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Abstract: We present a deep learning method used in conjunction with dual-modal microwave-
ultrasound imaging to produce tomographic reconstructions of the complex-valued permittivity of
numerical breast phantoms. We also assess tumor segmentation performance using the reconstructed
permittivity as a feature. The contrast source inversion (CSI) technique is used to create the
complex-permittivity images of the breast with ultrasound-derived tissue regions utilized as prior
information. However, imaging artifacts make the detection of tumors difficult. To overcome this
issue we train a convolutional neural network (CNN) that takes in, as input, the dual-modal CSI
reconstruction and attempts to produce the true image of the complex tissue permittivity. The neural
network consists of successive convolutional and downsampling layers, followed by successive
deconvolutional and upsampling layers based on the U-Net architecture. To train the neural
network, the input-output pairs consist of CSI’s dual-modal reconstructions, along with the true
numerical phantom images from which the microwave scattered field was synthetically generated.
The reconstructed permittivity images produced by the CNN show that the network is not only able
to remove the artifacts that are typical of CSI reconstructions, but can also improve the detectability
of tumors. The performance of the CNN is assessed using a four-fold cross-validation on our dataset
that shows improvement over CSI both in terms of reconstruction error and tumor segmentation
performance.

Keywords: microwave breast imaging; inverse problems; image reconstruction; tumor detection;
convolutional neural networks

1. Introduction

In quantitative microwave imaging, scattered-field data arising from the illumination of an
object-of-interest (OI) by microwave energy is acquired via a data-acquisition setup. From the
collected scattered-field data one then seeks to infer, or reconstruct, information about the spatial
distribution of the physical properties of the OI that affect the scattering process, i.e., its permittivity.
The reconstruction is in the form of two quantitative images corresponding to the real and imaginary
parts of the complex-valued permittivity. Mathematically, the so-called inversion of the scattered-field
data to reconstruct an image of the physical properties is accomplished by solving an inverse problem.
Typically, a numerical forward model that relates any particular distribution of properties to the
collected data is introduced into the inverse problem. The more general the reconstruction model
the more difficult solving the inverse problem becomes, often leading to what are known as ill-posed
inverse problems. Ill-posedness means that there may be no or many possible distributions of the
properties that lead to the data (i.e., non-existence and non-uniquenes of solutions to the mathematical
inverse problem), and that small changes in the data may lead to arbitrarily large changes in the
inferred distributions of the properties (i.e., instability of the solution). Note that ill-posedness is a
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property of the mathematical formulation of the inverse problem corresponding to a particular setup
of the wavefield process. One may attempt to change the physical process being used to collect the
scattered-field data but ultimately the ill-posedness arises because of the limited amount of data one is
able to collect as well as the fact that the data must be collected remotely, i.e., away from the location
of the properties one is wanting to infer.

This is indeed the case for the inverse problems associated with quantitative microwave imaging
(MWI) [1] and ultrasound imaging (USI) [2,3]. Both MWI and USI attempt a quantitative reconstruction
of the spatial distribution of the physical properties affecting the wavefield processes associated with
each of these modalities. In MWI one seeks to reconstruct the complex-valued permittivity of the OI,
whereas in USI one reconstructs, e.g., the complex-valued compressibility and the mass-density of the
OI. It has long been recognized that the reconstructions of physical properties, such as permittivity,
would be extremely useful for medical imaging since different kinds of biological tissues have been
shown to have distinct electrical properties. For the detection of breast cancer significant effort has
gone into the characterization of breast tissues [4].

There have been significant advances in the use of microwave imaging for breast cancer detection
and monitoring during the past two decades [5,6]. Microwave breast imaging techniques generally
split into those that produce a qualitative image of the breast’s interior structure and those that
produce a quantitative image of the complex permittivity of the breast tissues. Quantitative techniques
take advantage of the different dielectric properties of normal breast tissue (e.g., skin, adipose,
and fibroglandular) and cancerous tumors [4,7]. The main approach for solving ill-posed inverse
problems associated with quantitative MW/US breast imaging are computationally expensive iterative
methods where the inversion model consists of a numerical solution of a complex electromagnetic or
ultrasound scattering problem [3,6]. While such iterative methods have improved dramatically over
the years, providing improved resolution and accuracy of the reconstructed properties, as well as more
efficient implementations, there are still many fundamental trade-offs between these three aspects
due to operational, financial, and physical constraints [6]. The greatest challenge to MWI becoming
clinically accepted for breast imaging is its lower resolution compared to other biomedical modalities as
well as the many reconstruction artifacts that are produced related to the nonlinearity and ill-posedness
of the associated inverse problem. Progress in MWI has recently been made by incorporating prior
information obtained from some alternate modality. For instance, it has recently been shown that
spatial segmentation priors derived from magnetic resonance imaging or Xray computed tomography
can significantly improve MWI [8]. In this paper we take advantage of the recent progress in a
multimodal ultrasound/microwave imaging procedure wherein the breast region is first segmented
into tissue regions using an ultrasound (US) technique and subsequently these tissue-regions are
incorporated as prior information into either a qualitative, [9], or quantitative microwave imaging
technique [10].

Deep learning is currently an extremely active research area that has produced huge successes
in a broad range of applications such as speech recognition, computer vision, and natural language
processing [11]. Researchers have begun to investigate how deep learning techniques can be effectively
applied in biomedical imaging and inverse problem [12,13]. Studies have shown that deep learning
can provide state-of-the-art performance for tumor classification [14], segmentation [15], and the
post-processing of X-ray CT images [16,17].

Neural networks have recently been combined with microwave image construction techniques as
a means of learning the forward model for a complex data-acqusition system [18]. Also, Rekanos has
proposed using radial basis function neural networks to solve a simple inverse problem associated
with the microwave imaging [19]. In this technique they estimate the position and size of proliferated
marrow inside bone. Most recently, Li et al. have studied how deep neural networks can be used to
take microwave images created using the back-projection (BP) method and have the network output a
much improved image [20]. This by-passes the use of iterative techniques to solve the full nonlinear
electromagnetic inverse problem as back-projection is a linear construction technique. The results of
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that work are significant because they show how a network trained using only BP images obtained
from synthetically generated data can then generalize to BP images created using experimental data.
Although the generalization to experimental data is significant, the targets they used are simple
homogeneous targets with low contrast. That is, the targets used by them for training the network
had no internal structure. To the best of our knowledge utilizing deep learning techniques to enhance
microwave imaging for high contrast objects-of-interest that have complicated internal structure,
such as the breast imaging application that we consider herein, have not been previously studied.

In this paper, we explore one method of utilizing deep learning in dual-mode MW/US breast
imaging that utilizes the Contrast Source Inversion (CSI) technique. In addition, we quantify the
developed framework’s ability to categorize and/or identify tissues in the images. The specific goal is
to identify tumors within breast images of the reconstructed real and imaginary parts of the complex
valued permittivity.

2. CSI-Deep-Learning Microwave Breast Imaging

2.1. Contrast Source Inversion

The first part of the CSI-Deep-Learning technique developed herein is to perform preliminary
(rough) reconstructions of the complex-valued permittivity using the CSI technique. Traditionally,
regularized iterative algorithms have remained the method of choice for solving inverse problems
associated with MW breast imaging. Since its creation in 1997 the CSI technique has become a leading
numerical optimization based reconstruction method for inverse problems [21]. The method can
be briefly described as follows for the type of 2D Transverse-Magnetic tomographic reconstructions
considered herein. We define an imaging domain, D, within the problem domain Ω of a MW or US
(wavefield) imaging setup as shown in Figure 1. An unknown isotropic, nonmagnetic OI is located inD
and is surrounded by a background medium of known electrical and acoustic properties. The complex
relative permittivity of the OI is εr(r), where r is a 2D position vector. The corresponding electric
contrast is defined as χ(r) , (εr(r)− εn(r))/εn(r) where εn(r) is an imposed numerical background
complex relative permittivity (with χ(r) = 0 for r /∈ D), which may be inhomogeneous so as to
represent any prior information we wish to impose (notice that at any location where εn(r) = εr(r)
the contrast will be zero). With the OI in D a total field Et is produced by a source t and is measured
at points located on a measurement surface S . An incident field Einc

t is defined when there is
no OI in D; rather the region is occupied by the imposed (known) numerical background εn(r).
The scattered electric field is then defined by Esct

t , Et − Einc
t and satisfies the scalar Helmholtz

equation ∇2Esct
t (r) + k2

n(r)Esct
t (r) = −k2

n(r)wt(r) where kn(r) = ω
√

µ0ε0εn(r) is the wavenumber in
the imposed numerical background, and wt(r) , χ(r)Et(r) is the contrast source that produces the
scattered field for that transmitter.

Figure 1. Schematic representation of a wavefield imaging setup.
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The boundary-value problem (BVP) defined by this second-order Partial Differential Equation
(PDE) and the boundary conditions is solved using the Finite-Element Method (FEM) [22]. Thus,
the problem domain (Ω) is divided into a mesh of triangular elements upon which linear-basis
functions are specified whose parameters are dependent only on the geometry of the mesh. Applying
FEM to the BVP discretizes the problem producing a matrix equation for the unknown scattered-field
in terms of the contrast source (for each transmitter t).

The inverse problem is that of minimizing the CSI cost-functional that is defined with respect to
the contrast sources, wt, and the contrast, χ. This functional is constructed as the sum of normalized
data-error and domain-error functionals written as

FCSI(χ, wt) = FS (wt) +FD(χ, wt)

=
∑t ‖ ft −MSL[wt]‖2

S
∑t ‖ ft‖2

S
+

∑t
∥∥χ� Einc

t − wt + χ�MDL[wt]
∥∥2
D

∑t
∥∥χ� Einc

t
∥∥2
D

(1)

For each transmitter t, ft holds the measured scattered-field data at the receiver locations, Einc
t

is the vector of incident field mesh values inside D. The matrix L is the inverse of the FEM matrix
operator that transforms contrast source variables wt in D to scattered field values within the whole
domain Ω. The operator MS transforms field values from Ω to receiver locations on the measurement
surface S whereas the operator MD transforms values from Ω to points inside D. The vector χ

holds the contrast over the FEM mesh nodal values located inside D. The notation a� b denotes the
Hadamard (i.e., element-wise) product. The CSI objective functional FCSI(χ, wt) is minimized by
updating the contrast source wt and the contrast χ variables sequentially.

On its own, CSI is not able to effectively reconstruct the high-contrast complex-valued
permittivities associated with breast tissues, but recent advances have shown that incorporating
prior information regarding the location of specific tissue regions into CSI as an inhomogeneous
numerical background leads to much improvement [23,24]. Even so, the algorithm still produces
imaging artifacts that make further image analysis difficult. In [25], it was shown how US-derived
prior tissue regions can greatly improve reconstructions based on qualitative radar techniques. Herein,
we use these US-derived tissue regions as prior information for CSI-based MWI.

2.2. Machine Learning Approach to Reconstruction

One of the main reasons for imaging artifacts in CSI reconstructions is the possibility of a
non-realistic map of permittivities producing realistic measurement data. Any numerical optimization
algorithm is thus prone to getting stuck in a bad local minima corresponding to non-realistic map
of permittivities. As seen in the previous section, to discourage bad solutions, the CSI objective
does incorporate a regularization term. However, even with regularization, artifacts in CSI outputs
are common. In this paper we aim to fuse the CSI technique with a deep learning approach–our
objective is to learn a data-driven mapping, G, from a rough CSI reconstruction to the true permittivity
(G : εCSI → εtrue). Since the permittivity values are complex, CSI output has a real and an imaginary
part; so does the desired permittivity εtrue. It is worth noting that the real and imaginary parts of the
permittivity have very different scales, and a reconstruction loss to find the optimal G can easily get
dominated by one of the components. Several normalization options can be considered; however,
to simplify, we decompose the task of estimating G into two parts, GR and GI . Essentially we learn two
separate functions to reconstruct the real and imaginary parts of the permittivity. If the permittivity
map is an M× N image, then each of the learned functions maps M× N complex domain to M× N
real domain (e.g., GR : CM×N 7→ RM×N). The complex output of CSI can be treated as a 2-channel
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image. As such, to learn the two functions, the input and output are both images. In particular, we aim
to realize GR and GI through deep neural networks.

2.3. Choice of Neural Network Architecture

Traditional convolutional neural networks (CNNs) were originally designed as classifiers–for
input they would take in an image, and as output they would produce a decision or an object category.
However, recent years have seen several variations in architectures for which the input and output
are both images. The requirement for the neural network output to be an image often arises in
applications such as image segmentation. For tumor segmentation, the U-Net architecture has shown
very promising results [15]. The architecture consists of successive convolutional and downsampling
layers, followed by successive deconvolutional and upsampling layers. Moreover, the skip connections
between the corresponding contractive and expansive layers keep the gradients from vanishing that
helps in the optimization process. To use the architecture for our reconstruction problem, we change
the segmentation objective of the U-Net architecture, and replace it with the sum of pixelwise squared
reconstruction errors between the true permittivity and the network output.

Note that our training data, which forms the input to the CNN, are complex valued images. Thus,
a choice needs to be made on a CNN architecture that can accommodate complex values. Very little
has been reported on the training of U-Net with complex weights, although recently there has been
some work on training neural networks with complex weights for convolutional architectures [26].
To establish a proof-of-concept, in this paper we make the choice of testing two different U-Net
architectures having real-valued weights, described as follows.

Architecture 1: The input to the first network consists of three CSI reconstructions after 250
iterations: we use the real and imaginary parts along with the magnitude of the complex-valued
permittivity. The network is trained to output either the real or the imaginary part of the corresponding
true permittivity map. That is, two independent networks, with three input images and one output
image, are trained to reconstruct the real and imaginary parts of the permittivity.

Architecture 2: The input is same as the first architecture but the output consists of all three
images corresponding to the magnitude, the real and imaginary parts of the true complex-valued
permittivity. Hence, only one network with three inputs and three outputs is trained.

The schematic for the first architecture is shown in Figure 2.

 
 

Network   =       CSI 
   Input       Reconstruction  

(Real, Imaginary and Magnitude) 

25
6x

25
6x

3

10 64 64 64

64 128 128

25
62

25
62

25
62

12
82

12
82

12
82

128 256 256

64
2

64
2

64
2

32
2

32
2

32
2

256 512 512

512

16
2

16
2

16
2

1024 1024

1024

32
2

32
2

32
2

256 256512

512512

64
2

64
2

64
2

256 128 128

12
82

12
82

12
82

25
62

25
62

25
62

25
6x

25
6

conv 3x3, stride 1, pad1; ReLU

max pooling 2x2,stride 2

Skip Connection

conv transpose 2x2, stride 2

conv 1x1, stride 1, pad0

Figure 2. Schematic for the U-Net Architecture 1 for the proposed permittivity reconstruction. The input
to the network is the CSI reconstruction, and the network is trained to output the corresponding true
permittivity map. Two networks with the above architecture were trained to reconstruct the real and
imaginary parts of the permittivity.
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2.4. Datasets

To create the synthetic scattered-field data for training and testing the CSI-deep-neural-network,
Magnetic Resonance Imaging (MRI)-derived numerical breast phantoms are first created by converting
each pixel value in tomographic slices of MRI breast images to a corresponding complex-valued
permittivity. As base models, three different MRI-derived breast models are utilized as shown
in Figure 3. Breast Model I, shown in the left column of Figure 3, is a heterogeneously dense
breast of dimensions 10 cm × 9.5 cm with two tumors of approximate dimensions 1.9 × 2.3 cm
and 1.9 × 1.8 cm centered at (0.9, 18.4) and (30.14, 2.8). Breast Model II, shown in the middle column,
is a 11.2 cm × 9.6 cm fatty breast that contains one tumor of size 1.5 cm × 1.6 cm centered at (7.3, 3).
Breast Model III is a very dense breast having dimensions of 10 cm × 5 cm and contains one tumor of
size 2.3 cm × 1.6 cm centered at (4.1, 2.7). All tumors are within the fibroglandular tissue. Ultrasound
scattered-field data is generated for each model and is utilized to generate prior information in the
form of three tissue regions: a skin layer, a fat region, and the fibroglandular region (similar to what
was done in [25]). This prior is utilized as an inhomogeneous numerical background in each of the
CSI-based MWI reconstructions that constitute the datasets for training and testing the deep neural
network. The forward data is obtained using a finite-element 2D electromagnetic field solver and 5%
noise is added to the forward data before it is inverted using the FEM-CSI technique. Details can be
found in [9].

Figure 3. Three breast models: I - Heterogeneously dense breast, II - Fatty, III - Very dense breast. Top
row-real part, bottom row-imaginary part of permittivity.

In order to generate a sufficient number of examples having various tumors to train the neural
networks considered herein, the permittivity values at the pixels where the tumors exist in the three
breast models are first set to that of fibroglandular tissue. Then, for each breast model, 400 phantoms
are generated with either a single or two tumors occupying the fibroglandular region. In particular
200 phantoms have one tumor and the other 200 are generated with two tumors. The generated
tumors have an approximate maximum diameter of 1.1–1.5 cm and are randomly located within the
fibroglandular region (contiguous pixels are randomly grown from a starting point until a maximum
diameter is reached). Examples of numerical phantoms for each breast model are shown in the right
column of Figure 4. A total of 400 phantoms were generated for each of the three models, so our dataset
consists of 1200 breast phantoms with 600 examples each for single and two tumors. Microwave as
well as ultrasound scattered-field data was generated for each of the 1200 phantoms and multimodal
CSI reconstructions were performed.
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Figure 4. Representative reconstructions from each breast model for U-Net A setup (Architecture 1:
Training set: Breast Models I, II, III; Testing set: Breast Models: I, II, III).

3. Numerical Experiments

All the CNNs were implemented in Python 3.6 using the Keras library running Tensorflow as
backend. We used a Tesla P100-PCIE-12GB graphic processor (NVIDIA Corporation, Santa Clara, CA,
USA) and Intel (R) CPU (3.50 GHz) (Intel Corporation, Santa Clara, CA, USA). The convolutional
layer weights were initialized by Gaussian random distribution using Xavier’s method to obtain an
appropriate scale [27]. We used a batch size of 10 and ran training for 75 epochs.

3.1. U-Net Training and Quantitative Assessment

To assess the proposed methodology all experiments were performed utilizing a four-fold
cross-validation strategy. Two types of training settings were performed differentiated by the breast
models used for training. U-Net A was trained using images from all three types of breast models
whereas U-Nets B, C, and D were trained using images from only two types of breast models. Details
of the testing that was performed is as follows:

Training Setting: U-Net A: In this setting, training was done using examples from all three breast
models. The 1200 images of the dataset were divided into 4 groups consisting of 300 images
(100 from each breast model). To implement the four-fold cross-validation, four networks were
trained, each using three groups for training (900 images) and tested using the remaining hold-out
group (300 images). Thus all 1200 cases featured as test examples when they were not part of the
training set.

Training Setting: U-Net B, U-Net C and U-Net D: In this setting, three different U-Nets where
breast examples from one type of breast model was excluded from the training set were trained.
In U-Net B examples from breast Model III were excluded, in U-Net C examples from breast Model
II were excluded, and in U-Net D examples from breast Model I were excluded from the training
set. The training images were taken from the same groupings of the four-fold cross-validation used
for U-Net A but now only 600 images from three of the groups were used for training. Testing
was performed using images from the hold-out group. In addition testing was performed using all
combinations of breast model from the hold-out group. That is, utilizing from either breast Model I, II,
III, I & II, I & III, or II & III. The first three combinations consist of only 100 images while the latter three
consist of 200 images from the hold-out group. This type of testing was motivated by the fact that each
model is significantly different from the rest of the models; excluding them from the training set taxes
the neural network when during testing it is presented with reconstructions from the unseen model.

Performance Metrics: We quantitatively assess both the reconstruction capability and the tumor
segmentation performance of the trained U-Nets. To assess the reconstruction quality, we use the Root
Mean Squared (RMS) reconstruction error between the network output and the true permittivity values
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(for both the real and imaginary parts separately). To quantify the tumor segmentation performance,
we use the Area Under the Curve (AUC) of the pixel-wise Receiver Operating Characteristics (ROC)
using the reconstructed permittivity as a feature. Pixel-wise ROC-AUC is a good performance measure
for tumor segmentation since it quantifies the separation between the distribution of permittivities
of tumor and non-tumor pixels [28]. For comparison we computed RMS reconstruction error and
performed ROC analysis on CSI-only reconstructions. The results of this quantitative evaluation are
shown in Tables 1 and 2.

Table 1. Comparison of reconstruction and tumor detection performance for architecture 1. The entries
in the cells show the reconstruction RMS error (Cyan) and ROC-AUC (Gray) for the respective setting.
The top-half of the table shows the performance when the real part of the reconstructed permittivity
was used to compute the reconstruction error and to generate the ROC curve and the bottom-half
shows the performance related the imaginary part of the reconstructed permittivity.

Models Included in
the Training Set

Reconstruction
Technique

Breast Models Included in the Test Set

I, II, III I II III I, II I, III II, III

N/A CSI
2.199
0.897

2.214
0.868

1.931
0.892

2.423
0.897

2.077
0.890

2.321
0.882

2.191
0.915

I, II, III U-Net A 0.122
0.987

0.144
0.980

0.075
0.994

0.135
0.984

0.114
0.987

0.140
0.982

0.110
0.991

I, II U-Net B 1.329
0.596

0.257
0.908

1.158
0.653

1.973
0.442

0.839
0.871

1.407
0.593

1.618
0.387

I, III U-Net C 0.694
0.922

0.253
0.886

1.151
0.937

0.232
0.919

0.834
0.917

0.243
0.903

0.830
0.942

II, III U-Net D 1.297
0.758

1.947
0.587

1.098
0.730

0.231
0.929

1.580
0.631

1.386
0.740

0.794
0.904

N/A CSI
7.103
0.757

6.894
0.717

6.548
0.799

7.806
0.713

6.723
0.762

7.364
0.721

7.205
0.781

I, II, III U-Net A 0.307
0.987

0.352
0.981

0.205
0.992

0.342
0.985

0.288
0.987

0.347
0.983

0.282
0.990

I, II U-Net B 1.884
0.654

0.594
0.889

1.572
0.907

2.797
0.529

1.188
0.906

2.022
0.649

2.268
0.465

I, III U-Net C 1.034
0.913

0.547
0.888

1.609
0.937

0.561
0.895

1.202
0.912

0.554
0.894

1.205
0.929

II, III U-Net D 1.843
0.694

2.754
0.501

1.512
0.810

0.567
0.916

2.221
0.536

1.989
0.671

1.142
0.909

Table 2. Comparison of reconstruction and tumor detection performance for architecture 2. The results
show that performance when the real and imaginary part of the reconstructed permittivity was used to
compute the reconstruction error and to generate an ROC curve.

Models Included in
the Training Set

Reconstruction
Technique

Breast Models Included in the Test Set

I, II, III I II III I, II I, III II, III

N/A CSI
2.199
0.897

2.214
0.868

1.931
0.892

2.423
0.897

2.077
0.890

2.321
0.882

2.191
0.915

I, II, III U-Net A 0.126
0.988

0.149
0.982

0.078
0.993

0.140
0.985

0.119
0.988

0.145
0.983

0.114
0.991

I, II U-Net B 1.310
0.623

0.268
0.892

1.087
0.944

1.973
0.515

0.792
0.912

1.408
0.612

1.593
0.434

I, III U-Net C 0.678
0.921

0.241
0.894

1.125
0.949

0.236
0.917

0.813
0.917

0.238
0.905

0.813
0.938

II, III U-Net D 1.285
0.753

1.941
0.581

1.061
0.841

0.242
0.924

1.565
0.620

1.383
0.734

0.770
0.918

N/A CSI
7.103
0.757

6.894
0.717

6.548
0.799

7.806
0.713

6.723
0.762

7.364
0.721

7.205
0.781

I, II, III U-Net A 0.313
0.989

0.361
0.985

0.206
0.992

0.349
0.987

0.294
0.989

0.355
0.987

0.286
0.991

I, II U-Net B 1.899
0.670

0.599
0.896

1.607
0.938

2.807
0.516

1.213
0.913

2.030
0.643

2.287
0.516

I, III U-Net C 1.044
0.918

0.561
0.889

1.630
0.943

0.546
0.910

1.219
0.914

0.553
0.901

1.215
0.935

II, III U-Net D 1.851
0.728

2.751
0.566

1.547
0.819

0.558
0.951

2.232
0.600

1.985
0.703

1.163
0.920
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3.2. Qualitative Evaluation of Robustness

To evaluate the robustness of the proposed methodology for creating the CNNs we check the
sensitivity to the parameters of the training dataset. Specifically, the parameters that were used in
generating the CSI images as well as the parameters used in presenting the images to the CNN.
First, given that all CNNs were trained utilizing CSI images that were terminated after 250 iterations,
the performance of the best performing trained network (U-Net A) is checked by testing with CSI
reconstructions that were terminated after 20, 150 and 500 iterations. Comparative examples of output
from U-Net A for these CSI images at these iteration numbers are shown in Figures 5 and 6. This shows
the performance of the CNN when tested against images that could vary substantially in terms of
accuracy from the ones with which it was trained; a type of test against the proximity of the input to
the test set.
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Figure 5. Representative reconstructions of the real part for a particular example when the test images
were stopped at iteration number 20, 150 and 500 but the neural net was trained on iteration number 250.
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Figure 6. Representative reconstructions of the imaginary part for a particular example when the test
images were stopped at iteration number 20, 150 and 500 but the neural net was trained on iteration
number 250.
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An additional test regarding the required proximity of the input to the test set is to test the
robustness of the network against geometric transformations of the input images such as rotation
and flipping. Note that U-Net A was trained using only unrotated and unflipped images. Figure 7
demonstrates the result of the trained network when the input images were rotated and flipped.
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Figure 7. Representative reconstructions from each breast model when the test images were rotated
and flipped but the neural net was trained on unrotated and unflipped images.

4. Results and Discussion

Tables 1 and 2 show the RMS reconstruction errors (cyan cells) and ROC-AUC (gray cells) for the
different training and testing setups previously described. Figure 8 shows ROCs when the test sets
included breast models I, II, III (plot (a) and (c)) and only Model II (plot (b) and (d)).

From these results we find that U-Net A, which was trained on examples from all breast models,
performs better (lower reconstruction error and higher AUC) than the both CSI and other U-Nets:
B,C,D. This is expected because the three breast models vary considerably in their internal structure.
Although the sub-optimal networks in all cases improve the RMS error over that obtained using CSI,
the AUC is sometimes improved but actually deteriorates for some of these networks.

It is expected that the CNN will perform worse when a whole class of breast models is not seen
by the neural network during the training. From the results it can be observed that deterioration in
the AUC is most pronounced in U-Net B (trained using Models I and II) and U-Net D (trained using
Models II and III), when they are tested using the missing model. The same does not happen with
U-Net C (trained using Models I and III). Its performance does not deteriorate substantially compared
to U-Net A. It is too early to conclude from this observation that a U-Net trained on heterogeneously
dense or very dense breast models can generalize to improve the CSI reconstructions of fatty breasts.
It is possible that a thresholding technique might not be an effective test for detecting tumors which
make up a large part of the fibroglandular tissue (as is the case for Model II breasts). This is because
CSI on its own already detects the small amount of fibroglandular tissue in Model II breasts very
well with few errors in the fatty tissue, thus, thresholding the image always detects a part of the
fibroglandular tissue as tumor, and this has a good probability of being truly tumor (high true-positive
rates). What this implies is that the thresholded ROC-AUC metric is not able to accurately report on
the improvements U-Net is able to impart on the CSI reconstructions.

It is notable, however, that U-Net C is able to generalize and not corrupt Model II breasts (having
never seen that type of breast). This is a surprising result and leads us to believe that a U-Net trained on
a wider variety of breast models will be quite robust in providing improvements of CSI reconstructions.

In terms of robustness and generalization, although testing the networks on rotated and flipped
images caused a drop in performance, the U-Net output remains much better than CSI. For qualitative
visualization of results, representative examples of reconstruction are shown in Figure 7. This is also
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true when testing with CSI reconstructions that were stopped at different iterations, as can be seen in
Figures 5 and 6.

Figure 8. Comparison between the detection performance based on the reconstructed outputs of U-Net
and CSI. For all the above cases U-Net A and U-Net B represent the settings when the network was
trained on examples from models I, II, III and models I, III respectively. Training was always done on
unrotated images. Testing scenarios (whether the images were rotated or not) as well as what models
were included in testing are shown on top of each plot (a–d).

The other observation relates to the differences between Architectures 1 and 2. Using Architecture
2, there seems to be a slight improvement in the AUC over Architecture 1 when the ROC is obtained
using the imaginary part of the complex permittivity. On the other hand the RMS error slightly
deteriorates, which is not surprising because Architecture 2 only has both the real and imaginary parts
as an output and therefore both affect the cost-function. Given that the magnitude of the real part
is greater than that of the imaginary part, the real part dominates the cost-function. It is surprising,
though, that the AUC improves when Architecture 2 is used. This leaves the differences between
Architectures 1 and 2 inconclusive. More research is required to differentiate the differences between
these two Architectures. In addition, future work will explore the potential use of architectures utilizing
complex weights (see for example [26]).

5. Conclusion

A deep learning technique using a CNN that takes in tomographic reconstructions representing
the complex-valued permittivity of the breast obtained using the CSI algorithm and produces images
that are much closer to the true permittivity has been introduced. The CNN reconstructed images
show the network’s ability to remove artifacts that are typical of CSI reconstructions. Not only is the
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RMS error between the CNN reconstructed images and the true permittivity images improved over
the CSI reconstructions, but by using a simple thresholding detection algorithm tumors that are not
detectable in CSI reconstructions are correctly detected in the CNN output. To assess the network’s
generalization we have conducted experiments by testing on examples that differ from the training
examples in varying degrees in terms of breast models and geometric transformations. Though our
dataset consisted of numerically generated phantoms, we used numerical breast models derived from
MRI tomographic images to generate the multimodal MW/US reconstructions. Three types of breast
phantoms that span the array of BI-RADS Breast Densities were used for this study. It was found that
training with all three breast-types produced the most robust CNN: consistently improving the AUC
and RMS error metrics over the CSI results. It was found that when certain breast model-types were
missing from the training set, sometimes the AUC actualy degrades whereas the RMS is still improved.
Thus, a significant finding of this work is that a wide diversity of breast-types should be used in the
training of CNNs for this purpose.

The first step in extending this work is to train 3D-CNNs that take full-3D CSI images as input.
The excellent results also motivate future work that will involve the use of experimental scattered-field
data derived from real breast multimodal MW/US imaging. Preliminary tumor-detection results
using experimental phanotms in a unique experimental breast imaging system have recently been
reported [29]. Future work will test the ability of CNNs trained with 3D images to improve the CSI
results obtained from that system.
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