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Abstract: Wearable sensors are de facto revolutionizing the assessment of standing balance. The aim
of this work is to review the state-of-the-art literature that adopts this new posturographic paradigm,
i.e., to analyse human postural sway through inertial sensors directly worn on the subject body. After
a systematic search on PubMed and Scopus databases, two raters evaluated the quality of 73 full-text
articles, selecting 47 high-quality contributions. A good inter-rater reliability was obtained (Cohen’s
kappa = 0.79). This selection of papers was used to summarize the available knowledge on the types
of sensors used and their positioning, the data acquisition protocols and the main applications in this
field (e.g., “active aging”, biofeedback-based rehabilitation for fall prevention, and the management
of Parkinson’s disease and other balance-related pathologies), as well as the most adopted outcome
measures. A critical discussion on the validation of wearable systems against gold standards is
also presented.

Keywords: postural sway; postural balance; posturography; IMU; inertial sensors; wearable;
accelerometers; validation; Parkinson’s disease; fall risk

1. Introduction

Human balance in the upright stance can be quantitatively evaluated by means of a posturographic
examination. Posturography is the systematic measurement and interpretation of quantities that
characterize postural sway in upright stance. In the clinical field, posturography is used to estimate fall
risk in geriatric subjects [1] and to objectively evaluate balance-related disabilities (such as Parkinson’s
disease, concussion, and stroke) and rehabilitation protocols [2–5], while in sport science, posturography
is used to appraise subtle differences in the balance performances of athletes [6]. The increasing interest
towards the study of balance has led to a continuous evolution of the methods used to carry out
this examination. Traditionally, posturography exploits a force plate to evaluate the body’s postural
sway by recording the trajectory of the Center of Pressure (COP), which is the point of application of
the resultant ground reaction force [7]. Although the force plate is considered the gold standard to
obtain reliable balance measurements, it is expensive and heavy to transport, making it impractical in
clinical settings and sport centers. In recent years, wearable sensors based on miniaturized Inertial
Measurement Units (IMUs) or Magneto Inertial Measurement Units (MIMUs) are increasingly being
used in posturography, as demonstrated by the high number of papers focusing on this topic [8–14].
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Subjects can easily wear these sensors on various body segments, through elastic belts or Velcro®

bands. The number of sensors and their positioning generally depend on the application considered.
A wearable inertial sensing unit typically includes accelerometers, gyroscopes, and magnetometers.

A triaxial accelerometer measures the proper linear acceleration of movements in a sensor-fixed
three-dimensional (3D) frame; measured data include both motion and gravity components. A triaxial
gyroscope measures its proper angular velocity in a 3D space, and the components of the rate of
turn are assessed in a sensor-fixed three-dimensional frame; rotations around three orthogonal axes
are commonly defined as Euler angles, e.g., “roll”, “pitch”, and “yaw”. A magnetometer measures
both amplitude and direction of the local magnetic field in a 3D space; magnetic field components
are stated in a sensor-fixed three-axes frame. Usually, accelerometer, gyroscope, and magnetometer
measurements refer to a common three-axes frame fixed to the sensing IMU.

However, wearable sensors have not yet become a standard in posturography due to the unknown
accuracy of IMU-based evaluations for balance assessment with respect to the gold standard force
platform. If proven accurate, the use of wearable sensors for balance measurements would be ideal,
since they are low cost and easily portable in different environments.

In the literature on balance control, fall risk assessment through wearable sensors is a debated
topic [15–23]. Three systematic reviews specifically focused on the objective estimation of fall risk
in geriatric populations: the first one, dating back to 2013, addressed the use of inertial sensors for
fall risk assessment [19]; the second one, in 2017, addressed balance and fall risk assessments with
mobile phone technology [20]; while the third one, in 2018, considered novel sensing technologies
in fall risk assessment in older adults [21]. Another review provided insight into the detection of
“near falls” (slips, trips, stumbles, and temporary loss of balance) using wearable devices [22]. An
additional review targeted activity trackers for senior citizens [23] for monitoring various physical
activity indicators and analyzed fall detection and prediction.

Among the various pathologies affecting balance performance, it is widely recognized that
Parkinson’s Disease (PD) is a condition that may greatly benefit from an innovative clinical management
of patients based on wearable monitoring technologies. A systematic review, published in 2013,
discussed wearable technology and the principal postural parameters that should be analyzed for
assessing PD [24]. Another systematic review, published in 2015, analyzed wearable sensor use for
assessing both standing balance and walking stability in people with PD [25]. Finally, a systematic
review, published in 2016, highlighted the characteristics and validity of monitoring technologies
to assess PD [26]. Another commonly reported balance disorder that may strongly benefit from the
use of wearable sensing technology is Multiple Sclerosis (MS). A recent systematic review, published
in 2018, analyzed the validity of wearable sensor use for mobility and balance tracking in patients
affected by MS [27]. Besides the constant need for rehabilitation professionals to have reliable balance
outcome measures, there is a growing interest in the development of wearable systems specifically
designed for the market of “active aging”. These systems may address both healthy and pathological
populations. In this context, balance training based on wearable sensors and biofeedback constitutes a
promising field of investigation. In 2016, a systematic review focused on balance improvement effects
of biofeedback systems with wearable sensors [28]. In 2018, a systematic review and meta-analysis
of randomized controlled trials analyzing both healthy and patient populations provided valuable
knowledge on the effects of wearable sensor-based balance and gait training on balance, gait, and
functional performance [29]. In addition, a review specifically analyzed smartphone applications to
perform body balance assessments [30].

Despite the expanding body of evidence supporting the use of wearable sensors to assess postural
balance, it is important to recognize that this area of research is still developing. As described before,
several other systematic reviews have been published in the last years, focusing on postural balance
assessment of sample populations affected by different balance-related pathologies. This study extends
previous efforts by reviewing a large number of papers that use wearable sensors to assess postural
balance and by providing a detailed overview of the most commonly reported applications that involve
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the use of wearable sensors to assess postural balance. The objectives of this work are (1) to select
high-quality papers that adopt wearable inertial sensors for quantitatively evaluating standing balance;
(2) to highlight the most important clinical applications in the framework of the fast-growing consumer
market of IMUs, including rehabilitation and biofeedback; (3) to investigate the most common sensor
placement and test protocols; (4) to describe the main parameters and outcome measures adopted;
(5) to indicate which works perform a validation against a gold standard or a clinical score; and (6) to
suggest future design directions of IMU-based wearable systems.

2. Methods

This review was performed according to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement [31].

2.1. Search Strategy

PubMed and Scopus electronic databases have been interrogated in February 2019 to identify
articles measuring postural balance through IMU wearable sensors. The following keywords were
used for the electronic database search within the title and/or the abstract: “posturography”, “postural
sway”, “postural control”, “balance”, “IMU”, “MIMU”, “inertial sensor”, “accelerometer”, “sensor”,
“wearable”, “smartphone”, and “activity tracker”. Specifically, the query that was used to search
the articles in the databases was (“posturography” OR “postural sway” OR “postural control”
OR “Balance”) AND (“IMU” OR “inertial measurement unit” OR “MIMU” OR “magneto inertial
measurement unit” OR “inertial sensor” OR “accelerometer” OR “wearable sensor” OR “smartphone”
OR “activity tracker”). In addition to the electronic database search, the reference lists of all the
identified articles were searched by hand in order to identify additional relevant studies. The literature
search was conducted by M.G.

2.2. Study Selection and Quality Assessment

After the initial electronic database search was completed, one rater (M.G.) screened the titles
and the abstracts of each included article and decided on the suitability of the study for inclusion in
this review. Articles were excluded if they (i) were not written in English, (ii) were an abstract and/or
included in the proceedings of a conference, (iii) were a review article or a case study, (iv) were similar
to other studies, (v) were published before January 2010, (vi) were not available in full text, (vii) did not
enrol a sufficient number of subjects (<10 subjects), (viii) were not ranked on Thomson Reuters, and
(ix) did not use any form of wearable sensor to measure variables associated with standing balance.
Furthermore, articles were excluded if they were out-of-topic with respect to the aims of the present
review, i.e., the study of standing balance using wearable sensors. Hence, we excluded studies focused
on gait analysis, walking balance, fall detection, anticipatory postural adjustments, and other dynamic
tasks such as sit-to-stand and Time-Up-and-Go (TUG) tests. If a study included both gait and balance
analysis, we considered only the balance part of the study.

The full text of the articles that met the initial inclusion criteria were retrieved and downloaded
into Mendeley Desktop 1.19.4 for further screening. To make a further selection of the large number
of studies that were available for the present review, a quality assessment was performed for each
included article. Full-text articles were independently assessed for suitability by two raters in terms
of internal, statistical, and external validity [32] (V.A. and L.G. for papers with clinical applications
and S.P. and L.G. for the remaining papers). In particular, internal validity concerns the assessment
of possible biases in the research design and methods, statistical validity allows for quantifying the
statistical significance of the results, and external validity is useful for assessing the generalization of
the study [33]. Each rater was asked to answer a 15-item checklist similar to those commonly used in
the literature for systematic and/or meta-analysis reviews [34–38] and modified based on the specific
review topic. In particular, the proposed checklist (Table 1) provided information on (i) internal validity
(question numbers 1, 3–6, and 9–11); (ii) statistical validity (question numbers 12–15); and (iii) external
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validity (question numbers 2–4 and 6–8). Each item of the checklist had to be answered with “Y”, “N”,
or “Maybe” corresponding to scores of 1, 0, and 0.5, respectively. For each article, the total score was
computed as the sum of scores of all the items in the checklist.

Table 1. Proposed checklist for the quality assessment of internal validity, statistical validity, and
external validity: Reproduced and modified with permission from J. Taborri et al., Feasibility of Muscle
Synergy Outcomes in Clinics, Robotics, and Sports: A Systematic Review; published by Hindawi, 2018.

Item Index Score

Aim of the work

1 Description of a specific, clearly stated purpose (IV) Y N Maybe
2 The research question is scientifically relevant (EV) Y N Maybe

Inclusion criteria (selection bias)

3 Description of inclusion and/or exclusion criteria (IV-EV) Y N Maybe

Data collection & processing (performance bias)

4 Data collection is clearly described and reliable (IV-EV) Y N Maybe
5 Same data collection method used for all subjects (IV) Y N Maybe
6 Data processing is clearly described and reliable (IV-EV) Y N Maybe

Data loss (attrition bias)

7 Data loss <20% (EV) Y N Maybe

Outcomes (detection bias)

8 Outcomes are topic relevant (EV) Y N Maybe
9 Outcomes are the same for all the subjects (IV) Y N Maybe

10 The work answers the scientific question stated in the aim (IV) Y N Maybe

Presentation of the results

11 Presentation of the results is sufficient to assess the adequacy
of the analysis (IV) Y N Maybe

Statistical approach

12 Appropriate statistical analysis techniques (SV) Y N Maybe
13 Clearly states the statistical test used (SV) Y N Maybe
14 States and references the analytical software used (SV) Y N Maybe
15 Sufficient number of subjects (SV) Y N Maybe

EV: External Validity; IV: Internal Validity; SV: Statistical Validity.

Once each rater had completed the quality assessment, Cohen’s kappa statistics [39] was used to
compute the degree of agreement between raters.

For each article, the final quality-assessment score was computed as the average of the scores
assigned by each reviewer. The analysed articles were then divided into three different classes based on
the final quality-assessment score: (i) “high quality” (final score >10), (ii) “medium quality” (final score
between 5 and 10), and (iii) “low quality” (final score <5). Only articles classified as “high quality”
were included in the present review.

3. Results

3.1. Searching Results and Study Selection

A detailed flow diagram illustrating the searching results and the screening strategy is provided in
Figure 1. A total of 696 articles was identified as eligible for inclusion in the present review. The initial
screening of titles and abstracts removed 204 studies due to the previously stated exclusion criteria,
which involved(ii) abstract or conference proceedings (46 articles), (iii) systematic reviews or case
studies (34 articles), (iv) duplicated studies (26 articles), (v) studies published before January 2010 (25
articles), (vi) unavailable full text (7 articles), (vii) studies that enrolled less than 10 subjects (30 articles),
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(viii) studies not ranked on Thomson Reuters (32 articles), and (ix) studies that did not used any form
of wearable sensor to measure variables related to standing balance (4 articles). A further 419 articles
were removed since they were out-of-topic. The remaining 73 articles were reviewed in their full-text
versions to assess their inclusion in the review after the quality check (details are in the next section).
Finally, 47 high-quality articles were included in this systematic review.

Figure 1. Flow diagram of the systematic search strategy and the review process.

3.2. Quality Assessment Results

Internal, statistical, and external validity were evaluated by the two raters for each of the 73 full-text
papers analysed. The summary of the quality assessment is reported in Table 2. Considering the final
quality-assessment score, each article was classified as low, medium, or high quality. Forty-seven
articles (64.4%) were classified as high-quality contributions, 24 articles (32.9%) were classified as
medium quality contributions, and 2 articles (2.7%) were classified as low-quality contributions.

Table 2. Summary of the quality assessment conducted by raters on the articles included in the review.

Quality N % of articles

High (score >10) 47 64.4%

Medium (score between 5 and 10) 24 32.9%

Low (score <5) 2 2.7%

Total 73

N: Number of articles.

The detailed results of the quality assessment performed by the raters on the 73 full-text articles
are summarized in Table S1 (articles included in the systematic review) and in Table S2 (articles not
included in the systematic review). The inter-rater agreement, computed by means of the Cohen’s
kappa, was equal to 0.79, suggesting a good agreement between raters. After the quality assessment, 47
articles were included in this review (only those classified as “high quality”), with an average quality
score of 13 ± 1 (the maximum score was 15).

A summary of the main characteristics of the articles included is reported in Table 3.
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Table 3. Summary of the main characteristics of the articles included in the review.

First Author
(Reference)

Population
(Mean Age in Years ± SD) Sensors Sensor Placement Test Condition(s) Test Duration

(in Each Condition)
Feet Position (Angle
and Heel Distance)

Abe et al. [40]
• 20 persons with ankle sprain (22.7

± 3.4)
• 23 controls (23.4 ± 3.5)

2 3D-accelerometers
Freq: 100 Hz
ACC range: ± 2 g

• Lower limb (malleolus)
• Forehead

• Single leg stance (EO),
dominant side

20 s N/A

Adamovà et al. [41]
• 10 degenerative cerebellar ataxia

(52.2 ± 11.7)
• 11 controls (26.0 ± 6.4)

1 3D-inertial sensor (ACC and
GYR)
Freq: N/A

• Lower back (L2–L3)

• Double leg stance
(EO/EC)

Surface: firm and foam

60 s 30◦, 0 cm

Alkathiry et al. [42]
• 56 adolescents with sport-related

concussion (15 ± 1.4)
1 3D-accelerometer
Freq: 50 Hz

• Lower back

• Double leg stance
(EO/EC)

• Tandem (EO/EC)

Surface: firm and foam

30 s 0◦, 0 cm

Baracks et al. [43]

• 48 persons with sport-related
concussion (20.6 ± 1.5)

• 45 controls (20.8 ± 1.4)

1 3D-inertial sensor (ACC, GYR,
and MAG)
Freq: N/A

• Lower back (L4–L5)

• Double leg stance (EC)
• Single leg stance (EC),

nondominant side
• Tandem (EC)

30 s 17◦, 3.8 cm

Baston et al. [44]
• 70 iPD (67 ± 7)
• 21 controls (67 ± 6)

2 3D-inertial sensors (ACC and
GYR)
Freq: 50 Hz

• Lower back (L5)
• Lower limb (shank)

• Double leg stance (EO) 30 s Footprint template

Bonora et al. [45]

• 33 iPD-noFOG (67.5 ± 7.7)
• 25 iPD-FOG (67.0 ± 6.5)
• 13 FGD (73.3 ± 6.5)
• 32 controls (69.4 ± 7.1)

3 3D-inertial sensors (ACC, GYR,
and MAG)
Freq: 128 Hz

• Lower back (L4–L5)
• Lower limb (shank)

• Single leg stance
(mini-BESS) 30 s N/A, Shoulders
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Table 3. Cont.

First Author
(Reference)

Population
(Mean Age in Years ± SD) Sensors Sensor Placement Test Condition(s) Test Duration

(in Each Condition)
Feet Position (Angle
and Heel Distance)

Brown et al. [46] • 30 healthy (25.4 ± 4.2)
7 3D-inertial sensors (ACC and
GYR)
Freq: 102.4 Hz

• Lower back (pelvis)
• Sternum
• Upper limb (wrist)
• Lower limb (shank)

• BESS test

Surface: firm and foam
20 s N/A

Bzduskova et al. [47]

• 13 iPD (63.7 ± 5.7)
• 13 young controls (25.0 ± 2.3)
• 13 elderly controls (70.1 ± 4.5)

2 2D-accelerometers
Freq: 100 Hz

• Lower back (L5)
• Upper back (Th4)

• Double leg stance
(EO/EC) 20 s Self-selected, 15 cm

Chen et al. [48]
• 23 iPD (66.2 ± 7.6)
• 23 controls (64.2 ± 7.3)

1 3D-inertial sensor (ACC, GYR,
and MAG)
Freq: N/A
ACC range: ± 6 g

• Lower back (L4–L5)

• Double leg stance
(EO/EC)

• Dual task (counting down
by 3 from 1000)

30 s Footprint template

Chiu et al. [49] • 15 healthy (23.4 ± 5.3) 1 3D-accelerometer
Freq: 10 Hz

• Lower limb (shank)
• Single leg stance (EO/EC),

dominant and
nondominant side

20 s N/A

Craig et al. [50]
• 15 MS (48.2 ± 8.7)
• 15 controls (47.8 ± 9.5)

6 3D-inertial sensors (ACC, GYR,
and MAG)
Freq: 128 Hz

• Lower back (L5)
• Sternum
• Lower limb (shank)

• Double leg stance (EO) 30 s Self-selected, 10 cm

Cruz-Montecinos et al. [51]

• 15 patients with haemophilia (21.8
± 3.9)

• 15 controls (21.9 ± 1.4)

1 3D-accelerometer
Freq: 250 Hz
ACC range: ± 3 g

• Lower back (L2–L3) • Double leg stance
(EO/EC) 30 s N/A

Curtze et al. [52] • 104 iPD (66.5 ± 6.1)
1 3D-inertial sensors (ACC and
GYR)
Freq: N/A

• Lower back (L5)
• ·

• SAW test 30 s 30◦, 10 cm

De Souza Fortaleza et al. [53]
• 26 iPD-FOG (69.2 ± 7.9)
• 30 iPD-noFOG (68.6 ± 8.4)

8 3D-inertial sensors (ACC, GYR,
and MAG)
Freq: N/A

• Lower back (L5)
• SAW test
• Dual task (counting down

by 3)
30 s N/A

Doherty et al. [54]

• 15 persons with concussion (21.8 ±
3.5)

• 15 controls (22.5 ± 3.7)

1 3D-inertial sensor (ACC and
GYR)
Freq: 102.4 Hz
ACC range: ± 8 g

• Lower back (L3–L5) • BESS test 20 s N/A
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Table 3. Cont.

First Author
(Reference)

Population
(Mean Age in Years ± SD) Sensors Sensor Placement Test Condition(s) Test Duration

(in Each Condition)
Feet Position (Angle
and Heel Distance)

Ehsani et al. [55]

• 10 high fall risk persons (83.6 ± 9.5)
• 10 healthy young (23.3 ± 2.3)
• 10 healthy elderly (72.9 ± 2.8)

2 3D-inertial sensors (ACC and
GYR)
Freq: N/A

• Lower limb (thigh
and shank)

• Double leg stance
(EO/EC) 30 s 0◦, 0 cm

Gago et al. [56]
• 10 iPD (73.0 ± N/A)
• 5 vPD (77 ± N/A)

1 3D-inertial sensor (ACC and
GYR)
Freq: 113 Hz

• Lower back
• Lower limb (thigh

and shank)

• Double leg stance
(EO/EC) 30 s 0◦, 0 cm

Gera et al. [57]
• 38 mTBI (20.6 ± 1.3)
• 81 controls (21.0 ± 1.4)

1 3D-inertial sensor (ACC, GYR,
and MAG)
Freq: N/A

• Lower back (L5)
• Double leg stance

(EO/EC)

Surface: firm and foam

30 s 0◦, 0 cm

Greene et al. [58] • 120 healthy (73.7 ± 5.8)
1 3D-inertial sensor (ACC and
GYR)
Freq: 102.4 Hz

• Lower back (L3)
• Double leg stance (EC)
• Semi-tandem (EO) 40 s and 30 s 0◦, 0 cm

Grewal et al. [59]
• 29 persons with diabetic peripheral

neuropathy (57 ± 10)

2 3D-inertial sensors (ACC, GYR,
and MAG)
Freq: N/A

• Lower back
• Lower limb (shank)

• Double leg stance
(EO/EC) 30 s N/A, shoulders

Grewal et al. [60]

• Diabetic peripheral neuropathy:

- 16 in intervention group
(64.9 ± 8.5)

- 19 in control group (62.6 ±
7.9)

5 3D-inertial sensors (ACC, GYR,
and MAG)
Freq: 100 Hz

• Lower back
• Lower limb (thigh

and shank)

• Double leg stance (EO)
• Dual task 30 s Self-selected,

self-selected

Guo et al. [61] • 11 healthy (26.1 ± 4.2)
1 3D-inertial sensor (ACC and
GYR)
Freq: 240 Hz

• Lower back (pelvis)
• Upper back
• Upper and lower limbs

• Double leg stance (EO) 20 s 10◦, self-selected

Halickà et al. [62] • 20 healthy (22.6 ± N/A)
2 2D-accelerometers
Freq: 100 Hz
ACC range: ± 1.7 g

• Lower back (L5)
• Upper back (Th4)

• Double leg stance (EO)

Surface: firm and foam
50 s 30◦, 0 cm
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Table 3. Cont.

First Author
(Reference)

Population
(Mean Age in Years ± SD) Sensors Sensor Placement Test Condition(s) Test Duration

(in Each Condition)
Feet Position (Angle
and Heel Distance)

Heebner et al. [63]

• Healthy:

- 10 in reliability group (24.3
± 4.2)

- 13 in validity group (24.1 ±
3.1)

1 3D-accelerometers
Freq: 1000 Hz
ACC range: ± 1.6 g

• Lower back (L5)

• Double leg stance
(EO/EC)

• Single leg stance (EO/EC),
dominant side

• Tandem (EO/EC)

Surface: firm and foam

30 s N/A

Hejda et al. [64]

• 10 degenerative and progressive
cerebellar ataxia (52.2 ± 11.7)

• 11 controls (26.0 ± 6.4)

1 3D-inertial sensor (ACC and
GYR)
Freq: 100 Hz

• Lower back (L2–L3)
• Double leg stance

(EO/EC)

Surface: firm and foam

60 s 30◦, 0 cm

Hou et al. [65]
• 10 chronic stroke (57.7 ± 13.3)
• 13 controls (45.6 ± 11.7)

1 3D-inertial sensor (ACC and
GYR)
Freq: 50 Hz

• Lower back (S2)
• Double leg stance

(EO/EC)
• Semi-tandem (EO/EC)

30 s Self-selected,
shoulders

Hsieh et al. [66]

• Elderly persons:

- 22 low-risk falls (64.8 ± 4.5)
- 8 high-risk falls (72.3 ± 6.6)

1 3D-accelerometer
Freq: 200 Hz

• Sternum

• Double leg stance
(EO/EC)

• Single leg stance (EO/EC),
dominant side

• Tandem (EO/EC)
• Semi-tandem (EO/EC)
• Dual task (counting down

by 3 from 100 or 200)

30 s N/A

King et al. [67]
• 13 mTBI (16.3 ± 1.6)
• 13 controls (16.7 ± 2.1)

1 3D-accelerometer
Freq: 120 Hz

• Lower back (L5)

• BESS test
• mBESS test
• iBESSm test
• imBESS test

Surface: firm and foam

30 s 0◦, 0 cm

King et al. [68]

• 52 persons with concussion (20.4 ±
1.3)

• 76 controls (20.6 ± 1.4)

1 3D-inertial sensor (ACC, GYR,
and MAG)
Freq: N/A

• Lower back (L5) • mBESS test 30 s N/A

Lipsmeier et al. [69]
• 43 iPD (57.5 ± 8.5)
• 35 Controls (56.2 ± 7.8)

1 3D-inertial sensor (ACC, GYR,
and MAG)
Freq: N/A

• N/A • Double leg stance (EO) 30 s Self-selected,
self-selected
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Table 3. Cont.

First Author
(Reference)

Population
(Mean Age in Years ± SD) Sensors Sensor Placement Test Condition(s) Test Duration

(in Each Condition)
Feet Position (Angle
and Heel Distance)

Mancini et al. [70]
• 13 iPD (60.4 ± 8.5)
• 12 controls (60.2 ± 8.2)

1 3D-inertial sensor (ACC and
GYR)
Freq: 100 Hz
ACC range: ± 1.7 g

• Lower back (L5) • Double leg stance
(EO/EC) 40 s Self-selected, 10 cm

Mancini et al. [71]

• Study I:

- 13 iPD (60.4 ± 8.5)
- 12 controls (60.2 ± 8.2)

• Study II:

- 17 iPD (67.1 ± 7.3)
- 17 controls (67.9 ± 6.1)

1 3D-accelerometer
Freq: 50 Hz
ACC range: ± 1.7 g

• Lower back (L5) • Double leg stance (EO) 30 s Self-selected, 10 cm

Matheron et al. [72] • 33 healthy elderly (73.4 ± 6.8) 1 3D-accelerometer
Freq: 100 Hz

• Lower back

• Double leg stance
(EO/EC)

• Dual task (counting down
by 3 from 100)

60 s 30◦, 4 cm

Melecky et al. [73]

• 10 persons with degenerative
cerebellar ataxia (52.2 ± 11.7)

• 11 controls (26.0 ± 6.4)

1 3D-inertial sensor (ACC and
GYR)
Freq: N/A

• Lower back (L2–L3)
• Double leg stance

(EO/EC)

Surface: firm and foam

60 s 30◦, 0 cm

Mellone et al. [74]
• 20 iPD (62 ± 7)
• 20 controls (64 ± 6)

1 3D-accelerometer
Freq: 100 Hz
ACC range: ±2 g

• Lower back (L5)
• Double leg stance
• Dual task (counting down

by 3)
30 s Footprint template

Nguyen et al. [75]

• 34 persons with cerebellar ataxia
(47.6 ± 10.8)

• 22 controls (age matched)

2 3D-accelerometers
Freq: 50 Hz

• Upper back
• Sternum

• Double leg stance
(EO/EC) 30 s Self-selected, 0 cm

Ozinga et al. [76]
• 14 iPD (63 ± 8)
• 14 controls (65 ± 9)

1 3D-accelerometer
Freq: 100 Hz

• Sacrum • Double leg stance
(EO/EC) 20 s Footprint template
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Table 3. Cont.

First Author
(Reference)

Population
(Mean Age in Years ± SD) Sensors Sensor Placement Test Condition(s) Test Duration

(in Each Condition)
Feet Position (Angle
and Heel Distance)

Palmerini et al. [77]
• 20 iPD (62 ± 7)
• 20 controls (64 ± 6)

1 3D-accelerometer
Freq: 100 Hz
ACC range: ± 2 g

• Lower back (L5)

• Double leg stance
(EO/EC)

• Dual task

Surface: firm and foam

30 s Footprint template

Park et al. [78] • 135 healthy (57.7 ± 17.1)
6 3D-inertial sensors (ACC, GYR,
and MAG)
Freq: 128 Hz

• Lower back (L5)
• Sternum

• SAW test 30 s 14◦, 10 cm

Rocchi et al. [79]

• iPD:

- 40 PIGD (64.5 ± 6.9)
- 26 TD (67.6 ± 9.9)

• 15 controls (78.2 ± 3.9)

1 3D-accelerometer
Freq: 100 Hz

• Lower back • Double leg stance
(EO/EC) 60 s 0◦, 0 cm

Rouis et al. [80] • 15 healthy (37.7 ± 15)
1 3D-accelerometer
Freq: 50 Hz
ACC range: ± 2 g

• Lower back (L5) • Double leg stance
(EO/EC) 30 s Self-selected,

self-selected

Saunders et al. [81] • 20 healthy (81 ± 4)
1 3D-accelerometer
Freq: 250 Hz
ACC range: ± 2 g

• Lower back (L3)
• Double leg stance

(EO/EC)

Surface: firm and foam

30 s 0◦, 0 cm

Solomon et al. [82]
• 20 MS (N/A)
• 20 controls (N/A)

6 3D-inertial sensors (ACC, GYR,
and MAG)
Freq: 120 Hz

• Lower back
• Sternum
• Lower and upper limbs

• SAW test

Surface: foam
30 s 17.3◦, 10.48 cm

Spain et al. [83]
• 31 MS (N/A)
• 28 controls (aged matched)

6 3D-inertial sensors (ACC, GYR,
and MAG)
Freq: 50 Hz
ACC range: ± 1.7 g

• Lower back (L5) • Double leg stance
(EO/EC) 30 s Footprint template
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Table 3. Cont.

First Author
(Reference)

Population
(Mean Age in Years ± SD) Sensors Sensor Placement Test Condition(s) Test Duration

(in Each Condition)
Feet Position (Angle
and Heel Distance)

Toosizadeh et al. [84]

• 18 Diabetic peripheral neuropathy
(65 ± 8)

• 18 controls (69 ± 3)

2 3D-inertial sensors (ACC, GYR,
and MAG)
Freq: N/A

• Lower limb (thigh
and shank)

• Double leg stance
(EO/EC) 15 s 0◦, 0 cm

Whitney et al. [85] • 81 healthy (47.8 ± 21.2)
1 2D-accelerometer
Freq: 100 Hz
ACC range: ± 1.2 g

• Lower back (pelvis) • SOT test,

Surface: firm and foam
40 s N/A

Zhou et al. [86]

• Diabetic peripheral neuropathy:

- 78 middle-age adults (57.2
± 4.2)

- 73 older adults (71.4 ± 5.4)

• 45 controls (73.4 ± 6.8)

2 3D-inertial sensors (ACC and
GYR)
Freq: 100 Hz
ACC range: ± 2 g

• Lower back
• Lower limb (shank)

• Double leg stance
(EO/EC)

• Semi-tandem (EO)
30 s 0◦, 0 cm

ACC: accelerometer; BESS: Balance Error Scoring System; EC: eyes closed condition; EO: eyes open condition; FGD: Frontal Gait Disorder; FOG: Freezing of Gait; GYR: gyroscope; iPD:
idiopathic Parkinson’s Disease; MAG: magnetometer; mTBI: mild Traumatic Brain Injury; N/A: Not Available; MS: Multiple Sclerosis; PIGD: Postural Instability Gait Difficulty; SAW:
Stand and Walk test; SOT: Sensory Organization Test; TD: Tremor Dominant; vPD: vascular Parkinson’s Disease.
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3.3. Sample Population Characteristics

As detailed in Table 3, sample population characteristics and sizes varied across the included
articles. The subjects enrolled in these studies consisted of healthy, young, and/or older adults
(with mean age between 15 and 78 years), persons with sport-related concussions, and patients with
Parkinson’s Disease (PD), Multiple Sclerosis (MS), ankle sprain, Traumatic Brain Injury (TBI), diabetic
peripheral neuropathy (DPN), degenerative cerebellar ataxia, stroke, high fall risk, and haemophilia.
For what concerns the patients mentioned above, a summary of the studies is provided in Table 4.
The most commonly reported balance disorders were Parkinson’s disease (14 articles), degenerative
cerebellar ataxia (4 articles), sport-related concussion (4 articles), and diabetic peripheral neuropathy
(3 articles).

Table 4. Summary of the balance disorders reported in the included articles.

Balance Disorder N % of Articles Reference(s)

Parkinson’s Disease (PD) 14 29.8% [44,45,47,48,52,53,56,69–71,74,76,77,79]

Degenerative Cerebellar Ataxia 4 8.5% [41,64,73,75]

Concussion 4 8.5% [42,43,54,68]

Diabetic Peripheral Neuropathy (DPN) 4 8.5% [55,59,75,86]

Multiple Sclerosis (MS) 3 6.4% [50,82,83]

High fall risk 2 4.3% [55,66]

Traumatic Brain Injury (TBI) 2 4.3% [57,67]

Ankle sprain 1 2.1% [40]

Stroke 1 2.1% [65]

Haemophilia 1 2.1% [51]

Total 36 76.6%

N: Number of articles.

Among the 47 studies included, 29 articles (61.7%) assessed the standing balance of pathological
subjects with respect to a healthy control population, 11 articles (23.4%) assessed the standing balance
only on healthy subjects, while 7 articles (14.9%) assessed the standing balance only on pathological
subjects. Sample size ranged from 10 (based on the exclusion criterion) to 135 subjects.

3.4. Sensor Type and Placement

Several wearable sensors were used to assess standing balance. Wearable sensors included
inertial motion sensors equipped with accelerometers, gyroscopes, and magnetometers; standalone
multiaxial accelerometers, and smartphones equipped with inertial sensors. Of the 47 included
articles, 26 articles (55.3%) used commercial inertial sensors, 13 articles (27.7%) used commercial
3D accelerometers, and the remaining 8 articles (17.0%) used one-dimensional or two-dimensional
homemade accelerometers. The most commonly used inertial sensors were Opal APDM Wearable
Technologies (10 articles), MTX Xsens Enschede (8 articles), and BalanSens BioSensics LLC (3 articles).
A wide range of sampling frequencies (from 10 Hz to 1000 Hz) was used to acquire the signals during
standing balance measurements, but the most commonly used sampling frequency was 100 Hz.

Similarly, several sensor placements of the wearable sensors were described in the experimental
protocols, depending on the postural task. Among the 47 included articles, 38 articles (80.9%) placed
the wearable sensors on the lower back near the center of mass (e.g., lumbar region of the trunk at
L5 and sacral region of the trunk at S2), 15 articles (31.9%) placed it on the lower limb (e.g., thigh,
malleolus, and shank), 7 articles (14.9%) placed it in correspondence with the sternum, 5 articles (10.6%)
placed it on the upper back (e.g., thoracic region of the trunk at Th4), 3 articles (6.4%) placed it on the
upper limb (e.g., wrists), and 1 article (2.1%) placed it on the forehead. Figure 2 represents all the
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sensor placements used in the reviewed articles. All the wearable sensors were attached to the subjects
by means of elastic belts or Velcro® bands. Further details on the type and placement of the wearable
sensors used in the included articles are summarized in Table 3.

Figure 2. Sensor placements reported in experimental protocols with indication of the percentage of
the articles included in this review that consider each position.

3.5. Parameters for Standing-Balance Assessment

Several parameters were calculated for assessment of the standing balance from the signals
acquired through the wearable sensors. The acquired signals were usually lowpass filtered by means
of digital filters with cut-off frequencies that ranged between 0.5 Hz and 10 Hz. The most commonly
reported parameters computed from the filtered acceleration signals were Root-Mean-Square (RMS)
(21 articles) expressed in m/s2, jerk index (8 articles) expressed in m2/s5, range of accelerations (8
articles) expressed in m/s2, centroidal frequency (7 articles) expressed in Hz, and frequency dispersion
(6 articles). The most frequently used parameter computed from the velocity signals (first integral of
acceleration) was the mean sway velocity (12 articles) expressed in m/s. The most commonly reported
parameters computed from the displacement signals (second integral of acceleration) were RMS (6
articles) expressed in mm, sway area (5 articles) expressed in mm2, mean distance (5 articles) expressed
in mm, and sway path length (4 articles) expressed in mm.

A summary and a brief description of the balance parameters used in at least two articles is
provided in Table 5, with indication of the corresponding references. Parameters used only by a single
article were not reported.
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Table 5. Summary and brief description of the principal balance parameters.

Balance Measure
(Acceleration) Domain Definition of Measure References

Range Time Range of acceleration signals in AP
and/or ML directions (m/s2) [50,71,74,76,78,80,82,85]

Root Mean Square (RMS) Time RMS of the accelerations in AP
and/or ML directions (m/s2)

[40,43,44,48,50–53,58,63,66,71,
74,75,78,80–83,85]

Mean Acceleration Time Average of the AP and/or ML
accelerations (m/s2) [49,80]

Mean Distance Time

Mean distance from the center of
acceleration trajectory normalized
with respect to the duration of the
measurement (m/s2)

[50,71,78]

Sway Path Length (SPL) Time Total accelerometer trajectory
length (m/s2) [41,42,50,71,76,80,82,85]

Sway Area (SA) Time

Area spanned from the acceleration
signals normalized with respect to
the duration of the
measurement (mm2/s5)

[50,57,71,78,80]

95% Ellipse Sway Area Time
Elliptical area that encapsulates the
sway path derived from the AP and
ML accelerations (m2/s4)

[43,76,82]

95% Ellipse Sway Normalized
Area Time

Elliptical area that encapsulates the
sway path derived from the AP and
ML accelerations normalized with
respect to the duration of the
measurement (m2/s5)

[71,78]

Jerk Index (JI) Time
Function of the time derivative of
the acceleration: it is an index of
sway smoothness (m2/s5).

[48,50,53,71,74,77,78,82]

Normalized Jerk Index (nJI) Time
Jerk index normalized to range of
acceleration excursion and duration
(dimensionless)

[52,77,78,83]

F50 Frequency Frequency containing 50% of the
total power (Hz) [71,77,80]

F95 Frequency Frequency containing 95% of the
total power (Hz) [50,70,71,74,77,80]

Total Power Frequency Total power of the spectrum of
accelerations (m2/s4) [68,71,80,82]

Frequency Dispersion (FD) Frequency

Measure of the variability of the
frequency content of the power
spectral density (0 for a pure
sinusoid: it increases with spectral
bandwidth to 1) (dimensionless)

[50,52,70,71,77,78]

Centroidal Frequency (CF) Frequency

Frequency at which spectral mass is
concentrated: the power of the
acceleration signals above and
below CF are exactly balanced (Hz).

[52,71,74,77–79,83]

Mean Frequency Frequency Mean frequency of the acceleration
power spectrum (Hz) [50,58,71]

Entropy Frequency Power spectrum entropy of
accelerations (dimensionless) [58,75,77]

Mean Sway Velocity (MV) Time
First integral of the acceleration
signals in AP and/or ML
directions (m/s)

[52,58,69–71,74,77–80,82,83]
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Table 5. Cont.

Balance Measure
(Acceleration) Domain Definition of Measure References

Root Mean Square (RMS) Time RMS of the displacements in AP
and/or ML directions (mm). [44,51,58,62,72,77]

Mean Distance (MD) Time Mean distance from the center of
COM (mm) [56,58,77,79]

Range Time Range of COM displacement (mm) [56,77,84]

Sway Path Length (SPL) Time Total COM trajectory length (mm) [56,58,77,79]

Sway Area (SA) Time Area included in the COM
displacement (mm2 or cm2) [59,60,77,84,86]

95% Ellipse Sway Normalized
Area Time

Elliptical area that encapsulates the
sway path derived from the AP and
ML displacement normalized with
respect to the duration of the
measurement (mm2/s)

[58,72]

AP: Anteroposterior direction; COM: Center of Mass; ML: Mediolateral direction.

3.6. Validation Against a Gold Standard

Validation against a gold standard (e.g., force plate and/or clinical score) was introduced by some
authors to check the sensitivity and experimental validity of the accelerometric measures (acquired
through inertial sensors) compared with the standard laboratory measures (COP and clinical scores).
Among the 47 articles included in the review, only 17 validated the results against a gold standard.
Ten articles (21.3%) validated the results against a force plate (e.g., AMTI AccuSway-O, Kistler and
Synapsis Posturography System), and the other 7 articles (14.9%) validated against a clinical score
(e.g., Balance Error Scoring System (BESS) and Berg Balance Score (BBS)). Among the articles that
included a validation against a gold standard, 4 articles (8.5%) also compared the test–retest reliability
of wearable-sensor and force-plate measurements. A summary of the articles that included a validation
against a gold standard is reported in Table 6.

Table 6. Articles with validation against a gold standard (force plate or clinical score).

Validation N % of Articles References

Force plate 10 21.3% [54,62–64,66,70,71,73,80,85]

Clinical score 7 14.9% [46,54,58,61,65,67,68]

Total 17 36.2%

N: Number of articles.

4. Discussion

This work demonstrated that, in the literature, there is a large body of high-quality papers
(47 articles) evaluating postural balance through wearable sensors. We obtained a good inter-rater
agreement for the assessment of quality of the full-text papers analysed (Cohen’s kappa equal to 0.79),
meaning that the raters had only minor discrepancies in their judgments of internal, statistical, and
external validity concerning the articles examined.

The authors think that, in clinics, the advantages of using wearable-sensor outcome measures
of balance, instead of clinical subjective scores, are evident. Wearable sensors can provide a huge
amount of data that, if properly processed and correctly interpreted, may allow for assessing balance
performance in a more useful, accurate, reliable, and repeatable manner. Indeed, in using wearable
sensors, it is possible to easily include a large number of subjects and task repetitions, to collect data
out of the lab, to engage patients in more personalized rehabilitation protocols, and to campaign to
older subjects active aging and fall prevention.



Sensors 2019, 19, 4075 17 of 25

Among the many different applications, it emerged that the postural sway assessment through
wearable sensors may be particularly important for Parkinson’s disease patients. This is not surprising
considering the difficulties that clinicians may have in the prescription of the correct Levodopa drug
dose and its fractioning and in the follow-up adjustments to therapy to control patient symptoms and
the effects that the drug itself may have on balance performance [44,45,47,48,52,53,56,69–71,74,76,77,79].

Wearable sensor technology is widely available at low cost. In the simplest applications, the inertial
sensors embedded in smartphones can be used to measure postural sway [49,65,66,69,76]. On the other
hand, recently, a number of wearable systems were specifically designed to perform instrumented
balance analysis. In some cases, these systems were customized for specific applications in the
rehabilitation field, including systems relying on biofeedback. From a technical perspective, reviewing
the articles for this work, the authors realized that there is a general lack of information pertaining
to sensor calibration procedures. Commonly, two of the IMU sensing axes were oriented along the
ML and AP anthropometric directions and the third axis was oriented along the vertical direction
(i.e., gravity line). Considering that balance postural tasks involve quiet standing trials and small
sway angles, measurements in the ML and AP directions are ideally not biased by gravity acceleration.
In the reviewed paper, it was generally assumed that the components of gravity acceleration in the
AP and ML directions due to sensors misalignment were negligible. Overall, little or no information
is provided on this important aspect. A rigorous measurement approach requires that the estimated
orientation of the sensor axes with respect to a fixed global frame is used to rotate the measured
acceleration from the sensor-fixed to global frame and that the gravity constant is subtracted to obtain
the net motion acceleration.

A variety of different research protocols was found in the examined articles. In many practical
situations, a single sensor positioned on the lower back of the subject, mostly at the L5 level, is used to
perform the posturographic examination. In some papers, additional sensors are placed on the lower
limbs to assess the postural strategy (e.g., hip or ankle strategy) [44,45,59,60]. Few articles report sensor
placement also on the upper limbs and trunk, but in these case, additional aims are the assessment of
the base of support [61], trunk tilt [47], objective BESS [46], and correction of the vertical position of
the Center of Mass (COM) [56]. In most cases, subjects are asked to maintain double leg stance for
30 s. While in the literature it is widely recognized that the position of the feet on the support surface
heavily influences the postural sway, since it modifies the base of support, a standard feet position is
not fully established. Indeed, the feet position sometimes is not even reported in the study protocol
(n = 10 papers failed to report this information). Typical feet positions in double leg stance are: (1) feet
together (opening angle: 0◦, inter-malleolus distance: 0 cm); (2) feet opening angle ranging from 10◦ to
30◦ (the latter being the most frequent value), with inter-malleolus distance ranging from 0 cm up to a
10 cm; (3) self-selected feet position; and (4) footprint, having the same template position for every
subject. Although one may think that the position with feet together might be easily standardized, this
position can be challenging for some subjects suffering from balance-related disabilities. Patients may
prefer keeping their feet apart to maintain balance. Furthermore, keeping feet apart in a comfortable
self-selected position seems to provide an ecological test condition, closer to real-life upright stance.
The drawback of this choice is, evidently, that the balance performance may be biased by the subjective
selection of the base of support (the larger the base of support, the better the balance performance).
The above-discussed issues are probably the main reasons why researchers have not yet reached a
consensus on feet positioning during the examination of postural sway. In this perspective, the same
debate characterized “traditional” posturography, i.e., posturography performed through force plates.
However, since many current applications based on wearable sensors and many more forthcoming
applications will be carried out-of-the-lab in uncontrolled environments with subjects tested at their
domicile and/or during their habitual activities of daily living, the self-selected feet position might still
be the best compromise.
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Typically, at least two different test conditions are considered, i.e., with eyes open and closed,
to estimate the effect of visual deprivation on balance. In some cases, in addition to a firm surface, a
foam surface is used to differently stimulate the proprioceptive system of subjects during the postural
balance task. In other cases, subjects stand in tandem, semi-tandem, or single-leg stance (on the
dominant side, on the contralateral side, or alternating both conditions) in order to challenge their
balance control. In a few studies, a dual task protocol is also introduced, e.g., asking subjects to count
down by 3 from 100 while standing upright, to study the interference of a concomitant cognitive load
on balance.

Most of the outcome measures introduced in the analysed studies are based on accelerometric
signals; a few studies use gyroscope signals, and only very seldomly, signals from magnetometers are
mentioned. The most frequently used outcome measure is the Root-Mean-Square (RMS) calculated
from acceleration signals. This parameter is typically evaluated separately for the anteroposterior
and mediolateral directions. In some cases, the total RMS is reported. With regard to acceleration
signals, it should be noticed that a direct comparison with traditional force-platform (COP) signals is
not possible [87]. The parameter values obtained from acceleration and COP signals estimate different
physical quantities. Furthermore, wearable sensors are placed in different positions on the body (the
most common location being on the back at the L5 level in correspondence to the COM) with respect to
where the information from the COP signals arise (between the feet and within the base of support).
In some cases, a 1-link or 2-link inverted pendulum model is applied in an attempt to bridge the
gap [55,56,62,71,76,77,79,81,84]. The fact that acceleration signals obtained from wearable sensors and
traditional COP signals obtained from a force platform cannot be directly compared is not a problem
by itself if the concept of a new, wearable-based posturography is introduced. With this statement,
the authors mean that, as long as wearable sensors provide useful information on postural balance, it
is irrelevant that this information is based on parameters that are not directly comparable with those
used in traditional posturography. This point of view is supported by valuable contributions such as
the Instrumented test of Postural Sway (ISway) proposed by Mancini et al. in 2012 [71]. The basic idea
of this kind of approach is that the new wearable technology, introducing an IMU-based assessment
of the postural sway, is mature enough to “replace” balance clinical scales and scores without the
limitation of the traditional posturographic approach.

Moreover, analysis of the most significative parameters associated with different balance disorders
shows that, in PD populations, the parameters that best discriminate postural sway in the time domain
are the jerk index [48,70,71,77], the sway amplitude [56,77], and the range of acceleration signals [76],
while in the frequency domain, they are frequency dispersion [70,77] and centroidal frequency [71,79].
People with MS have increased sway acceleration amplitude [83], and instrumented standing balance
measures were best for spatiotemporal measures, while frequency measures were less reliable [50].
Individuals with concussions displayed increased normalized path lengths of the acceleration signal in
the AP [42] and ML [68] directions but also wider sway volume and area of the acceleration signals [54].
Among the high-quality articles selected in this review, 36% focused on the validation of wearable
sensors against a gold standard approach. In particular, 10 papers were focused on the comparison
between the performance of wearable sensors and force plate for postural balance assessment, while 7
papers focused on the correlations with clinical scores or scales (such as BESS or BBS). For the former,
investigations were frequently limited to the evaluation of the repeatability of the wearable sensor
approach compared to the traditional COP measurements, through the analysis of intra-class correlation
coefficients or analogous measures. The authors noticed a lack of information on the comparison
of sensitivity between wearable systems and force-plate traditional approaches. However, this is a
crucial aspect. Indeed, especially in the clinical field, it is very important that the “least detectable
change” of an outcome measure is smaller, enough for the specific application under consideration.
Hence, the authors think that one open issue in this research field is the sensitivity of wearable systems
with respect to traditional gold-standard force plates. Future studies should investigate more deeply
this aspect.
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5. Conclusions

After a quality assessment of the selected papers, we summarized the state-of-the-art knowledge
on wearable sensors used to evaluate standing balance, highlighting the main applications in clinics
and active aging and discussing the best sensor location and most effective data acquisition protocols.
The results of this review suggest that efforts in the validation of wearable systems against traditional
posturographic approaches should focus on the evaluation of the sensitivity of the outcome measures
provided by this promising technology.
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Abbreviations

The following abbreviations are used in the manuscript:
ACC Accelerometer
AP Anteroposterior
BBS Berg Balance Scale
BESS Balance Error Scoring System
CF Centroidal frequency
COM Center of Mass
COP Center of Pression
DPN Diabetic Peripheral Neuropathy
EO Eyes Open
EC Eyes Closed
EV External Validity
FD Frequency Dispersion
FGD Frontal Gait Disorder
FOG Freezing of Gait
GYR Gyroscope
IMU Inertial Measurement Unit
iPD Idiopathic Parkinson’s Disease
IV Internal Validity
JI Jerk Index
MAG Magnetometer
MD Mean Distance
MIMU Magneto Inertial Measurement Unit
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ML Mediolateral
MS Multiple Sclerosis
MV Mean Sway Velocity
N/A Not Available
nJI Normalized Jerk Index
PD Parkinson’s Disease
PIGD Postural Instability Gait Difficulty
RMS Root Mean Square
SA Sway Area
SAW Stand and Walk
SOT Sensory Organization Test
SPL Sway Path Length
TBI Traumatic Brain Injury
TD Tremor Dominant
vPD Time-Up-and-GO Test
TUG Vascular Parkinson’s Disease
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