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Abstract: Due to the change of illumination environment and overlapping conditions caused by the
neighboring fruits and other background objects, the simple application of the traditional machine
vision method limits the detection accuracy of lychee fruits in natural orchard environments. Therefore,
this research presented a detection method based on monocular machine vision to detect lychee fruits
growing in overlapped conditions. Specifically, a combination of contrast limited adaptive histogram
equalization (CLAHE), red/blue chromatic mapping, Otsu thresholding and morphology operations
were adopted to segment the foreground regions of the lychees. A stepwise method was proposed
for extracting individual lychee fruit from the lychee foreground region. The first step in this process
was based on the relative position relation of the Hough circle and an equivalent area circle (equal
to the area of the potential lychee foreground region) and was designed to distinguish lychee fruits
growing in isolated or overlapped states. Then, a process based on the three-point definite circle
theorem was performed to extract individual lychee fruits from the foreground regions of overlapped
lychee fruit clusters. Finally, to enhance the robustness of the detection method, a local binary pattern
support vector machine (LBP-SVM) was adopted to filter out the false positive detections generated
by background chaff interferences. The performance of the presented method was evaluated using
485 images captured in a natural lychee orchard in Conghua (Area), Guangzhou. The detection results
showed that the recall rate was 86.66%, the precision rate was greater than 87% and the F1-score was
87.07%.

Keywords: overlapped lychee detection; monocular vision; Hough circle; three-point definite circle;
LBP-SVM

1. Introduction

Lychees are one of the most popular fruits and are widely cultivated in the hilly regions of southern
China [1,2]. In 2018, the average annual yield of lychees in China was approximately 2.87 million tons,
which brought considerable profits and tax revenue for lychee growers and the government. Therefore,
this abundant annual lychee production signifies the importance of lychee yield estimation technologies.
Current estimation methods mainly use satellite or low-altitude remote sensing technology or image
information captured by ground-based vehicles, and fruit detection methods for these methods are
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inevitably adopting machine vision techniques. To date, an extensive amount of image analysis has
been performed for the detection of many kinds of fruits [3–8].

It is a fundamental task to detect individual fruits for guaranteeing precision agricultural practices
and this has become a hot spot in recent studies. These studies indicate that the growth of fruits
in a monocular machine image mainly shows two phenomena—occlusion and overlapping—in
the orchard environment [8–12]. Specifically, the occlusion phenomenon is caused by leaves and
branches and the overlapping phenomenon is caused by neighboring lychee fruits. Xu et al. proposed
a segmentation method that used the Snake model and corner detectors for detecting two apples in an
overlapped condition; this segmentation method has an average error of 6.41% when detecting two
apples in an overlapped condition. However, their method can detect apples in overlapped conditions
only when there is no occlusion from branches or leaves [13]. Xiang and Jiang et al. proposed an
algorithm based on binocular stereovision to improve the recognition performance for clustered
tomatoes; in their method, edge curvature analysis was adopted to generate the edges map for fruits
segmentation and achieved the recognition accuracy rate of 87.9%. However, their method needs to sort
every curvature of the pixels on the edge, which makes the calculation time dependent on the length of
the edge. When detecting clusters with a greater number of fruits carrying a long edge length in the
foreground region, the calculation time will increase accordingly [14]. Liu and Zhao et al. adopted
color information from both the red/green/blue (RGB) and hue/saturation/intensity (HSI) color space to
train a back propagation neural network for apple segmentation; the Euclidean distance was used to
calculate the edge area of segmented apples, from which the apples were recognized. The recognition
accuracy of apples in a natural environment can be improved using this method. However, a high
recognition error rate occurs when apples are overlapping or when a shadow occurs in the captured
images [15]. Nguyen et al. proposed a detection method for occluded apples on trees with an RGB 3D
camera using a camera system to build both color (RGB) and three-dimensional (3D) shape information
of apples on trees. However, this algorithm is sensitive to light conditions and requires light shield
construction to block direct sunlight in the testing orchard [16]. Chen et al. proposed a data-driven
fruits detection method using a deep learning strategy to recognize apple and orange clusters, and
achieved high accuracy. They trained the classifier using the NVIDIA Titan X graphics processing
unit, which took more than 50 thousand iterations for the classifier’s convergence. Although the deep
learning strategy provides higher performance for detecting fruits, it depends heavily on the applied
hardware devices [17]. Recently, Zhuang et al. proposed a detection method using the combination
of marker-controlled watershed transform (MCWT) and convex hull operation to locate citrus fruits
in overlapped and occluded conditions. However, their algorithm performs an average in detecting
lychee clusters; hence, the watershed transform algorithm is sensitive to complex texture disturbances
on lychee fruit surfaces [18]. He et al. proposed a method of green lychee recognition that used
an improved linear discriminant analysis (LDA) classifier for classifying pixels and Hough transform
circle detection to locate the fruit of lychee by the spherical shape features; this method provides
a 76.4% recognition accuracy of clustered lychee fruits. However, in their method, the threshold of the
Hough circle radius must be calculated by counting the average number of pixels of each lychee in
the test sample images before running the Hough transformation. Therefore, their method greatly
increases the workload of lychee detection in practical applications [19].

To summarize, the occurrence of background chaff interferences, such as branches, foliage, sky,
remains challenging for target fruit detection using machine vision systems. In particular, detection
methods for complicated overlapping conditions of neighboring lychee fruits have rarely been reported.
Therefore, the overall objective of the research is to detect overlapping conditions of growing lychee
fruits in orchard environments with changing illumination. There are three specific objectives of this
study: (1) improve the contrast between the lychee fruits and background objects for images captured in
environments with changing illumination; (2) extract potential lychees in occluded growing conditions;
and (3) filter out some false detections using uniform local binary patterns (LBP) and a histogram
intersection kernel (HIK)-based support vector machine (SVM).
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2. Materials

2.1. Datasets

A variety of lychee called “Jing Gang Hong Nuo” was investigated in early to mid-May in
Guangzhou. A total of 485 images (called dataset 1, with 2145 lychee fruits in total) and a total of
86 images (called dataset 2, with 213 lychee fruits in total) were captured using the cameras equipped on
the iPhone 7 and SAMSUNG S6 mobile phones respectively in a natural lychee orchard, approximately
2–4 weeks before harvest. Due to the different settings of the adopted cameras, the resolution of the
images in dataset 1 was 3024 × 4032 pixels while that in dataset 2 was 2560 × 1440 pixels.

In addition, the images in both datasets were captured with the cameras located approximately
30–100 cm from the lychee fruits under three different imaging circumstances, including well-
illuminated, weakly illuminated and overexposure-illuminated conditions. The number of images
captured under well-illuminated, weakly illuminated and overexposure-illuminated conditions were
152, 128 and 205, respectively, in dataset 1; and the number of images captured under the three different
conditions were 26, 27 and 33, respectively, in dataset 2. Some examples in both dataset 1 and dataset 2
can be found in Figure 1.
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Figure 1. Examples of lychees in an orchard environment with a resolution of 100 × 100 pixels. (A1) 

Well-illuminated examples of dataset 1. (A2) Weakly illuminated examples of dataset 1. (A3) 

Overexposure-illuminated examples of dataset 1. (B1) Well-illuminated examples of dataset 2. (B2) 

Weakly illuminated examples of dataset 2. (B3) Overexposure-illuminated examples of dataset 2. (C1) 
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Figure 1. Examples of lychees in an orchard environment with a resolution of 100 × 100 pixels.
(A1) Well-illuminated examples of dataset 1. (A2) Weakly illuminated examples of dataset 1.
(A3) Overexposure-illuminated examples of dataset 1. (B1) Well-illuminated examples of dataset 2.
(B2) Weakly illuminated examples of dataset 2. (B3) Overexposure-illuminated examples of dataset 2.
(C1) Non-lychee samples of dataset 1. (C2) Non-lychee samples of dataset 2.

Specifically, 200 images (i.e., 50 images captured under well-illuminated conditions, 50 images
under weakly illuminated conditions and 100 images under overexposure-illuminated conditions)
were manually selected from dataset 1 and served as the training samples. The lychee fruits in these
images were collected as the positive training samples, and the regions containing only background
participants were cropped as the negative samples. The remaining 285 images in dataset 1 were taken
as test images, and the lychee regions (1604 lychee fruits in total) in the test images were manually
annotated and served as the ground truth, as Figure 1(A1–A3) show. All images of dataset 2 were
used as testing data, whose examples of which are shown in Figure 1(B1–B3). Figure 1(C1,C2) show
non-lychee samples of foliage, branch, sky, pathway and lawn conditions of dataset 1 and dataset 2.
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2.2. Application Hardware Architecture Design

At present, the estimation methods mainly use satellite remote sensing technology or image
information captured by unmanned ground vehicles (UGVs) [20] or unmanned aerial vehicles
(UAVs) [21], the fruit detection methods of which are inevitably adopting computer vision techniques.
This paper takes camera mounted UGVs as an example. The camera mounted UGV system consisted of
remote control, image acquisition module, lithium battery pack and industrial personal computer (IPC).
The 2.4 GHz network motion signal of the UGV was sent by a remote control to the vehicle-mounted
microcontroller STM32 to realize wheel and motor control. The UGV was equipped with an IPC
powered by lithium battery pack, connected to an image acquisition module via USB. The angle
of the camera on the module could be adjusted by the horizontal camera holder, and the acquired
images were sent to the hard disk of the IPC for storage through USB. The image was processed by
detection algorithm on the IPC, and the processed results were output to the mini-display by AV signal.
The structure diagram of the UGV system is shown in Figure 2.
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3. Lychee Fruit Detection Method

Figure 3 shows a block diagram that summarizes the key procedures of the proposed lychee
detection method, including image preprocessing, foreground segmentation, potential lychee region
extraction and status identification.

3.1. Image Preprocessing and Foreground Segmentation

Due to the randomness of the location and lighting conditions of the naturally growing lychees,
the color space of the imaging results can be distorted by changing the light angle and position.
It is was necessary to pre-process the images using an illumination compensation procedure, which
focused on adjusting the images captured under weak and overexposed illumination. The foreground
segmentation procedure was used for segmenting the foreground and the background of lychee images,
which improved the accuracy of the further processes. The image preprocessing and foreground
segmentation preliminarily extracted the regions of interest (ROIs).

3.1.1. Image Preprocessing

Since the RGB image data could be easily affected by the illumination conditions in the orchard, the
collected lychee images were prone to weak or overexposed illumination. Therefore, it was necessary
to adjust the illumination distribution of the resultant images. To avoid altering the hue and saturation
information, the input image was first converted from the RGB color space to the hue/saturation/value
(HSV) color space, and the intensity component V was selected for illumination adjustment using the
contrast limited adaptive histogram equalization (CLAHE) algorithm. There are two main parameters
involved in the CLAHE algorithm [22], the number of blocks and the contrast enhancement limit,
which are determined by trial and error method. These parameters were selected as 8 × 8 and 0.02,
respectively, in the CLAHE algorithm for apple detection in an orchard environment [23]. In this study,
in order to determine the setting of the number of blocks, different settings including 5 × 5, 8 × 8,
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10 × 10, 12 × 12 and 15 × 15 were considered; for contrast enhancement limits, 0.005, 0.01, 0.015, 0.02
and 0.025 were included. In order to obtain the optimal parameter combination, 10 lychee images
in the training dataset 1 were randomly selected, using the CLAHE algorithm under 25 groups of
different parameters (5 numbers of blocks × 5 contrast enhancement limits). After processing with the
R-B chromatic method for lychee fruit foreground segmentation, the average relative overlap rate S of
each set of parameters was calculated using following equation:

s =
area(Rh ∩Rr)

area(Rh ∪Rr)
. (1)
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Here, Rh represents the segmented region after using the CLAHE algorithm and Rr represents the
manually segmented standard region for reference. As the results show in Table 1, when the number
of blocks was 10 × 10 and the contrast enhancement limit was 0.015, the average relative overlap rate
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reached the highest value, 86%. Therefore, 10 × 10 and 0.015 were selected as the parameters to be
used for the CLAHE algorithm in this paper.

Table 1. The average relative overlap rate S of 25 sets of parameters used in contrast limited adaptive
histogram equalization (CLAHE).

The Contrast
Enhancement Limit

The Number of Blocks

5 × 5 8 × 8 10 × 10 12 × 12 15 × 15

0.005 78% 79% 80% 80% 77%
0.01 78% 81% 83% 80% 78%
0.015 79% 84% 86% 82% 80%
0.02 79% 81% 85% 82% 82%
0.025 78% 79% 82% 80% 81%

After the processing using the CLAHE algorithm, the illumination adjusted intensity component
V’ was obtained; then the three components including the H, S and V’ were used to convert back into
RGB color space. The lychee images from the test dataset were used to evaluate the performance of the
above procedure.

The image illumination compensation method for the weakly illuminated and overexposed lychees
in the images is shown in Figure 4. Figure 4A,C show images captured under weakly illuminated and
overexposure illumination conditions, respectively. Figure 4B,D correspond to Figure 4A,D respectively,
after processing with the CLAHE method. More detail is obtainable in Figure 4B than in Figure 4A
since the weak illumination is compensated by the preprocessing method. This method also adjusts the
overexposed regions, thereby providing more detailed information about the lychee fruits, as shown in
Figure 4C,D.
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Figure 4. Effect of lychee image illumination compensation. (A) Weakly illuminated lychees. (B) Weakly
illuminated lychees after illumination compensation. (C) Overexposed lychees. (D) Overexposed
lychees after illumination compensation.

3.1.2. Lychee Foreground Segmentation

Currently, lychee foreground segmentation is generally processed by the chromatic aberration
method combined with an image processing algorithm. For example, Xiong et al. separated mature
lychee from orchard background by dividing the Cr component threshold of YCbCr space [24], and
Zhuang et al. [18] realized the segmentation of yellow citrus by using the method based on R-G
chromatic mapping. However, these two methods are both not ideal for the segmentation of green
immature lychee, which occurs often in our datasets. To efficiently separate and identify lychee regions
in the image and exclude background, this study extracted information of lychee and background and
performed a statistical analysis of the RGB color space. From any horizontal scan line across lychee
fruits and background, as shown in Figure 5A, the color intensities of the pixels within the lychee fruit
regions, wherein the position pixels along the horizontal axis are between 0 and 400, were different
from those within the background regions, wherein the position pixels along the horizontal axis are
between 400 and 1000.
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Specifically, in RGB color space, the grey-level intensity of the pixels within the lychee region
in the red component R was always much higher than that in the blue component B, as shown in
Figure 5B (the pixels along the horizontal axis between 0 and 400). In contrast, the grey-level intensity
of pixels within the background region in the component R was always approximately equal to that in
the component B. Therefore, the lychee fruits could be separated from the background region using
red and blue (R-B) chromatic mapping. The segmentation result is shown in Figure 5C, which shows
that the R-B chromatic mapping is an appropriate method.
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Figure 5. RGB color component statistics of lychees, immature lychees and background. (A) Example
diagrams and sample red line. (B) The R and B component curves corresponding to the sampling red
line. (C) Results of R-B chromatic mapping with morphological algorithm.

In conclusion, the R-B chromatic subtraction method in RGB color space was adopted in this paper,
which is especially suitable for foreground segmentation of lychee images under complex orchard
environment conditions. To obtain more stable results, R-B was changed to a relative value as (R −
B)/B. Then, the Otsu image segmentation algorithm was used to extract the potential fruit regions [25].
The combination of mathematical morphology methodology including erosion, dilation and hole filling
operations were used to remove some image noise, bridge weakly connected potential fruits and fill
holes, respectively, in the resultant binary image obtained by the Otsu algorithm.

After the foreground enhancement processing, the lychee image was further processed by R-B
color component difference, in which chromatic aberration is the result that is statistically analyzed
in the color space components. The difference between the foreground and background was further
enlarged by increasing the contrast, and the Otsu algorithm was used for foreground segmentation.
Figure 6 shows the foreground segmentation results. The results show that the image basically meets
the requirement of complete foreground segmentation in the background segmentation process.
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cluster, which is labelled I2. (D) Foreground segmentation result of I2.
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3.2. Two-Step Potential Lychee Region Extraction

To increase the lychee detection accuracy, this paper analyzes the position state of each lychee
through topological analysis and determines the position state of each lychee so that the lychees in
a simple state can be easily detected. Moreover, further separation processing was performed for the
overlapping areas of complex lychee adhesion.

3.2.1. Distinguishing the ROIs between Isolated and Overlapped Lychee Fruits

The images of the lychee fruits in the orchard could be roughly divided into three statuses: single
isolated status, occluded (covered with leaves and branches) status, and overlapped status. Moreover,
the differences in lychee fruit shape, which are not perfect circles or ovals, are complicated. Therefore,
when using only the Hough circle method to transform the contour of a lychee, the obtained results
often have deviations. Based on the above discussion, this paper proposes a status determination
method for lychee positions (isolated, occluded, overlapped) based on the Hough circle and a lychee
equivalent foreground area circle to eliminate the deviations in the Hough circle judging method.
Here, the equivalent foreground area circle by definition is a circle that has the equal size of area to the
lychee foreground region, and the center of the circle is the center of gravity of the lychee foreground
area. Different from the Hough circle generation by edge information, the equivalent foreground
area circle is determined by the position and area of each separate foreground area. This equivalent
foreground area circle can accurately represent the location and total size of the potential lychee area
after segmentation. The Hough circle refers to the circle generated by Hough circle transformation
according to the boundary of the lychee fruit in the segmented foreground lychee image, which can
roughly approximate the circle shape of the boundary of the potential lychee region. By analyzing
the relationship between the Hough circle and the equivalent foreground area circle, it can quickly
and accurately locate the position and status of a lychee in an image. Therefore, this paper proposes
a lychee state judgment method based on equivalent area circles and Hough circles (ACHC), and its
operating steps are as follows:

Input: Binary images of lychee fruits foreground after segmentation If.
Step 1. Select every foreground region Cn from If one by one. (n = 1, 2, . . . , N, N is the number of

lychee regions)
Step 2. Extract the edge of Cn and operate the Hough transform.
Step 3. Calculate the circle center Ohn,i(Xn,i, Yn,i) and radius Rhn,i of each Hough circle. (i = 1, 2,

. . . , p, p represents the number of Hough circles generated in Cn)
Step 4. Generate the equivalent foreground area circles of Cn by calculating its circle center

Oan,j(Xn,j, Yn,j) and radius Ran,j. (j = 1, 2, . . . , q, q represents the number of equivalent foreground area
circles in Cn)

Here, the coordinates of the equivalent foreground area circle center Oan,j(Xn,j, Yn,j) equal the
coordinates of the center of gravity in Cn, the radius Ran,j is found using Equation (2):

Ran, j =
√

area(Cn)/π, (2)

where the operation area() is to calculate the area.
Step 5. Calculate lychee fruits status Sn of Cn using Equations (3)–(8), where Sn = 1 means single

isolated, Sn = 2 means occluded, Sn = 3 means overlapped status.
Topological diagrams of the lychee location relationships are shown in Figure 7 below, where

the grey area represents the Cn, the green circles represent the Hough circles Ohn,i of Cn and the blue
circles represent the equivalent foreground area circles Oan,j of Cn.
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Figure 7A shows that when the lychee foreground image is in a single isolated status, the position
and shape size of the Hough circle is similar to that of the equivalent foreground area circle. Assuming
that the Hough circle radius is Rhn,j, the equivalent foreground area circle radius is Ran, the number
of equivalent foreground area circles is p, and the number of Hough circles is q, then the following
expressions can be obtained:

p = 1 and q ≥ 1, (3)

max(Rhn,i) ≈ max(Ran, j) (4)

where the operation max() is to select the maximum value in an array, therefore, max(Rhn,i) and
max(Ran, j) respectively represent the maximum radius of Hough circles and equivalent foreground
area circles in the same foreground region Cn.

Figure 7B shows that when the lychee foreground image is in an occluded status, the following
expressions can be obtained: {

p > 1 and q = 1
max(Rhn,i)� max(Ran, j)

(5)∑
(π(Rhn,i)

2) < π(Ran, j)
2 (6)
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Figure 7C shows that when the lychee foreground image is in an overlapped status, the following
expressions can be obtained: {

p = 1 and q > 1
max(Rhn,i)� max(Ran, j)

(7)

π(Ran, j)
2 <
∑

(π(Rhn,i)
2) (8)

Output: Lychee fruits status Sn.

3.2.2. Individual Fruit Extraction from Overlapped Lychee Regions

Lychee fruits often grow in clusters, which leads to overlapped regions in the images. In our team’s
previous work, we used the watershed transform method and convex hull operation to solve slight
overlapping problems in the extraction of citrus fruit clusters, and this approach achieved accurate and
efficient performance. However, the segmentation procedure using watershed transform might be
affected by the changes in the noisy gradient; thus, this method might suffer from oversegmentation
and generate many small foreground regions, which would further blur the contours of the segmented
foreground objects. Unfortunately, the texture and color components on the surface of a lychee are
much more complicated than those of a citrus fruit, which causes many kinds of noise in the image.
Therefore, an extreme value segmentation method based on transverse searching in polar coordinates
is proposed (PCEVP); this method can reduce the amount of computation and overcome the problem
of noise interference in lychee fruit images. The algorithm steps run as follows:

Input: The foreground region Cn contains overlapping lychee fruits determined by ACHC (Sn = 3).
Step 1. Extract the edge E of Cn and the center of gravity A in Cn, as shown in Figure 8A.
Step 2. Take the center of gravity A as the origin of the polar coordinate system.
Step 3. Calculate the distance from the origin A to the pixel points (indexed by d) on the edge of

the domain using Equation (9) for every degree (360◦) in a counter-clockwise direction, as shown in
Figure 8B.

|AEd| =

√
(xEd − xA)

2 + (yEd − yA)
2 (9)

where the coordinates of A and Ed in the XOY coordinate system are A(xA, yA) and Ed(xEd, yEd),
respectively. Figure 9 shows an example of a geometric calculation model of two overlapping
lychee fruits.

Step 4. Calculate every maximal value point pj and minimal value point qi on the edge E (i = 1, 2,
. . . , m, m is the number of minimal value points; j = 1, 2, . . . , m, m is the number of maximal value
points).

Step 5. Separate the edge E by “qi-pj-qi+1” order, as shown in Figure 8B (“qi-pj-qi+1” represents
“local minimal value point - local maximal value point - local minimal value point” order).

Step 6. Determine circles by every set of three extreme points “qi-pj-qi+1”, as shown in Figure 8C.
A large amount of image data shows that overlapping in the lychee fruit foreground region is

a common phenomenon [26,27]. Therefore, PCEVP was used to further segment the overlapping
foreground regions. Figure 8A shows the center of gravity of the foreground region (marked by a red
asterisk) using mathematical morphology operations. Figure 8B indicates that the extreme value points
can be found by calculating a graph of the Euclidean distance of the boundary of the foreground region,
and Figure 8E shows the extreme value points in a 3D coordinate system. Figure 8D shows a graph of
the Euclidean distance and extreme value points of the boundary of the foreground region. The local
maximal and minimal value points always exist in the following order: “local minimal value point,
local maximal value point, local minimal value point”. Figure 8E shows the result of calculating all
local maximal and minimal value points on the boundary of the foreground region, and the extracted
individual foreground objects are marked with red dotted circles in Figure 8C, which are determined
circles by every set of three extreme points: “local minimal value point, local maximal value point,
local minimal value point”.
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Output: Location and size of every single lychee fruit in the foreground region Cn.
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3.3. LBP-SVM Recognition of Lychee Fruit 

Figure 8. Example of image processing using polar coordinate extreme value projection (PCEVP)
processing. (A) Determine the center of gravity of the foreground region (B) by calculating all local
maximal and minimal value points on the boundary of the foreground region. (C) Individual foreground
regions in (B) segmented using PCEVP. (D) The Euclidean distance |AEd| and extreme value points of the
foreground region boundary. (E) The Euclidean distance |AEd| in bar graph in a 3D coordinate system.
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Figure 9. Geometric calculation model of the extreme value points of the boundary of two lychees in
the foreground region.

3.3. LBP-SVM Recognition of Lychee Fruit

To improve the reliability of lychee detection results, a local binary pattern based support vector
machine (LBP-SVM) classifier was adopted for recognition after data sample training. A uniform local
binary pattern (LBP) is a parameter-less operator used to describe the local structure features of an
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image. An LBP operator is an image texture descriptor, while the surface texture of the lychee and the
texture of the background have great differences that can be recognized by the naked eye. The image
data represented by an LBP operator is of great significance to the perception and recognition of
lychees [28]. The lychee image data are represented by LBP, as shown in Figure 10.
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By defining a linear optimal hyperplane, the classification problem is transformed into an
optimization problem to determine the hyperplane; note that the HIK-based SVM is approximately
2000 times faster than the general nonlinear kernel SVM [29]. When F1 and F2 are two histogram
features of image data defined with the LBP, the HIK-based SVM function K(F1, F2) expression is
as follows:

K(F1, F2) =
n+1∑
l = 1

min[F1(l), F2(l)] (10)

Under the condition of image data acquisition in this paper, the imaging distance was 30–100 cm.
Within our 2145 lychee fruit samples, the average number of pixels in the 160 smallest samples was
861 and the average number of pixels in the 160 largest samples was 1578. Therefore, to filter out the
image artefacts with either small or large pixels while maintaining as many as possible potential fruit
regions, only the ROIs with sizes between 800 and 1700 pixels were fed into the SVM model.

4. Results and Discussion

The performance of the proposed method was evaluated using the dataset described in Section 2.
All the experiments were conducted based on MathWorks MATLAB R2018a.

4.1. Performance Evaluation under Well-Illuminated Conditions without Using LBP-SVM Classifier

To evaluate the performance of the two-step potential lychee region extraction method,
well-illuminated lychee fruit images were first selected from test datasets A1 and B1, as shown
in Figure 11. The use of the proposed two-step potential lychee region extraction method was called
Method A. When Method A was replaced with the Hough transform circle detection method [19]
in our detection framework, the above integrated procedures formed Method B. When Method A
was replaced with the watershed transform [18] in our detection framework, the above integrated
procedures formed Method C. When Method A was replaced with the sampling pixels on edge region
methods that Liu and Zhao proposed [15] to segment lychee fruits in our detection framework, the
above integrated procedures formed Method D.
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Figure 11 shows the results of lychee fruit cluster detection performance under well-illuminated
conditions without using the LBP-SVM classifier by Method A, Method B, Method C and Method D.
Figure 11A shows that lychee fruit clusters can be nicely detected (the blue circles fit more closely
around the edges of the lychee fruits) under well-illuminated conditions using Method A. In the
following figures, the blue circles represent the local result areas of the lychee fruits detected by the
above methods. The red dots on the edge of the blue circle represent the extreme points of the lychee
region determined by the PCEVP method proposed in this paper. The basic principle of the PCEVP
method is to detect the potential lychee fruit region using the above red dots based on the “local
minimum value point, local maximum value point, local minimum value point” arrangement rule and
the three-point definite circle theorem.

Figure 11B shows the results of Method B for comparison, which indicates that under the same
test picture and the same preprocessing conditions, the results of the Hough circle test may have
both missed fruits and made repetitive detections. The Hough circle transform (Method B) generally
exhibited deficiencies in the following two aspects: (1) the region of the detected Hough circle in
the image is generally smaller than the real region of a lychee; (2) two or more Hough circles are
easily generated by mistake for the same lychee. Here, the reason for the first deficiency is that in
the detection of the edge of the foreground region of lychee fruits after segmentation under various
illuminated conditions, due to the irregular shape of the foreground region of the lychee fruits, the
area detected by the Hough circle will be smaller than the real area of lychee fruits. The reason for
the second deficiency is that the data images used in this paper were taken at a distance of 30–100 cm
from the lychee fruits, which resulted in a large range of lychee fruit sizes in the test data. Therefore,
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the range setting of the Hough circle radius threshold was also large, thereby increasing the rate of
repetitive detection via Hough circle transformation.

Figure 11C shows the results using Method C for comparison, where the watershed transform
algorithm was adopted. The results show that oversegmentation occurred using watershed transform.
When conducting the watershed transform, to guarantee accurate segmentation of foreground objects,
the ideal situation is to consider the foreground regions as a topographic surface and the lowest point
of the topographic surface as the catchment basin. However, the watershed transfer might be sensitive
to some disturbances that affect the characteristic of topographic surface of lychee fruits, such as
significant texture appearance of lychee fruits, environment illumination, camera angle and camera
noise, resulting in oversegmentation of lychee fruit regions.

Figure 11D shows the results using Method D for comparison, where the sampling pixels on edge
region method [15] was adopted. The results show that Method D is more suitable for the identification
of lychees in single isolated status with a faster recognition speed, but its segmentation accuracy of
overlapping lychee fruits is not high. Through the analysis of the operation process of Method D, it is
found that Method D can only identify one lychee fruit for each independent lychee fruit foreground
region, which leads to its low accuracy in identifying overlapping lychee fruits. In order to improve the
accuracy of overlapping lychee fruits of Method D, we conducted an additional corrosion morphology
operation on the foreground area of overlapping lychee fruits detected before its operation, which
improved the accuracy of overlapping lychee fruits of Method D to a certain extent.

Here, TP (true positive) is the number of correctly detected lychee fruits, FN (false negative)
is the number of lychee fruits missed in detection, FP (false positive) is the number of background
participants that were misclassified as lychee fruits, Precision is the proportion of TP to all positive
examples (TP + FP), where P = TP/(TP + FP), Recall (recall rate) refers to the proportion of the number
of true detections to the total number of lychee fruits, where Rc = TP/(TP + FN). To further evaluate
the performance of the methods, the F1-score is used to combine the metrics, including the number of
TPs, the number of FPs and the number of FNs. The F1-score is adopted and defined as follows:

F1 − score = 2
P ·Rc

P + Rc
. (11)

The values of the F1-score for the different methods are also shown in Table 2. The results also
demonstrate that the proposed Method A is more appropriate. Table 2 shows that: (1) The proposed
method achieved acceptable detection results in both test datasets, where the detection performance is
similar. Among them, their recall rate is around 89%, accuracy rate is around 80% and F1-score is close
to 84%, indicating that proposed Method A is not sensitive to different settings of image acquisition
procedure and has a certain generalization ability. (2) The detection speed is the average detection time
(seconds per frame) for the test dataset. The time consumption of Method A in detecting images with
lychee fruits is around 1 s, which is a little higher than the average time consumption of the other three
methods (Method B is 0.745 s, Method C is 0.821 s, Method D is 0.654 s). (3) The test results of Method
C indicate that it had the highest in recall rate, 93.02%, in three methods, which is about 4%–5% higher
than the other two methods, but the testing precision rate of Method C is only 68.38%, which is caused
by the oversegmentation phenomenon of watershed transform algorithm, and thus produces far more
numbers of FP results than the other two methods. (4) The test results of Method D indicate that it had
the fastest average detection time. The amount of FP (false positive) results is similar to Method A and
Method B in dataset A1. The recall rate of Method D is 80.34%.

This result indicates that the method proposed in this paper can be used to detect clusters of
lychee fruits and individually extract each fruit. The results also show that the proposed Method A
can avoid misjudging a single lychee under occluded conditions by using ACHC processing, which
can divide the potential foreground region of lychee fruits into three cases—isolated, occluded and
overlapped—without any omission.
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Table 2. Detection results of overlapped lychees under well-illuminated conditions without using the
LBP-SVM classifier.

Method Test
Dataset

Average
Detection
Time (s)

Total
Lychee
Fruits

TP FN FP Precision
(%)

Recall
(%)

F1-Score
(%)

A A1 1.081 702 623 79 151 80.49 88.75 84.42
A B1 0.994 213 190 23 50 79.17 89.20 83.89
B A1 0.745 702 611 91 177 77.54 87.04 82.01
C A1 0.821 702 653 49 302 68.38 93.02 78.82
D A1 0.654 702 564 138 162 77.69 80.34 78.99

4.2. Performance Evaluation under Overexposure and Weakly Illuminated Conditions without Using the
LBP-SVM Classifier

Due to the variable lighting conditions in the orchard environment, the collected images will
be overexposed and weakly illuminated. In view of the above situation, the image preprocessing
step described in Section 3.1.1 is added to the method. The purpose of this test is to evaluate the
influence of the preprocessing method on the precision and recall rate of the proposed detection
method. Performance evaluation under overexposure and weakly illuminated conditions without
using the LBP-SVM classifier is shown in Figure 12.

Figure 12A,B represent the foreground segmentation and the final lychee extraction results,
respectively, of the proposed Method A without image preprocessing in two different images of
clustered lychee fruits from test datasets A2, A3, B2 and B3. Figure 12A,B, which do not use image
preprocessing, contain many more white holes in the foreground than Figure 12C, which uses image
preprocessing; this finding indicates that the foreground of two weakly illuminated lychee fruits is not
successfully segmented in Figure 12A. Similarly, comparing Figure 12B,D shows that the foreground of
two overexposed lychee fruits is not successfully segmented in Figure 12B. Figure 12C,D show that
after using the image preprocessing method, the segmented lychee fruit foreground areas under either
weakly illuminated or overexposed conditions are enhanced, which enables the successful detection
of lychee fruits in weakly illuminated conditions, as shown by the yellow circles in Figure 12E,F.
Figure 12 shows that image preprocessing based on the CLAHE algorithm improves the illuminated
conditions by transforming each pixel with a transformation function derived from a neighborhood
region, and uses the contrast enhancement limit to remove the effect of noise. Thus, the performance
of the proposed method was improved by such preprocessing procedure.

Table 3 shows that the time consumption of the proposed Method A in detecting overlapped
lychee fruits under overexposed and weakly illuminated conditions is 1.242 s, which is nearly 0.2 s
longer than the time consumption of the proposed Method A in well-illuminated conditions. When
detecting lychee fruits under overexposed conditions using test data containing 634 lychee fruits
in 214 pictures, among which the number of correct detections (TP) is 540, the number of missed
detections (FN) is 94, the number of incorrect detections (FP) from background interference is 126,
the precision rate reaches 81.08% and the recall rate is 85.17%. When detecting lychee fruits under
weakly illuminated conditions, the test data included 268 lychee fruits in 94 images, the number of
TPs is 227, the number of FNs is 41, the number of FPs is 67, the precision rate reaches 77.21% and the
recall rate is 84.07%. In the end, the comprehensive precision of this method without the SVM classifier
under overexposure and weakly illuminated conditions is 79.90%, the recall rate is 85.03% and the
F1-score 82.38%. In contrast, as the sample shows in Figure 12E,F, the recall rate of Method B is 82.48%
with a precision rate of 76.23%.

The results show that the method proposed in this paper can detect isolated, occluded and
overlapped lychee fruits growing in various orchard environments, such as cloudy, sunny days,
overexposed or uneven brightness conditions. However, there are always different interferences in an
orchard environment, which can increase the probability of system misjudgment and will reduce the
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robustness of the whole detection system. Therefore, the detection results using the LBP-SVM classifier
are tested and discussed below.
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(E,F) Results of lychee fruit detection using Method A.

Table 3. Detection results of overlapped lychees under weak or overexposure illumination without
using the LBP-SVM classifier.

Method Illumination State
Average

Detection
Time (s)

Total
Lychee
Fruits

TP FN FP Precision
(%)

Recall
(%)

F1-Score
(%)

A Weak 1.226 634 540 94 126 81.08 85.17 83.08
A Overexposure 1.261 268 227 41 67 77.21 84.70 80.78

A Weak and
overexposure 1.242 902 767 135 193 79.90 85.03 82.38
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4.3. Performance Evaluation in an Orchard Environment Using the LBP-SVM Classifier

The purpose of this test is to evaluate the performance of the LBP-SVM classifier in filtering out
the FP detections generated by the background chaff interferences and calculate the improvement in
the detection precision rate provided by the LBP-SVM classifier for the detection method proposed in
this paper. The test results are shown in Figure 13.
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To evaluate the performance of the LBP-SVM module, 568 lychee fruit and 277 background target
samples were extracted from the training images to train the SVM classifiers using HIK, linear and
nonlinear kernel functions. The remaining samples served as the test samples. Figure 13 shows that
isolated and overlapped lychee fruits could be detected under variable illumination conditions using
the LBP-SVM classifier, thereby reducing the FN rate. Figure 13A,C indicate that the lychee fruit
cluster can be detected, and the red arrows indicate seven FP detection errors, wherein the leaves—as
background interference—are mistakenly detected as immature lychees. Figure 13B,D show that four
FP errors are removed by the LBP-SVM classifier. Herein, there are three FP errors still in Figure 13B,D,
which are indicated by three red arrows, in which two are caused by misjudging the leaves and the
other is caused by misjudging a person wearing a green jacket. Figure 13 indicates that the misjudgment
caused by leaves was eliminated by the SVM classifier. However, the misjudgment caused by the
person wearing a green jacket has not been eliminated because this occasional background interference
was not added to the training data set of the SVM classifier.

According to the detection results shown in Table 4, the TP rate was 86.69%. The FP rate was
13.34%. The FN rate was 12.40%. The precision, recall and F1-score were 87.48%, 86.66% and 87.07%,
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respectively. The highest TP rate was 88.75%, which was achieved under well-illuminated conditions.
The lowest TP rate was 84.70%, which was under weakly illuminated conditions. The time consumed
by the proposed Method A mainly occurred during clustered lychee extraction and clustered lychee
matching. The time consumed by the isolated lychee detection mainly occurred in the searching of
the fruit regions using the LBP-SVM classifiers, and the total average processing time was nearly
0.2 s longer than that without using the LBP-SVM classifier. The average time consumed from the
extraction of clustered overlapped lychee fruits to fruit localization was 1.412 s. However, adopting the
LBP-SVM classifier greatly reduced the number of FPs—from 126 down to 80—under overexposure
illumination, which increased the precision rate from 81.08% to 87.10%. Similarly, the LBP-SVM
classifier reduced the number of FPs from 67 down to 38 under weakly illuminated conditions, and the
precision rate correspondingly increased from 77.21% to 85.66%. Moreover, the LBP-SVM classifier
reduced the number of FPs from 151 down to 81 under well-illuminated conditions, and the precision
rate subsequently increased from 80.49% to 88.49%. The LBP-SVM classifier improved the recall rate of
detection by approximately 7%.

Table 4. Lychee fruit detection results in an orchard environment using the LBP-SVM classifier.

Illumination
Conditions

Average
Detection
Time (s)

Lychee
Fruits TP FN FP Precision

(%)
Recall

(%)
F1-Score

(%)

Weak 1.42 634 540 94 80 87.10 85.17 86.12
Overexposure 1.42 268 227 41 38 85.66 84.70 85.18

Well 1.38 702 623 79 81 88.49 88.75 88.62
Comprehensive 1.41 1604 1390 214 199 87.48 86.66 87.07

To detect and match lychee fruits and clusters under natural orchard environments, the key
detection method proposed in this paper uses ACHC processing to identify and locate the isolated
lychee fruits. This processing approach can avoid the disadvantages of mistaken matches in single
lychees under occluded conditions and simultaneously distinguish the lychee cluster for further
detection. After ACHC processing, a clustered lychee fruit matching method based on a three-point
definite circle theorem was proposed, which was referred to as PCEVP processing. Specifically, PCEVP
processing is designed for identifying and locating adhesion and overlapping of lychee fruits. Finally,
to reduce the probability of an FN of lychee fruits, the LBP + SVM classification method was applied.
The lychee fruits in the orchard environment with changing illumination conditions were further
tested by incorporating the recognition results of the LBP + SVM classifiers. The results illustrate
that the method could accurately identify the clustered lychee fruits from complicated backgrounds.
The performance of the procedure by incorporating fruit recognition indicates that the proposed
Method A could account for the robustness against the influence of occlusion and variable illumination
to some extent. The above results indicate that the proposed detection method could more accurately
detect single lychee fruits than overlapped lychee clusters. From the interactive performance of the
proposed Method A using the test dataset, the average processing time from the extraction of clustered
lychees was 1.412 s, which could meet the requirements of automatic yield estimation.

The demonstrated performance shows that the proposed Method A could detect lychee fruits
and clusters successfully and robustly in an orchard. However, there are still some shortcomings
of the proposed method A. Firstly, the color and texture information of the acquired lychee color
images will inevitably change when the illumination intensity in the orchard changes dramatically.
Although the training samples used to train the LBP-SVM classifiers contained the information of three
different kinds of illumination and textures, the resultant classifier could still not cover all the possible
illumination conditions; therefore, some parts of the pixels may also be incorrectly classified. Secondly,
when most of the clustered lychee fruits were occluded, some seriously overlapped clustered lychee
fruits may be incorrectly matched; hence, further research is needed to improve the matching accuracy
of seriously overlapped clustered lychee fruits in orchard environments.
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5. Conclusions

This study proposed a two-step detection method for lychee clusters using monocular machine
vision technology for yield estimation in orchard environments. An effective algorithm was initially
given to solve complicated overlapped and occluded conditions of lychee fruits. The main conclusions
are as follows:

(1) The proposed two-step lychee fruits detection method can detect clusters of lychee fruits under
well-illuminated conditions using different image acquisition equipment. This method can avoid
misjudgments in detecting single lychees under occluded conditions when using ACHC processing.
Overlapped lychee fruits can be further separated using PCEVP processing, which is helpful to avoid
missed detections. The results show that the comprehensive precision of this method without SVM
classifier in well-illuminated conditions is 80.49%, the recall rate is 88.75% and the F1-score is 84.42%.

(2) The two-step method can also be adopted to detect lychee fruits under overexposed and weakly
illuminated conditions with a recall rate of 85.03% and an F1-score of 82.38%. However, without using
the LBP-SVM classifier, the precision rate is only 79.9% as a result of misjudging background chaff

interferences. Furthermore, the results demonstrated that the proposed method can be used for fruits
in different levels of maturity, including lychee fruits.

(3) The misjudged detection results can be filtered out by the LBP-SVM classifier, which helps
reduce the FN rate and provides a precision rate of 87.48% and a recall rate of 86.66%, which is nearly
8% higher than that without the use of the LBP-SVM classifier. An average running time of 1.412 s
using the test lychee images was recorded in the experiments, indicating that the proposed method has
obtained real-time performance for lychee detection in natural environment.

Further improvements will be considered by incorporating more effective descriptors for lychee
detection with higher precision rates and exploring an improved PCEVP method for lychee fruits
growing in heavy and dense clusters.
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Abbreviations

ACHC Equivalent foreground area circles and Hough circles
CLAHE Contrast limited adaptive histogram equalization
HIK-SVM Histogram intersection kernel based support vector machine
HSI Hue/saturation/intensity color space
HSV Hue/saturation/value color space
IPC Industrial personal computer
LBP Local binary pattern
LDA Linear discriminant analysis
PCEVP Polar coordinate extreme value projection
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RGB Red/green/blue color space
ROI Region of interest
UAV Unmanned aerial vehicle
UGV Unmanned ground vehicle
YIQ YIQ color space, where Y is Luminance, I is in-phase, and Q is quadrature
YCbCr Luma/Blue chromaticity component/Red chromaticity component
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