores modeling
of sub-activities. Hierarchical modeling, therefore, enables us to model activities considering their
constituents in different resolutions and allows us to combine both global and local information to
achieve a rich representation of activities.

In this work, we propose an unsupervised activity detection and recognition framework to model
as well as evaluate daily living activities. Our method provides a comprehensive representation of
activities by modeling both global motion and body motion of people. It utilizes a trajectory-based
method to detect important regions in the environment by assigning higher priors to the regions with
dense trajectory points. Using the determined scene regions, a sequence of primitive events can be



Sensors 2019, 19, 4237 3 0f 29

created in order to localize activities in time and learn the global motion patterns of people. To describe
an activity semantically, we can adapt a notion of resolution by dividing an activity into different
granularity levels. This way, the generated models describe multi-resolution layers of activities by
capturing their hierarchical structures and sub-activities. Hereupon, the system can move among
different layers in the model to retrieve relevant information about the activities. We create the models
to uniquely characterize the activities by deriving relative information and constructing a hierarchical
structure. Additionally, a large variety of hand-crafted and deep features are employed as an implicit
hint to enrich the representation of the activity models and finally perform accurate activity detection.
To summarize, the core contributions of this paper set forth below:

e an unsupervised framework for scene modeling and activity discovery;

e dynamic length unsupervised temporal segmentation of videos;

e  generating Hierarchical Activity Models using multiple spatial layers of abstraction;

e online detection of activities, as the videos are automatically clipped;

e finally, evaluating daily living activities, particularly in health care and early diagnosis of
cognitive impairments.

Following these objectives, we conducted extensive experiments on both public and private
datasets and achieved promising results. The rest of the paper is organized as follows: Section 2
presents the related studies from the literature. Section 3 explains our suggested approach followed by
describing conducted experiments in Section 4. Lastly, Section 5 concludes the paper.

2. Related Work

2.1. Activity Recognition

For the past few decades, activity recognition has been extensively studied and most
of the proposed methods are supervised approaches based on the hand-crafted perceptive
features [16,17,20-23,37,38]. The linear models [25,26,39,40] gain the most popularity through
modeling action transitions. Later on, more complicated methods modeling activity’s hierarchical and
graphical relations were introduced [28,29,41].

Recent re-emergence of deep learning methods has been led to remarkable performances
in various tasks. That success followed by adapting convolutional networks (CNNs) to activity
recognition problem for the first time in [42]. The inclination toward using CNNs in the field
reinforced by introduction of two-stream [43] and 3D-CNN [17] architectures to utilize both motion
and appearance features. Most of these methods are segment-based and usually use a simple method
for aggregating the votes of each segment (frame or snippet). There are also other approaches that
investigate long-range temporal relations of activities through temporal pooling [37,44,45]. However,
the main assumptions in these methods are that the given videos should be manually clipped and the
activities should take place in the entire duration of the videos. Therefore, the temporal localization of
those activities is not taken into account.

2.2. Temporal and Spatiotemporal Activity Detection

The goal in activity detection is to find both the beginning and end of the activities in long-term
untrimmed videos. The previous studies performed in activity detection were mostly dominated
by sliding window approaches, where the videos are segmented by sliding a detection window
followed by training classifiers on various feature types [4,6,46—48]. These methods are computationally
expensive and produce noisy detection performances, especially in activity boundaries.

Recently, several studies [4,9,49,50] incorporate deep networks and try to avoid the sliding
window approach and search for activities with dynamic lengths. This is usually achieved by temporal
modeling of activities using Recurrent Neural Network (RNN) or Long Short-Term Memory (LSTM)
networks [51,52]. For example, [9] uses an LSTM to encode Convolution3D (C3D) [17] features of
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each segment and classifies it without requiring an extra step for producing proposals. However,
their model is still dependant on hand-crafted features. In order to resolve the problem of short
dependencies in RNN based methods, time-series models, such as Temporal Convolutional Networks
(TCN) [53,54], employ a combination of temporal convolutional filters and upsampling operations
for acquiring long-range activity relations. However, applying convolutional operations on the
local neighborhood for detecting long-range dependencies is not efficient in terms of computational
time. Moreover, many methods use the concept of Actioness [55] to produce initial temporal activity
proposals. Actioness indicates the likelihood of a generic activity localized in the temporal domain.
Reliability of the Actioness hinges upon the correctness of distinguishing the background. Unlike
conventional activity datasets which contain many background segments, long activities in ADL
datasets are usually linked through short background intervals. Accordingly, methods [2,56] which
are relied on Actioness cannot effectively determine the temporal boundary of ADLs in such datasets.

The methods used in [57-61] explore the videos to detect activities in spatial and temporal domains
simultaneously. Some methods [61,62] employ a supervoxel approach to perform spatiotemporal
detection, while others use human detectors [60,63] and treat the detection problem as a tracking
problem [57,59]. Most of these approaches require object detection for a more accurate detection
and therefore, demand exhaustive annotation of objects in long videos which is a tedious and
time-consuming process. Note that the activity detection problem is closely related to object detection
problem from images. A major part of the studies in the literature is inspired by object detection, but as
it is not the focus of this study, we do not review object detection based methods here. It is worth
mentioning that even though the models currently do not utilize object detection features, they still
have a flexible design which depends on the availability of the features, any number and types of
features can be included or excluded from the models.

Apart from the supervised methods mentioned above, recently there has been increasing attention
on methods with unsupervised learning of activities. A pioneer study conducted by Guerra-Filho and
Aloimonos [64] sought to overcome the problem of temporal segmentation of human motion which
does not require training data. They suggest a basic segmentation method followed by clustering step
relied on motion data. Based upon these motion descriptors, they make use of a parallel synchronous
grammar system to learn sub-activities of a long activity analogous to identify words in a complete
sentence. Another study performed by Fox et al. [65] makes use of the non-parametric Bayesian
approach to model pattern of several related atomic elements of an activity identical to elements
of a time series without any supervision. Similarly, Emonet et al. [66] proposes an unsupervised
Non-parametric Bayesian methods based on Hierarchical Dirichlet Process (HDP) to discover recurrent
temporal patterns of words (Motifs). Their method automatically finds the number of topics, recurrence
of the activities and the time of their occurrence. Furthermore, several methods take advantage of
temporal structure of video data for adjusting parameters of deep networks without using any
labeled data for training [67,68]. Some others [69-72] utilize temporal pattern of activities in an
unsupervised way for representation, hence, for detection of activities. Lee et al. [71] formulates
representation learning as a sequence sorting problem by exploiting the temporal coherence as a
supervisory hint. Temporally shuffled sequence of frames are taken as input for training a convolutional
neural network to determine the correct order of the shuffled sequences. In another study conducted
by Ramanathan et al. [72], a ranking loss based approach is presented for incorporating temporal
context embedding based on past and subsequent frames. A data augmentation technique is also
developed to emphasize the effect of visual diversity of context embedding. Fernando et al. [70]
leverages the parameters of a frame ranking function as a new video representation method to
encode temporal evolution of activities in the videos. The new representation provides a latent space
for each video where a principled learning technique is used to model activities without requiring
annotation of atomic activity units. Similarly, [73] encodes structured representation of postures and
their temporal evolution as motion descriptors for activities. A combinatorial sequence matching
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method is proposed to realize the relationship between the frames and a CNN is also utilized to detect
the conflict of transitions.

So far, state-of-the-art methods are constrained by full supervision and require costly frame level
annotation or at least an ordered list of activities in untrimmed videos. By growing the size of the
video datasets, it is very important to discover activities in long untrimmed videos. Therefore, recent
works propose unsupervised approaches to tackle the problem of activity detection in untrimmed
videos. In this work, we use training videos to specify temporal clusters of segments that contain
similar semantics throughout the all training instances.

3. Unsupervised Activity Detection Framework

The proposed framework provides a complete representation of human activities by incorporating
(global and local) motion and appearance information. It automatically finds important regions in the
scene and creates a sequence of primitive events in order to localize activities in time and to learn the
global motion pattern of people. To perform accurate activity recognition, it uses a large variety of
features, such as Histogram of Oriented Gradients (HOG), Histogram of Optical Flow (HOF), or deep
features, as an implicit hint.

As Figure 1 shows, first, long-term videos are processed to obtain trajectory information of the
people’s movement (input). This information is used to learn scene regions by finding the parts of
the scene with a higher prior for activities to occur, i.e., dense regions in terms of trajectory points.
A common approach is to assume that there is only one kind of action occurs inside a region [34,36,74].
However, in unstructured scene settings, this assumption may not be valid. In order to distinguish
actions occurring inside the same region, we benefit from the local motion and appearance features
(visual vocabularies). The learned regions are employed to create primitive events which basically
determine primitive state transitions between adjacent trajectory points. Based on the acquired
primitive events, a sequence of discovered (i.e., detected) activities is created to define the global
motion pattern of people, such as staying inside a region or moving between regions. For each
discovered activity, motion statistics, such as time duration, etc., are calculated to represent the global
motion of the person. Finally, a model of a certain activity is constructed through the integration
of all extracted features and attributes. During the testing phase, the learned regions are used to
obtain primitive events of the test video. Again, the video is clipped using discovered zones and the
action descriptors are extracted for each discovered activity. Similar to the training phase, for each
discovered activity, by combining the local motion information with global motion and other attributes,
an activity model is constructed. To recognize activities, a comparison is performed between trained
activity models and acquired test activity. A similarity score between the test instance and trained
activity models are calculated by comparing global and local motion information of the models. Finally,
the activity model with the maximum similarity score is considered as recognized activity of the test
instance. Through all the steps, an online scheme is followed to perform continuous activity detection
in assisted living scenarios. The subsequent sections describe different parts of the framework in
more detail.
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Figure 1. The flow diagram of the unsupervised framework: Training and Testing phases. The red
dashed box shows the training of the visual codebooks of the descriptors. The green box in the testing
phase shows the descriptor matching procedure.

3.1. Feature Extraction

For local feature detection, improved dense trajectories [75] are employed which densely sample
points of interests and track them in consecutive frames of a video sequence. The points of interests are
sampled using a W pixels sized grid in multiple scales. Each trajectory is tracked separately at each scale
for L frames and the trajectories exceeding this limit are removed from the process. Once the trajectories
are extracted, the descriptors in the local neighborhood of the interest-points are computed. There are
three different types of descriptors extracted from the interest-points: Trajectory shape, motion (HOF
and Motion Boundaries Histogram, a.k.a MBH [75]), and appearance (HOG [76]) descriptors.

Given a trajectory of length L, its shape can be described by a sequence (S = (AP, ..., AP p-1))
of displacement vectors: AP = (Pi41 — P;). The final descriptor (trajectory shape descriptor, a.k.a
TSD) is computed by normalizing the magnitude of the displacement vector. Other than spatial
scales, the trajectories are also calculated in multiple temporal scales in order to represent actions that
rapidly occurred.

Motion descriptors (HOF and MBH) are computed in a volume around the detected interest-points
and throughout their trajectories (spatiotemporal volume). Size of the constructed volume is N x N
pixels around the interest-point and L frames long. For all of the grids in the spatiotemporal volume,
the descriptors are calculated and concatenated to represent the final descriptor. While motion-based
descriptors focus on the representation of the local motion, appearance descriptor (HOG) represents
static appearance information by calculating gradient vectors around the calculated trajectory points.

Geometrical descriptors are also used for representing the spatial configuration of the skeleton
joint information and model human body pose in each frame. To represent the skeleton, both joints’
Euclidean distances and angles in polar coordinate are calculated using normalized joint positions.
In order to preserve temporal information in pose representation, a feature extraction scheme based
on temporal sliding window is adapted [77]. At each time instance, Euclidean distances between
all the joints are calculated. Besides, for each joint, distance from other instances’ joints included in
the sliding window is calculated and stored. If J! represents features of joint i at time f and w shows
the sliding window size: J! = [x!, y!] defines raw skeleton features at time t, where i = 1, ...,8. Then,

F calculates the distance descriptor: F? = \/ (xf = )2 + (v — Y; )2, Similarly, to calculate angular

t

feature in polar coordinate, we use: F* = arctan (x} — x]- ,yi — yj ),where te{tt—1,.,t—w}t >0
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andi,j =1,2,..., 8 for both equations. Combining these features produces the final descriptor vector
F = [F4, F7.

In order to compare the effect of hand-crafted and deep features on our generated activity models,
the framework uses Trajectory-Pooled Deep-Convolutional Descriptors (TDD) introduced in [37].
Computing these features are similar to dense trajectory descriptors. The main difference here is that
rather than computing the hand-crafted features around the spatiotemporal volume of the trajectories,
deep features are extracted using Convolutional Neural Network (CNN) maps. To compute these
features, multi-scale convolutional feature maps pool deep features around the interest-points of the
detected trajectories. The two-stream ConvNet architecture proposed by Simonyan [43] is adapted for
TDD feature extraction. The two-stream CNN consists of two separate CNNs: spatial and temporal
networks. The motion features (temporal) are trained on optical flow and extracted using conv3 and
conv4 layers of CNN. Additionally, for the training of the appearance features (spatial) on RGB frames,
conv4 and conv> layers of CNN are used.

3.2. Global Tracker

Information about the global position of the subjects is indispensable in order to achieve an
understanding of long-term activities. For person detection, the algorithm in [78] is applied that
detects head and shoulders from RGBD images. Trajectories of the detected people in the scene are
obtained using the multi-feature algorithm in [79] using 2D size, 3D displacement, color histogram,
the dominant color, and covariance descriptors as a feature and the Hungarian algorithm [80] to
maximize the reliability of the trajectories. We use the control algorithm in [81] to tune tracking
parameters in an online manner. The output of the tracking algorithm is the input for the framework:

Input = {Seq1, ...,Seqn }, @)

where Seq; = Trajy, ..., Trajr. i is the label of the tracked subject and T is the number of trajectories in
each sequence. Each scene region characterizes a spatial part of the scene and will be represented as a
Gaussian distribution: SR; ~ (i, o).

3.3. Scene Model

In most of the trajectory-based activity recognition methods, a priori contextual information is
ignored while modeling the activities. The proposed framework performs automatic learning of the
meaningful scene regions (topologies) by taking into account the subject trajectories. The regions are
learned at multiple resolutions. By tailoring topologies at different levels of resolution, a hierarchical
scene model is created. A topology at level [ is defined as a set of scene regions (SR):

Tievet, = {SRo, -+, SRx_1} - 2

k indicates the number of scene regions defining the resolution of the topology. The scene regions
are obtained through clustering which takes place in two stages. This two stages clustering helps
to reduce the effect of outlier trajectory points in the overall structure of the topologies. In the first
stage, the interesting regions for each subject in the training set are found by clustering their trajectory
points. For each Seg, the clustering algorithm produces k clusters: Cluster(Seq;) = {Cly, ..., Cly} where
each resulted cluster characterizes the scene based on the motion information of subject i. y and
w parameters of the distribution of the SR; are calculated from the clustering. Cth cluster center
(Cl.) corresponds to scene region i (SR;). For SR;, u is the spatial coordinate of the cluster centroid:
SR;(u) = centroid(Cl;) and the standard deviation ¢ is computed from the point coordinate sequence
of the trajectory set. The second stage of the clustering merges individual scene regions into a single
comprehensive set of regions. Each region is a new cluster (CI) in the second stage partitioning the
obtained cluster centroids in the first stage. K-means algorithm is used for the clustering where the
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optimal value of K is calculated based on the Bayesian Information Criterion (BIC) [82]. We define a
scene model as a set of scene regions (topologies) at different resolutions:

SceneModel =< Topologynignievet, ToPologYmidiever, TOpOlogYiowievel > - 3)

We create a model with topologies at three levels, each aims to describe the scene at a high, medium
and low degree of abstraction. Figure 2 depicts an example of the calculated scene regions in a hospital
room in Centre Hospitalier Universitaire de Nice (CHU) dataset (https://team.inria.fr/stars/demcare-
chu-dataset/).

10 clusters 15 clusters

S clusters

Figure 2. Example of K-means clustering using city-block distance measurements of Centre Hospitalier
Universitaire de Nice (CHU) dataset. The number of clusters is set to 5, 10, and 15.

3.4. Primitive Events

To fill the gap between the low-level image features and high-level semantic description of the
scene, an intermediate block capable of linking the two is required. Here, we describe a method that
defines a construction block for learning the activity models. With a deeper look at the activity
generation process, it can be inferred that the abstraction of low-level features into high-level
descriptions does not happen in a single step and this transition is gradual. As a solution, we use
an intermediate representation named Primitive Event (PE). Given the two consecutive trajectory
data points (Traj; and Traj;), by using their distance from the cluster centroids, their corresponding
scene regions (StartRegion and EndRegion) can be found. A primitive event is represented as a pair of
directed scene regions of these trajectory points:

PrimitiveEvent = (StartRegion — EndRegion), 4)

where StartRegion and EndRegion variables take values of SR indices. For example, if StartRegion of
Traj;: SRy and EndRegion of Traj;: SRy then, we will have (2 — 4) as a primitive event. PE describes an
atomic motion block and is used for characterizing motion of a person in a scene. This way, a whole
sequence of trajectory can be translated into PEs. A Primitive Event’s type is Stay, when the region
labels (Such as SR1) stay constant between two time intervals. It is equivalent to a sequence of Stays in
the scene region P:

Primitive Event = Stayp p. )

When a Primitive Event’s type is Change, a change of region (from region P to region Q) between

two successive time instants (i.e., two successive trajectory points) occurs. It is equivalent to a
region transition:

Primitive Event = Changep (. 6)

The duration of the current status (stay/change) can be calculated simply by

. EndEventFrame—BeginEventF . .
Duration = ="="% mmefpse‘gm VT where fps is the frame rate of the recorded images.
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Using a learned topology T for every video sequence, a corresponding primitive event sequence PEseq
is calculated:
PEs; = (< PEy,...,PE; >,T). (7)

A primitive event sequence provides information regarding the underlying structure of
long-term activities.

3.5. Activity Discovery (Detection)

We refer to the detection of the boundaries of the activities as Activity Discovery. Annotating
the beginning and end of the activities is a challenging task even for humans. The start/end time of
the annotated activities varies from one human annotator to another. The problem is that humans
tend to pay attention to one resolution at a time. For example, when a person is sitting on a chair, the
annotated label is “sitting”. Later, when the subject “moves an arm”, she is still sitting. Discovering
activities using a different resolution of the trained typologies helps to automatically detect these
activity parts and sub-parts at different levels of activity hierarchy using previously created semantic
blocks (Primitive Events). Input for activity discovery process is a spatiotemporal sequence of activities
described by primitive events. After the activity discovery process: (1) The beginning and end of all
activities in a video are estimated and the video is automatically clipped. (2) The video is classified
naively into discovered activities indicating similar activities in the timeline. A discovered activity
(DA) is considered either as (1) staying in current state (“Stay”) or (2) changing of the current state
(“Change”). Basically, a Stay pattern is an activity that occurs inside a single scene region and is
composed of primitive events with the same type:

Discovered Activity = Stayp_,p = {Stay PEs}. 8)

A “Change” pattern is an activity that happens between two topology regions. A “Change” activity
consists of a single primitive event of the same type:

Discovered Activity = Changep_,o = Change PE. 9)

Although detection of primitive events takes place at three different resolutions, the activity
discovery process only considers the coarse resolution. Therefore, after discovery process, the output
of the algorithm for the input sequence is a data structure containing information about the segmented
input sequence in the coarse level and its primitive events in two other lower levels. This data structure
holds spatiotemporal information similar to the structure in Figure 3. The algorithm for this process
simply checks for primitives” boundaries and constructs the data structure for each discovered activity.
Employing DAs and PEs, it shows the hierarchical structure of an activity and its sub-activities.

primitives  Discovered Activity
Stay2-2

Discovered Activity
Change6-1

(Coarse)
Level 2
(Medium)

(55) (55)|(5-6) LY

Primitive Event / Primitive Event / o

Change8-6 Stay5-5 e

(2-1)

Figure 3. A sample video encoded with primitive events and discovered activities in three
resolution levels.
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Although Discovered Activities present global information about the movement of people, it is not
sufficient to distinguish activities occurring in the same region. Thus, for each discovered activity, body
motion information is incorporated by extracting motion descriptors (Section 3.1). These descriptors
are extracted in a volume of NxN pixels and L frames from videos. Fisher Vector (FV) method [83]
is then followed to obtain a discriminative representation of activities. The descriptors are extracted
for all Discovered Activities that are automatically computed. The local descriptor information is
extracted only for Discovered Activities at the coarse resolution level.

3.6. Activity Modeling

Here, the goal is to create activity models with high discriminative strength and less susceptibility
to noise. We use attributes of an activity and its sub-activities for modeling and accordingly, learning
is performed automatically using the DAs and PEs in different resolutions. Learning such models
enables the algorithm to measure the similarity between them. To create the models, a method for
assembling the DAs and PEs from different resolutions is required. This is achieved by the concept of
hierarchical neighborhood.

3.6.1. Hierarchical Neighborhood

The hierarchical representation of activity A at resolution level ! is a recursive representation of
the links between A and its primitive events B; at the finer resolutions:

Aneighborhood = ((Bl, Blneighborhood)r T (Bnr Bnneighborhood))' (10)

B1,..., Bn are the primitive events of A in the next finer resolution. The links between the different
levels are established using temporal overlap information. For example, primitive event B is
sub-activity of activity A in a higher level if their temporal interval overlaps in the activity timeline.
Formally, B is sub-activity of A if the following statement holds:

((startFramey < startframeB) A (endFrame, > startFrameg))

)
|| ((startFrame, < endFrameg) A (endFrame, > endFrameg)) an
)

| ((startFrame, < startFrameg) A (endFrame, > endFrameg))

I ((startFrame, > startFrameg) A (endFrames < endFrameg)).

By applying (10) to a discovered activity, we can find the primitives in its neighborhood. This
automatic retrieval and representation of the neighborhood of a DA help in creating the hierarchical
activity models.

3.6.2. Hierarchical Activity Models

Hierarchical activity model (HAM) is defined as a tree that captures the hierarchical structure of
daily living activities by taking advantage of the hierarchical neighborhoods to associate different levels.
For an input DA (A eighborhood) and its neighborhood, the goal is to group similar PEs obtained by
clustering to create nodes (N) of the activity tree. Clustering is performed using Type attribute of the PEs
which groups PEs of the same type in one cluster. This process is repeated for all levels. After clustering,
nodes of the tree model are determined followed by linking them together to construct the hierarchical
model of the tree. The links between the nodes are realized from the activity neighborhood of each
node (Figure 4 shows the complete procedure of creating an activity tree from neighborhood set
instances of a DA). After linking, a complete tree structure of the given DA is obtained and the model
is completed by adding attribute information for nodes of the tree. Each node in the activity tree
contains information about the similar detected primitive events sharing similar properties, such as
duration and type of the primitive, as well as similar sub-activities in the lower level. So, a node is
the representative of all the similar primitives in that level. Each node has two types of properties.
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The node attributes that store information about primitive events such as average duration of its
constituents as well as information about parent node and the associated nodes in the lower level of
the hierarchy. The nodes can keep different spatial and temporal attributes about the activity and its
sub-activities. The former type consists of:

o Type attribute is extracted from the underlying primitive or discovered activity (in case of the root
node). For node N, Typen = Typepg or Typepa, where Type of PEs and DAs are either Stay or
Change states.

e  Instances list PEs of training instances indicating the frequency of each PE included in the node.

e Duration is a Gaussian distribution Duration(ji4,07) describing the temporal duration of the PEs
({PE;y, PE,, ..., PE,, }) or discovered activities ({ DA1, DA;, ..., DAy, }) of the node. It is frame
length of the primitives or discovered activities calculated as:

u (endframePEiurDAj - SmrtframePEiorDAj)

pa= ). . , (12)
i1
07 = E[((endframepg,orpa, — startframepg,orpa;) = pa)’), (13)

where 7 is the number of PEs or DAs.

o Image Features store different features extracted from the discovered activities. There is no
limitation on the type of feature. It can be extracted hand-crafted features, geometrical or deep
features (Section 3.1). It is calculated as the histogram of the features of the instances in the
training set.

e  Node association indicates the parent node of the current node (if it is not the root node) and the list
of neighborhood nodes in the lower levels.

Training instances

of activity A
Instance 1
A
— \
B1 B2
cm“ Clustering primitive  coarse level cluster A
events
I \tedium level cluster | B2 8
Fine level cluster | € ‘ IS Linking the nodes A
to construct /\
Activity model ® @
—)
Activity neighborhood a a @

detection Instance 1: Apneignborhood

Instance n —

Bl B2 Instance n: Aneignborhood

Figure 4. The process of creating activity tree. The Primitive Events (PEs) from the training instances
are clustered into nodes and, at the same time, the neighborhood set is detected. The final structure is
constructed with those building blocks.

The above-mentioned attributes do not describe the relationship between the nodes which is
important in the overall description of the activities. In order to model the relationship among the
nodes, for each node, two other attributes are defined regarding their sub-nodes: Mixture and Timelapse.
Mixture shows contribution of the type of the sub-activities (Stay;_) in the total composition of
sub-nodes. This number is modeled with a Gaussian mixture @;%‘et”’e . Timelapse of the nodes (with
the same type and level in different training instances) represents the distribution of the temporal



Sensors 2019, 19, 4237 12 of 29

timelapse
type
The created HAM structure is a hierarchical tree that provides recursive capabilities. Accordingly,

it makes the calculation of the attributes and the score in the recognition step efficient and recursive.
Figure 5 illustrates an example of a HAM model with the nodes and their corresponding attributes

duration of the sub-nodes. This attribute is also computed as a Gaussian distribution ©

and sub-attributes.

Type: PE or DA (Stay or Change)
Instances: Frequency of PEs

Node: coarse level Duration(u,62): temporal duration of PEs
o Visual vocabulary of Image features: HOG, HOF, TDD, etc.

Node association: parent and child nodes

No
Sub-attributes
A < Mixture
» 4
Attributes Attributes
Ns Ns / Timelapse
Sub-attributes Sub-attributes
o L
’ . // . "
Node: finer level Node: finer level
* v ¥ |

Figure 5. An example of model architecture in node level where each node is composed of attributes

and sub-attributes. DA = discovered activity; HOG = istogram of Oriented Gradients; HOF = Histogram
of Optical Flow; TDD = Trajectory-Pooled Deep-Convolutional Descriptors.

3.7. Descriptor Matching of Tree Nodes

Descriptor matching can be denoted as a method that captures the similarity between a given
local dynamic information of an activity and a set of calculated multi-dimensional distributions.
The obtained descriptor vectors (H) characterize local motion and appearance of a subject. Knowing
the vector representation of the descriptors of discovered activities enables the use of a distance
(Equation (14)) measurement to characterize the similarity between different activities.

As it is shown in Figure 6, in training, the scene model is used to clip the long videos to the
short clips belonging to each region. Next, the descriptors of the clipped videos are extracted and
employed to learn a visual codebook V' (one for each region) by clustering the descriptors (using
k-means). The codebook of each region is stored in the created activity model of that region. During
the testing phase, when a new video is detected by the scene model, its descriptors are extracted and
the feature vectors are created. These feature vectors are encoded with the learned dictionaries of the
models. The distance of the current descriptor is calculated with the trained codebooks of all regions
(to find the closest one) using the Bhattacharyya distance:

1=z

Distance(H,V) =Y BC(H,V;), (14)

1

where N is the number of learned code words and BC is the Bhattacharyya coefficient:

N,M
BC = ) H(x)Vi(y). (15)
x,y=1

N and M display dimensions of the descriptor and trained codebooks, respectively. The most
similar codebook is determined by the minimum distance score acquired. That codebook (and its
corresponding activity model) is assigned by a higher score in the calculation of the final similarity
score with the test instance in the recognition phase.
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Distance Measure

3 (Bhattacharyya)
e il |

Closest Descriptor Pattern

Figure 6. The process of learning visual codebook for each activity model and matching the given
activity’s features with the most similar dictionary: Training and Testing phases.

3.8. Model Matching for Recognition

To measure the similarity among the trained HAM models, different criteria can be considered.
The assumed criterion can vary from one application to another. While one application can emphasize
more on the duration of activities, local motion can be more important for others. Although these
criteria can be set depending on the application, the weights of the feature types are learned to
determine the importance of each type. The recognition is carried out in five steps as follows:

1.  Perceptual information, such as trajectories of a new subject, is retrieved.

Using the previously learned scene model, the primitive events for the new video are calculated.
By means of retrieved primitive events, the discovered activities are calculated.

Using the collected attribute information, a test instance HAM (w™) is created.

AN

The similarity score of the created HAM and trained HAM models are calculated and the activity
with the highest score is selected as the target activity.

Once the activity models are trained, to find the one that matches with an activity in a test video,
we follow a Bayesian scheme. We choose the final label using the Maximum A Posteriori (MAP)
decision rule. If QO = {wy, ..., ws}, where S = |Q)| represent the set of generated activity models and
given the data for an observed test video, w*, we select the activity model, w;, that maximizes the
likelihood function (Equation (16)):

w*) p (wj|w*

p(w*|wi):p( )p(‘zl ), (16)
p(wi)

where p (w;|w*) denotes the likelihood function defined for activity models wy, ..., ws in model set

Q). We assume that the activity models are independent. Therefore, a priori probability of trained

models p (wy, ..., w;s) is considered equal. We can eliminate p (w;) and use the following formula

(Equation (17))
S

plw*lwi) =p (w*)Ep (wiw*). (17)

p (w*) is the relative frequency of w* in the training set. Since the generated models are constructed

following a tree structure, the likelihood value should be calculated recursively to cover all nodes of
the tree. For each model, the recursive probability value is, therefore, calculated as Equation (18):

p(wi|lw*) = p(wl[”|w*m) + Recur([I] — 1). (18)
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Recur recursively calculates the probabilities of the nodes in lower levels and stops when there is
no more leaf to be compared. Superscripts index the levels of the tree ([/] = 1, 2, 3). p(wl[l] lw*)

calculates probability in the current node given w* and p(wlm|w*[l_l]) returns the probability
values of this node’s child nodes (sub-activities). Given the data for node n of the activity in the
test video, w*(n) = {type*(n), duration*(n), I*(n)} and the activity model i, w;(n) = {type'(n),
Al (n), Distance'(n)}, where Al = {y!,'}. The likelihood function for node  is defined as

duration duration

Equation (19).
p(@im!w(m) = p (" (n)ltype* = typel(n)) =
p (duration*(n)|Al n)) * (19)

duration

p (w«(n)|I* = Distance' (n))

p (w*(n)|type* = typei(n)) checks whether the types of nodes in test tree and trained model are the
same or not:

: 1 if type* = type' (n)
* _ 1 —
p (" (m)ltype = typel(n) ) = { 0 Dthertise. (20)
p (duration*(n)|Al ... (n)) measures the difference between activity instance w*’s duration and

activity model i bounded between 0 and 1.

p (w*(n)“/‘ = yéttmtion(”)) & eXp_DiStd“m”””(n) (21)

where

: duration*(n)—u?* .. (n
DlStdu’r‘ation(n) = | ( 27i ‘udllmtmn( )l .

p (w*(n)|l = Distance'(n)) compares the distance of training node’s trained codebooks V and the test
node’s computed descriptor histogram H.

1 if Distance(H,V)*(n) = min(Distance' (n)

22
0 otherwise. (22)

p (W*(")“ = Distancei(n)) = {

It should be noted that the Distance information is only available at root level I = 0 (only for DAs).
The recursion stops when it traverses all the leaves (exact inference). Once we computed p(w*|Q))
for all model assignments, using MAP estimation, the activity model i that maximizes the likelihood
function p(w;|w*) votes for the final recognized activity label (Equation (23)).

[ = argmax jj (w*|w;) . (23)
1
4. Experiments and Discussion

4.1. Datasets

The performance of the proposed framework is evaluated on two public and one private daily
living activity datasets.

4.1.1. GAADRD Dataset

The GAADRD [84] activity dataset consists of 25 people with dementia and mild cognitive
impairment who perform ADLs in an environment similar to a nursing home. The GAADRD dataset
is public and was recorded under the EU FP7 Dem@Care Project (http:/ /www.demcare.eu/results/
datasets) in a clinic in Thessaloniki, Greece. The camera monitors a whole room where a person
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performs directed ADLs. The observed ADLs include: “Answer the Phone”, “Establish Account
Balance”, “Prepare Drink”, “Prepare Drug Box”, “Water Plant”, “Read Article”, “Turn On Radio”. A
sample of images for each activity is presented in Figure 7 (top row). Each person is recorded using
an RGBD camera of 640x480 pixels of resolution. Each video lasts approximately 10-15 min. We
randomly selected 2/3 of the videos for training and the remaining for testing.

4.1.2. CHU Dataset

This dataset is recorded in the Centre Hospitalier Universitaire de Nice (CHU) in Nice, France.
The hospitals collecting the dataset have obtained the agreement of an ethical committee. Volunteers
and their carers have signed informed consent. Data have been anonymized and can be used only
for research. It contains videos from patients performing everyday activities in a hospital observation
room. The activities recorded for this dataset are “Prepare Drink”, “Answer the Phone”, “Reading
Article”, “Watering Plant”, “Prepare Drug Box”, and “Checking Bus Map”. A sample of images for each
activity is illustrated in Figure 7 (middle row). Each person is recorded using an RGBD Kinect camera
with 640 pixels x 480 pixels of resolution, mounted on the top corner of the room. The hospital dataset
is recorded under the EU FP7 DemCare project (https://team.inria.fr/stars/demcare-chu-dataset/)
and it contains 27 videos. For each person, the video recording lasts approximately 15 min. Domain
experts annotated each video regarding the ADLs. Similar to GAADRD, for this dataset, we randomly
chose 2/3 of the videos for training and the rest for testing.

4
A /5
(d) Watering Plant

&

(c) Turn on radio

= 1

(f) Prep. drug box (8)

T

(i) Cleaning (j) Cooking (k) Eating (1) Working

Figure 7. (a-d) Instances of daily activities provided in GAADRD; (e-h) CHU; and (i-1) DAHLIA
datasets.

4.1.3. DAHLIA Dataset

The DAHLIA dataset [85] consists of a total of 153 long-term videos of daily living activities
(51 videos recorded from three different views) from 44 people. The average duration of the
videos is 39 min containing 7 different actions (and a Neutral class). The considered ADLs are:
“Cooking”, “Laying Table”, “Eating”, “Clearing Table”, “Washing Dishes”, “Housework”, and
“Working” (Figure 7i-1). To evaluate this dataset, we followed a cross-subject protocol in order to

compare our results with existing literature.
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4.2. Evaluation Metrics

We use various evaluation metrics on each dataset to evaluate our results and compare it with other
approaches. For the GAADRD and CHU datasets, we use Precision and recall metrics. True Positive
Rate (TPR) or recall is the proportion of actual positives which are identified correctly: TPR = TPE%
The higher the value of this metric, the better is the performance. Similarly, Positive Predictive Value
(PPV) or precision is defined as: PPV = % We also use F-score in our comparisons. The detected
intervals are compared against the ground-truth intervals and an overlap higher than 80% of the
ground-truth interval is considered as a True Positive detection of that activity.

For evaluation of the unsupervised framework, as the recognized activities are not labeled, there
is no matching ground-truth activity label for them. The recognized activities are labeled, such as
“Activity 2 in Zone 1”. In order to evaluate the recognition performance, first, we map the recognized
activity intervals on the labeled ground-truth ranges. Next, we evaluate the one-to-one correspondence
between a recognized activity and a ground-truth label. For example, we check which ground-truth
activity label co-occurs the most with “Activity 2 in Zone 1”. We observe that in 80% of the time, this
activity coincides with “Prepare Drink” label in the ground-truth. We, therefore, infer that “Activity 2
in Zone 1” represents “Prepare Drink” activity. For this purpose, we create a correspondence matrix
for each activity which is defined as a square matrix where its rows are the recognized activities and
the columns are ground-truth labels. Each element of the matrix shows the number of co-occurrences
of that recognized activity with the related ground-truth label in that column:

a1 a4 413 ... i

a1 4z a3z ... Oy
COR(RA,GT) =

ay1 A2 aAp3 ... Qun.

a;; € Z" shows the correspondence between activity instance i and ground-truth label j. RA is the
set of recognized activity instances and GT shows the set of ground-truth labels. We evaluate the
performance of the framework based on the inferred labels. These labels are used for calculating the
Precision, Recall, and F-Score metrics.

In order to evaluate the DAHLIA dataset, we use metrics based on frame level accuracy. For each
class ¢ in the dataset, we assume TP¢, FP¢, TN¢, and FN°¢ as the number of True Positive, False Positive,
True Negative, and False Negative frames, respectively. Therefore, Frame-wise accuracy is defined
as: FA; = ZZE%CTI\IZC, where N, is the number of correctly labeled frames compared to the ground-truth.
F-Score is defined as: F — Score = ‘%‘ Ycec % where P¢ and R¢ are precision and recall metrics of
class ¢, respectively. We also define Intersection over Union (IoU) metric as:

_ 1
C]

TP*

Cg TP¢ + FP¢ + FN¢’

IoU

(24)

C is the total number of action classes.

4.3. Results and Discussion

First, the results and evaluations of the three datasets are reported and then compared with
state-of-the-art methods. Different codebook sizes are examined for the Fisher vector dictionaries: 16,
32, 64,128, 256, and 512. Table 1 and Figure 8 show the accuracy of activity detection based on Precision
and Recall metrics using the feature type with the highest accuracy. In the case of the GAADRD dataset,
the best result achieved with incorporated Motion Boundaries Histogram in Y axis (MBHY) descriptor
in the activity models with codebook size set to 256.
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Figure 8. Shows F-Score values of the unsupervised framework w.rt. codebook size on
GAADRD dataset.

Based on the obtained results, there is no special trend regarding the codebook size. For some
features (MBHY and TDD spatial), the performance increases with an increase in the codebook size and
drops when the codebook size becomes much bigger. For TDD temporal feature, performance increases
linearly with the codebook size. For the geometrical features, particularly for the Angle feature, there is
a big drop of performance with bigger codebook sizes. For others (HOG, HOF), medium-size codebook
performs the best. Finding an optimal codebook size is challenging. Small datasets usually work better
with smaller codebook size, and as the datasets’ size grows, the codebook performs better. Regardless
of the codebook size, MBHY descriptor performs better than other features in this dataset. The MBH
descriptor is composed of X (MBHX) and Y (MBHY) components. As the activities involve many
vertical motions, MBHY descriptor is able to model the activities better compared to the other dense
trajectory descriptors and even deep features. It can be noticed that the performance of temporal deep
features gets better as the codebook size gets bigger. In addition, motion features (TDD temporal,
MBHY) perform better than appearance features and temporal deep features perform better than spatial
TDDs. The reason for the lower performance of appearance features might be due to the activities
performed in a hospital environment. Hereupon, the background does not contain discriminative
information which can be encoded in activity models. It is clear that the Geometrical features perform
poorly. Daily living activities are comprised of many sub-activities with similar motion patterns related
to object interactions. It seems that geometrical features do not contain sufficient information to ensure
encoding these interactions which result in poor detection. Furthermore, the confusion matrix in
Figure 10 indicates that the activities with similar motion in their sub-activities are confused with each
other the most.

On CHU dataset, the unsupervised framework achieves promising results (Table 2 and Figure 9).
Similar to the GAADRD dataset, the effect of codebook size is different for different descriptor types.
For MBHY descriptor, the accuracy increases as codebook size grow, whilst, it has the opposite
effect on TDD appearance features. Differently, the accuracy increases and then decreases for TDD
temporal feature. It can be observed that a bigger codebook size results in better performance.
This trend is different from GAADRD dataset and the reason might be because of the larger size
of this dataset. TDD temporal features demonstrate a better performance than deep appearance
features (TDD spatial). Similarly, due to the similar background of the activities, temporal information
shows better results. MBHY achieves the best performance on this dataset. The abundance of vertical
motions in the performed activities helps the MBH descriptors to reach better recognition performance.
Among appearance features, HOG descriptor shows a better performance since it can encode the
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appearance information efficiently, where it even outperforms deep appearance features. Detailed
analysis (Figure 10) indicates that the framework has difficulty in recognition of “Watering Plant”
activity. It confuses this activity with all the other activities. The short duration of this activity leads to
insufficient capture of local dynamic information resulting in recognition issues. The reason for the
confusion of the other activities lies mainly on similar motion patterns of the sub-activities. Moreover,
this dataset consists of activities recorded from subjects lateral view which makes recognition of those
classes of activities challenging.

06 —0— Angle
o =@ -Distance
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Figure 9. Shows F-Score values of the unsupervised framework w.r.t. codebook size on CHU dataset.

Prepare Drink
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Figure 10. Confusion matrices regarding the best configuration of the unsupervised framework on
(a) GAADRD and (b) CHU datasets (with Motion Boundaries Histogram in Y axis (MBHY) descriptor).
The values show mean accuracy (%).
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Table 1. Results related to the unsupervised framework with different feature types on GAADRD dataset.

32 64 128 256 512
Prec. (%) Rec. (%) F-Score Prec.(%) Rec.(%) F-Score Prec.(%) Rec.(%) F-Score Prec.(%) Rec.(%) F-Score Prec.(%) Rec.(%) F-Score
Angle 57.6 33.2 0.42 61.2 36.1 0.45 46.9 30.2 0.36 28.1 224 0.24 26.7 19.8 0.22
Distance 12.9 9.7 0.11 18.2 14.9 0.16 20.7 16.1 0.18 14.7 12.1 0.13 14.7 15.2 0.14
HOG 81.4 75.2 0.78 84.7 79.6 0.825 77.5 74.3 0.75 82.7 77.6 0.80 84.7 79.8 0.82
HOF 64.6 61.9 0.63 64.9 67.7 0.66 66.1 68.1 0.67 65.4 67.9 0.66 57.4 62.1 0.59
MBHX 71.3 77.2 0.74 74.8 78.2 0.76 79.8 76.1 0.77 67.6 72.1 0.69 69.4 72.8 0.71
MBHY 71.5 68.4 0.69 78.8 76.1 0.77 82.7 84.9 0.83 83.1 85.7 0.84 80.2 79.4 0.79
TDD Spatial 74.5 72.9 0.73 72.8 71.2 0.71 77.5 74.3 0.75 77.5 76.9 0.77 76.4 73.5 0.74
TDD Temporal 73.4 69.1 0.71 73.9 70.6 0.72 72.5 69.9 0.71 79.4 76.2 0.77 81.9 76.9 0.79

Table 2. Results regarding the unsupervised framework with different feature types on CHU dataset.

32 64 128 256 512
Prec. (%) Rec. (%) F-Score Prec.(%) Rec.(%) F-Score Prec.(%) Rec.(%) F-Score Prec.(%) Rec.(%) F-Score Prec.(%) Rec.(%) F-Score
Angle 58.4 49.7 0.53 60.7 57.8 0.59 58.6 55.2 0.56 50.3 459 0.47 41.7 44.1 0.42
Distance 239 19.2 0.21 22.7 19.5 0.20 27.8 21.7 0.24 29.2 319 0.30 28.8 27.1 0.27
HOG 77.7 719 0.74 85.7 82.9 0.84 80.8 74.9 0.77 81.9 76.3 0.79 84.9 79.8 0.82
HOF 68.2 69.8 0.68 73.9 76.4 0.75 77.1 79.1 0.78 68.4 719 0.70 73.4 74.9 0.74
MBHX 73.4 72.1 0.72 81.3 80.4 0.80 78.6 79.2 0.78 75.2 78.3 0.76 73.4 76.2 0.74
MBHY 80.5 77.9 0.79 84.3 79.9 0.82 83.9 79.3 0.81 88.6 83.6 0.866 87.4 83.1 0.85
TDD Spatial 65.8 58.4 0.61 71.9 64.7 0.68 67.2 60.9 0.63 65.9 60.1 0.62 60.0 55.9 0.57

TDD Temporal 67.7 65.7 0.66 69.7 66.1 0.68 79.2 76.1 0.77 744 73.5 0.73 61.8 62.1 0.61
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4.4. Comparisons

This section summarizes the evaluations and comparisons conducted on GAADRD (Section 4.5),
CHU (Section 4.6), and DAHLIA (Section 4.7) datasets.

The results obtained from our proposed framework on GAADRD and CHU datasets are compared
with the supervised approach in [75], where videos are manually clipped. Another comparison is made
with an online supervised approach that follows [75] using a sliding window scheme. The activity
models are evaluated with another version of the models [86] that does not embed local dynamic
information (in this version, the score of the local descriptor attribute is omitted and not considered
in the final score). A further comparison is performed with a Hybrid framework [87] that combines
supervised and unsupervised information in the HAM models. We additionally compare GAADRD
dataset with the produced results of another detection algorithm in [88].

4.5. GAADRD Dataset

Table 3 represents the comparison of our results with the reported performance on GAADRD
dataset. In all approaches that use body motion and appearance features, the feature types with the
best performances are selected. It can be noticed that using models equipped with both global and
local motion features, the unsupervised obtains high sensitivity and precision rates. Compared to
the online version of [75], thanks to the learned zones and discovered activities, we obtain better
activity localization, thereby a better precision. Using only dense trajectories (not global motion)
this online method fails to localize activities. For the “Watering Plant” this method can not detect
any instances of this activity in the test set, hence, the Precision, Recall, and F-Score rates are zero.
Compared to the unsupervised approach that either uses global motion features or body motion
features, we can see that, by combining both features, our approach achieves more discriminative and
precise models and improves both sensitivity and precision rates. Although the supervised approach
in [75] outperforms the unsupervised framework in recall and F-Score metrics, it actually does not
perform activity detection. It uses ground-truth intervals provided by manual clipping and performs
offline activity recognition which is a much simpler task. As our approach learns the scene regions, we
automatically discover the places where the activities occur, thereby we achieve precise and accurate
spatiotemporal localization with a lower cost. As scene region information is missing in the supervised
approach, it detects “Turning On Radio” while the person is inside the “Preparing Drink” region. On
this dataset, the unsupervised method always performs better than the “Online Supervised” approach
and significantly outperforms the sequential statistical boundary detection (SSBD) method. It also
outperforms another unsupervised version of the framework while no descriptor information is used
in the activity models. Only the supervised methods surpass our unsupervised models. The reason is
that the supervised method works with pre-clipped activity videos and overlooks the challenging task
of temporal segmentation of activity samples from the original video flow.

4.6. CHU Dataset

Table 4 shows the results of evaluated approaches and their comparison with our results on CHU
Nice Hospital dataset. In this dataset, as people tend to perform some of the activities in various
regions (e.g., preparing the drink at the phone desk), it is difficult to obtain high precision rates.
However, compared to the online version of the supervised method in [75], our approach detects all
activities and achieves a much better precision rate. The online version of [75] again fails to detect
activities accurately and misses some of the “Prepare Drink”, and “Reading Article” activities and
produces lots of false positives for all other activities. It cannot handle the transition states in the
boundary of the activity regions (e.g., walking from telephone desk to DrugBox is detected as “ Answer
the Phone” activity). For this reason, a random label is assigned for transition states by the classifier,
which consequently increases the rate of false positives. Compared to the Online Supervised method,
we have increased the average precision rate from 48.06 to 87.65%. Compared to the unsupervised
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method without embedded descriptor information, we have decreased the false positive rates and
increased the precision rates significantly. The highest improvements are on “Answering Phone” from
60 to 92%, “Checking BusMap* from 54.54 to 80.5%, “Prepare Drink” from 80 to 94%, and “Watering
Plant” from 53 to 77%. For “Reading Article” activity, there is a small increase in false positive rates,
causing an incremental decrease in precision rates. This might be because of the lack of local motion
information caused by staying still in a sitting posture for a long time. Since the motion representation
of [86] contains only global information, it fails to distinguish activities inside the regions precisely. For
instance, passing by the phone zone and answering the phone in the phone zone are considered as the
same activity in their models. Hence, their unsupervised approach results in high false positive rates.
In addition, we can observe that the proposed approach improves the true positive rates and increased
sensitivity rates for most of the activities when it is compared to the “Only Global Motion” method.

4.7. DAHLIA Dataset

Different from the two other datasets, the results on the DAHLIA dataset are compared with
all the previous evaluations we could find in the literature. Meshry et al. [89] exploits gesturelets
extracted from skeleton data to compute geometrical features and detect the activities. The proposed
method in [90] takes a graphical approach and poses the activity detection task as a maximum-weight
connected sub-graph problem. Inspired by the Hough transformation that is successfully applied in
object detection, Chan-Hon-Tong et al. [91] proposes a method with discriminative features to globally
optimize the parameters of Hough transform and utilize it for activity segmentation in videos. Finally,
our results are compared with [92] that is a supervised method with a semi-supervised component to
discover sub-activities. Table 5 demonstrates our results on the DAHLIA dataset. Different metrics
are used for evaluation of this dataset to enable comparison with other methods. The table presents
the best results that are produced by the generated models embedded with MBHY descriptors. It can
be noticed that in this dataset, we significantly outperform [89,90] in all the categories. Efficient
Linear Search (ELS) uses geometrical features and produces poor results that are only comparable
with our framework when geometrical descriptors are used in the generated models. Despite being
an efficient approach, Chen and Grauman [90] demonstrates poor detection performance on Dahlia
dataset. Additionally, this method only works in offline mode. Chan-Hon-Tong et al. [91] is another
supervised method that uses both skeleton and dense trajectory descriptors and outperforms our
framework only on camera view 3, while using the F-score metric. The closest performance to ours
is [92] which is a supervised method and utilizes person-centered CNN features (PC-CNN) to detect
sub-activities. Moreover, it has an additional post-processing step to refine the sub-activity proposals
in the activity boundaries. Although our framework is totally unsupervised, we outperform this
method in camera view 2 using all evaluation metrics. Similar results are obtained using different
camera angles underlying the robustness of our proposed framework to viewpoint variations and
different types of occlusion. This indicates that an efficient multi-view fusion method can remarkably
improve the results.

Overall, although our unsupervised framework does not utilize any supervised information,
it achieved promising recognition performances. Compared to the fully supervised hybrid method [87],
the unsupervised framework obtains acceptable and competitive results in the detection of most of
the activities. However, the high performance of the hybrid method comes with the cost of human
supervision. In the hybrid method, a supervised Support Vector Machine (SVM) classifier is trained
with the ground-truth annotation provided by a human. The main benefits of the unsupervised
method are automatic online clipping and detection of activities as well as unsupervised modeling and
recognition. With all these benefits, the marginal difference in the recognition rate of the unsupervised
method relative to supervised counterparts is admissible.
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Table 3. Comparison of different recognition frameworks with ours on the GAADRD dataset. The diagram shows the class-wise accuracy of each method with respect
to their F-Score values. The best results in each section are indicated in bold.

Supervised (Manual Clipping)

Classification by

with HOG, Dict sz=512 [75] Online Version of [75] Detection SSBD [88] Unsupervised Using Only Global Motion [86] Hybrid [87] Unsupervised (Proposed Method)
Prec. (%) Rec. (%) F-Score Prec.(%) Rec.(%) F-Score Prec.(%) Rec.(%) F-Score Prec.(%) Rec. (%) F-Score Prec. (%) Rec. (%) F-Score Prec. (%) Rec. (%) F-Score
Establish Account 92.2 84.3 0.88 29.1 100 0.45 41.67 41.67 0.41 86.2 100 0.92 92.3 100 0.95 86.2 100 0.92
Prepare Drink 92.1 100 0.95 69.4 100 0.81 80.0 96.2 0.87 100 78.1 0.87 100 92.1 0.95 100 100 1.0
Prepare DrugBox 94.9 85.5 0.89 20.2 11.7 0.14 51.28 86.96 0.64 100 33.34 0.50 78.5 91.3 0.84 100 33.1 0.49
Reading Article 96.2 96.2 0.96 37.8 88.6 0.52 31.88 100 0.48 100 100 1.0 100 100 1.0 100 100 1.0
Answer the Phone 88.5 100 0.93 70.1 100 0.82 34.29 96.0 0.50 100 100 1.0 100 91.2 0.95 100 100 1.0
Turn On Radio 89.4 86.7 0.88 75.1 100 0.85 19.86 96.55 0.32 89.0 89.0 0.89 89.1 93.4 0.91 89.1 89.3 0.89
Watering Plant 84.8 72.6 0.78 0 0 0 44.45 86.36 0.58 57.1 44.45 0.49 79.9 86.1 0.82 100 442 0.61
Average 91.16 89.33 0.90 43.1 71.4 0.51 43.34 86.24 0.54 90.32 77.84 0.81 91.4 93.44 0.92 96.47 80.94 0.84

Table 4. Comparison of different recognition frameworks with ours on the CHU dataset. The table below shows the detailed results of each method with respect to
each class in the dataset. The best results in each section are indicated in bold.

Supervised (Manual Clipping)

with HOG, Dict sz = 256 [75] Online Version of [75] Unsupervised Using Only Global Motion [86] Hybrid Unsupervised (Proposed Method)
Prec. (%) Rec.(%) F-Score Prec.(%) Rec.(%) F-Score Prec.(%) Rec. (%) F-Score Prec. (%) Rec. (%) F-Score Prec. (%) Rec. (%) F-Score
Checking BusMap 100 97.1 0.98 50.1 100 0.66 54.54 100 0.70 96.1 100 0.98 80.5 86.2 0.83
Prepare DrugBox 100 92.3 0.95 432 100 0.60 100 90.1 0.94 100 100 1.0 88.2 92.7 0.90
Prepare Drink 93.1 97.4 0.95 38.1 76.1 0.50 80.0 84.21 0.82 88.9 96.3 0.92 94.2 88.5 0.91
Answer the Phone 92.2 100 0.95 86.7 100 0.92 60.1 100 0.75 100 100 1.0 92.4 100 0.96
Reading Article 97.5 94.1 0.95 36.4 92.0 0.52 100 81.82 0.90 100 100 1.0 93.2 87.4 0.90
Watering Plant 100 88.3 0.93 33.9 76.9 0.47 53.9 68.9 0.60 77.0 96.3 0.85 774 61.2 0.68
Average 97.13 94.87 0.95 48.06 90.83 0.61 74.75 87.50 0.78 93.66 98.76 0.96 87.65 86.00 0.86
Table 5. The activity detection results obtained on the DAHLIA. Values in bold represent the best performance.
ELS [89] Max Subgraph Search [90] DOHT (HOG) [91] Sub Activity [92] Unsupervised (proposed method)
FA_1 F_score IoU FA_1 F_score IoU FA_1 F score IoU FA_1 F score IoU FA_1 F score IoU
View1l 0.18 0.18 0.11 - 0.25 0.15 0.80 0.77 0.64 0.85 0.81 0.73 0.84 0.79 0.70
View2 0.27 0.26 0.16 - 0.18 0.10 0.81 0.79 0.66 0.87 0.82 0.75 0.88 0.83 0.77
View3 0.52 0.55 0.39 - 0.44 0.31 0.80 0.77 0.65 0.82 0.76 0.69 0.79 0.73 0.69
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5. Conclusions

An online unsupervised framework is proposed for detection of daily living activities, particularly
for elderly monitoring. To create the activity models, we benefited from the superiority of unsupervised
approaches on representing global motion patterns. Then, discriminative local motion features were
employed in order to generate a more accurate model of activity dynamics. Thanks to the proposed
scene model, online recognition of activities can be performed with reduced user interaction for
clipping and labeling a huge amount of short-term actions which are essential for most of the previously
proposed methods. Our extensive evaluations on three datasets revealed that our proposed framework
is capable of detecting and recognizing activities in challenging scenarios. The evaluations were
intentionally conducted on the datasets recorded in nursing homes, hospitals, and smart homes to
examine the implication of the method on ambient surveillance in such environments. Further work
will investigate how to generate generic models that can detect activities in any environment with
minimum modification of the models. Our goal is to use the developed framework in the evaluation
of long-term video recordings in nursing homes and to assess the performance of the subjects to
impose early interventions which will result in early diagnosis of cognitive disorders, especially
Alzheimer’s disease.
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Abbreviations

The following abbreviations are used in this manuscript:
ADL Activities of Daily Living

CNN Convolutional Neural Networks

RNN Recurrent Neural Network

LSTM  Long Short-Term Memory

C3D Convolution3D

TCN Temporal Convolutional Network

HDP Hierarchical Dirichlet Process

HOG Histogram of Oriented Gradients

HOF Histogram of Optical Flow

MBH Motion Boundaries Histogram

MBHX Motion Boundaries Histogram in X axis
MBHY Motion Boundaries Histogram in Y axis

TSD Trajectory Shape Descriptor

TDD Trajectory-Pooled Deep-Convolutional Descriptors

BIC Bayesian Information Criterion
SR Scene Region

PE Primitive Event

DA Discovered Activity

FV Fisher Vector

HAM  Hierarchical Activity Model
MAP Maximum A Posteriori

TP True Positive
FP False Positive
TN True Negative
FN False Negative

TPR True Positive Rate
PPV Positive Predictive Value
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IoU Intersection over Union

SSBD Sequential statistical boundary detection

ELS Efficient Linear Search

PC-CNN Person-Centered CNN

SVM Support Vector Machine
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